Stride Lengths during Maximal Linear Sprint Acceleration Obtained with Foot-Mounted Inertial Measurement Units
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Test Procedures
2.3. Analysis of the IMU Data
2.4. Statistical Analysis
3. Results
3.1. Effects of Sprint Effort on SL Estimation
3.2. Effects of Stride Number on SL Estimation
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mariani, B.; Hoskovec, C.; Rochat, S.; Bula, C.; Penders, J.; Aminian, K. 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. J. Biomech. 2010, 43, 2999–3006. [Google Scholar] [CrossRef]
- Peruzzi, A.; Della Croce, U.; Cereatti, A. Estimation of stride length in level walking using an inertial measurement unit attached to the foot: A validation of the zero velocity assumption during stance. J. Biomech. 2011, 44, 1991–1994. [Google Scholar] [CrossRef]
- Washabaugh, E.P.; Kalyanaraman, T.; Adamczyk, P.G.; Claflin, E.S.; Krishnan, C. Validity and repeatability of inertial measurement units for measuring gait parameters. Gait Posture 2017, 55, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Kobsar, D.; Charlton, J.M.; Tse, C.T.F.; Esculier, J.F.; Graffos, A.; Krowchuk, N.M.; Thatcher, D.; Hunt, M.A. Validity and reliability of wearable inertial sensors in healthy adult walking: A systematic review and meta-analysis. J. Neuroeng. Rehabil. 2020, 17, 62. [Google Scholar] [CrossRef]
- Bissas, A.; Walker, J.; Tucker, C.B.; Paradisis, G.; Merlino, S. Men’s 100m-2017 IAAF World Championships Biomechanical Report; Monaco-Ville, Monaco, 2017. Available online: https://www.worldathletics.org/about-iaaf/documents/research-centre (accessed on 20 November 2021).
- Stevens, T.G.; De Ruiter, C.J.; Beek, P.J.; Savelsbergh, G.J. Validity and reliability of 6-a-side small-sided game locomotor performance in assessing physical fitness in football players. J. Sports Sci. 2016, 34, 527–534. [Google Scholar] [CrossRef] [Green Version]
- Haugen, T.; Danielsen, J.; Alnes, L.O.; McGhie, D.; Sandbakk, O.; Ettema, G. On the Importance of "Front-Side Mechanics" in Athletics Sprinting. Int. J. Sports Physiol. Perform. 2017, 13, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Debaere, S.; Jonkers, I.; Delecluse, C. The contribution of step characteristics to sprint running performance in high-level male and female athletes. J. Strength Cond. Res. Natl. Strength Cond. Assoc. 2013, 27, 116–124. [Google Scholar] [CrossRef]
- van den Tillaar, R. Comparison of Step-by-Step Kinematics in Repeated 30-m Sprints in Female Soccer Players. J. Strength Cond. Res. Natl. Strength Cond. Assoc. 2018, 32, 1923–1928. [Google Scholar] [CrossRef]
- de Ruiter, C.J.; van Dieen, J.H. Stride and Step Length Obtained with Inertial Measurement Units during Maximal Sprint Acceleration. Sports 2019, 7, 202. [Google Scholar] [CrossRef] [Green Version]
- Paradisis, G.P.; Bissas, A.; Pappas, P.; Zacharogiannis, E.; Theodorou, A.; Girard, O. Sprint mechanical differences at maximal running speed: Effects of performance level. J. Sports Sci. 2019, 37, 2026–2036. [Google Scholar] [CrossRef]
- Girard, O.; Brocherie, F.; Tomazin, K.; Farooq, A.; Morin, J.B. Changes in running mechanics over 100-m, 200-m and 400-m treadmill sprints. J. Biomech. 2016, 49, 1490–1497. [Google Scholar] [CrossRef]
- Lockie, R.G.; Murphy, A.J.; Schultz, A.B.; Knight, T.J.; Janse de Jonge, X.A. The effects of different speed training protocols on sprint acceleration kinematics and muscle strength and power in field sport athletes. J. Strength Cond. Res. Natl. Strength Cond. Assoc. 2012, 26, 1539–1550. [Google Scholar] [CrossRef] [Green Version]
- Kawamori, N.; Newton, R.U.; Hori, N.; Nosaka, K. Effects of weighted sled towing with heavy versus light load on sprint acceleration ability. J. Strength Cond. Res. Natl. Strength Cond. Assoc. 2014, 28, 2738–2745. [Google Scholar] [CrossRef]
- Nagahara, R.; Zushi, K. Development of maximal speed sprinting performance with changes in vertical, leg and joint stiffness. J. Sports Med. Phys. Fit. 2017, 57, 1572–1578. [Google Scholar] [CrossRef]
- Kratky, S.; Buchecker, M.; Pfusterschmied, J.; Szekely, C.; Muller, E. Effects of a Body-Weight Supporting Kite on Sprint Running Kinematics in Well-Trained Sprinters. J. Strength Cond. Res. Natl. Strength Cond. Assoc. 2016, 30, 102–108. [Google Scholar] [CrossRef]
- Zrenner, M.; Gradl, S.; Jensen, U.; Ullrich, M.; Eskofier, B.M. Comparison of Different Algorithms for Calculating Velocity and Stride Length in Running Using Inertial Measurement Units. Sensors 2018, 18, 4194. [Google Scholar] [CrossRef] [Green Version]
- Chew, D.-K.; Ngoh, K.J.-H.; Gouwanda, D.; Gopalai, A.A. Estimating running spatial and temporal parameters using an inertial sensor. Sports Eng. 2018, 21, 115–122. [Google Scholar] [CrossRef]
- Brahms, C.M.; Zhao, Y.; Gerhard, D.; Barden, J.M. Stride length determination during overground running using a single foot-mounted inertial measurement unit. J. Biomech. 2018, 71, 302–305. [Google Scholar] [CrossRef]
- Zrenner, M.; Kuderle, A.; Roth, N.; Jensen, U.; Dumler, B.; Eskofier, B.M. Does the Position of Foot-Mounted IMU Sensors Influence the Accuracy of Spatio-Temporal Parameters in Endurance Running? Sensors 2020, 20, 5705. [Google Scholar] [CrossRef]
- Debaere, S.; Delecluse, C.; Aerenhouts, D.; Hagman, F.; Jonkers, I. From block clearance to sprint running: Characteristics underlying an effective transition. J. Sports Sci. 2013, 31, 137–149. [Google Scholar] [CrossRef]
- Nagahara, R.; Matsubayashi, T.; Matsuo, A.; Zushi, K. Kinematics of transition during human accelerated sprinting. Biol. Open 2014, 3, 689–699. [Google Scholar] [CrossRef]
- Samozino, P.; Rabita, G.; Dorel, S.; Slawinski, J.; Peyrot, N.; Saez de Villarreal, E.; Morin, J.B. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand. J. Med. Sci. Sports 2016, 26, 648–658. [Google Scholar] [CrossRef]
- Wilmes, E.; de Ruiter, C.J.; Bastiaansen, B.J.C.; Zon, J.; Vegter, R.J.K.; Brink, M.S.; Goedhart, E.A.; Lemmink, K.; Savelsbergh, G.J.P. Inertial Sensor-Based Motion Tracking in Football with Movement Intensity Quantification. Sensors 2020, 20, 2527. [Google Scholar] [CrossRef]
- Madgwick, S.O.H.; Harrison, A.J.L.; Vaidyanathan, R. Estimation of IMU and MARG orientation using a gradient descent algorithm. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; pp. 1–7. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Zou, G.Y. Confidence interval estimation for the Bland-Altman limits of agreement with multiple observations per individual. Stat. Methods Med. Res. 2013, 22, 630–642. [Google Scholar] [CrossRef]
ID No. | Age (Years) | Mass (kg) | Height (m) | 100 m Time (s) | Sex (m/f) | Shoe Type |
---|---|---|---|---|---|---|
1 | 16 | 71 | 1.82 | 12.18 | m | spiked |
2 | 19 | 78 | 1.87 | 11.56 | m | spiked |
3 | 18 | 79 | 1.91 | 11.40 | m | spiked |
4 | 18 | 68 | 1.85 | 11.92 | m | spiked |
5 | 19 | 71 | 1.80 | 11.69 | m | spiked |
6 | 17 | 70 | 1.85 | 11.95 | m | spiked |
7 | 23 | 89 | 1.88 | 11.33 | m | spiked |
8 | 19 | 65 | 1.87 | 13.10 | m | spiked |
9 | 20 | 80 | 1.93 | 11.91 | m | spiked |
10 | 31 | 62 | 1.75 | 11.57 | m | spiked |
11 | 27 | 70 | 1.69 | 12.42 | v | spiked |
12 | 22 | 60 | 1.67 | 13.48 | v | spiked |
13 | 29 | 76 | 1.88 | 11.52 | m | spiked |
14 | 36 | 72 | 1.92 | 12.47 | m | spiked |
15 | 20 | 67 | 1.83 | 12.61 | m | spiked |
16 | 24 | 72 | 1.66 | 15.90 | v | spiked |
17 | 21 | 73 | 1.79 | 12.41 | m | spiked |
18 | 26 | 72 | 1.88 | 12.97 | m | spiked |
19 | 36 | 65 | 1.68 | 14.10 | m | running |
20 | 22 | 85 | 1.85 | 13.17 | m | running |
21 | 22 | 72 | 1.71 | 13.08 | m | running |
mean | 23.1 | 72.2 | 1.81 | 12.51 | ||
SD | 5.8 | 7.1 | 0.09 | 1.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Ruiter, C.J.; Wilmes, E.; van Ardenne, P.S.; Houtkamp, N.; Prince, R.A.; Wooldrik, M.; van Dieën, J.H. Stride Lengths during Maximal Linear Sprint Acceleration Obtained with Foot-Mounted Inertial Measurement Units. Sensors 2022, 22, 376. https://doi.org/10.3390/s22010376
de Ruiter CJ, Wilmes E, van Ardenne PS, Houtkamp N, Prince RA, Wooldrik M, van Dieën JH. Stride Lengths during Maximal Linear Sprint Acceleration Obtained with Foot-Mounted Inertial Measurement Units. Sensors. 2022; 22(1):376. https://doi.org/10.3390/s22010376
Chicago/Turabian Stylede Ruiter, Cornelis J., Erik Wilmes, Pepijn S. van Ardenne, Niels Houtkamp, Reinder A. Prince, Maarten Wooldrik, and Jaap H. van Dieën. 2022. "Stride Lengths during Maximal Linear Sprint Acceleration Obtained with Foot-Mounted Inertial Measurement Units" Sensors 22, no. 1: 376. https://doi.org/10.3390/s22010376
APA Stylede Ruiter, C. J., Wilmes, E., van Ardenne, P. S., Houtkamp, N., Prince, R. A., Wooldrik, M., & van Dieën, J. H. (2022). Stride Lengths during Maximal Linear Sprint Acceleration Obtained with Foot-Mounted Inertial Measurement Units. Sensors, 22(1), 376. https://doi.org/10.3390/s22010376