Damage Detection in Steel–Concrete Composite Structures by Impact Hammer Modal Testing and Experimental Validation
Abstract
:1. Introduction
2. Damage Index from Mode Shape Curvatures
Mode Shape Pairing and Scaling
3. Experimental Setup
3.1. Specimen Geometry and Materials
3.2. Testing Procedure
3.3. Modal Testing
4. Results
4.1. Load–Displacement Behavior from Static Loading Test
4.2. Modal Correlation
4.3. Damage Intensity
4.4. Damage Location
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, Y.; Choo, B.; Nethercot, D. Composite connections in steel and concrete. I. Experimental behaviour of composite beam—Column connections. J. Constr. Steel Res. 1994, 31, 3–30. [Google Scholar] [CrossRef]
- De Silva, S.S.; Thambiratnam, D.P. Dynamic characteristics of steel–deck composite floors under human-induced loads. Comput. Struct. 2009, 87, 1067–1076. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.X.; Dai, Y.W.; Hu, R.L. Application and Research Development of Steel-Concrete Composite Bridge. Adv. Mater. Res. 2013, 756, 37–40. [Google Scholar] [CrossRef]
- Nádaskỳ, P. Steel-concrete composite beams for slim floors–specific design features in scope of steel frames design. Procedia Eng. 2012, 40, 274–279. [Google Scholar] [CrossRef] [Green Version]
- Nie, J.; Jiaji, W.; Gou, S.; Zhu, Y.; Fan, J. Technological development and engineering applications of novel steel-concrete composite structures. Front. Struct. Civ. Eng. 2019, 13, 1–14. [Google Scholar] [CrossRef]
- Yanez, S.J.; Dinehart, D.W.; Santhanam, S. Composite steel joist analysis using experimental stiffness factor from push-out tests. J. Constr. Steel Res. 2017, 137, 1–7. [Google Scholar] [CrossRef]
- Yanez, S.J.; Pina, J.C.; Saavedra Flores, E.I.; Guzmán, C.F. Numerical modeling of a new push-out test using non-linear behavior of concrete. In Proceedings of the 1st Iberic Conference on Theoretical and Experimental Mechanics and Materials/11th National Congress on Experimental Mechanics, Porto, Portugal, 4–7 November 2018. [Google Scholar]
- Pallarés, L.; Hajjar, J.F. Headed steel stud anchors in composite structures, Part I: Shear. J. Constr. Steel Res. 2010, 66. [Google Scholar] [CrossRef]
- Pallarés, L.; Ramon-Llin, A.A.; Martí-Vargas, J.R.; Pallarés, F. Behaviour of headed studs subjected to cyclic shear in steel frames with reinforced concrete infill walls. Constr. Build. Mater. 2020, 262, 120018. [Google Scholar] [CrossRef]
- Ling, Y.; Zheng, Z.; Yang, T.; Ma, H. Behaviour and modeling of the bearing capacity of shear stud connectors. Int. J. Steel Struct. 2019, 19, 650–659. [Google Scholar] [CrossRef]
- Nejad, A.Z.B.; Sahebi, M.M. An investigation on the capability of proper orthogonal modes in determining the natural frequencies and damping ratios of linear structural systems. Eng. Struct. 2021, 243, 112691. [Google Scholar] [CrossRef]
- Lofrano, E.; Paolone, A.; Ruta, G. Dynamic damage identification using complex mode shapes. Struct. Control Health Monit. 2020, 27, e2632. [Google Scholar] [CrossRef]
- Bedon, C.; Noè, S. Post-Breakage Vibration Frequency Analysis of In-Service Pedestrian Laminated Glass Modular Units. Vibration 2021, 4, 836–852. [Google Scholar] [CrossRef]
- Pan, J.; Zhang, Z.; Wu, J.; Ramakrishnan, K.R.; Singh, H.K. A novel method of vibration modes selection for improving accuracy of frequency-based damage detection. Compos. Part B Eng. 2019, 159, 437–446. [Google Scholar] [CrossRef]
- Dhiraj; Agarwal, A.; Agrawal, A.; Meruane, V.; Sangwan, K.S. Development of a Machine Learning based model for Damage Detection, Localization and Quantification to extend Structure Life. Procedia CIRP 2021, 98, 199–204. [Google Scholar]
- Meruane, V.; Aichele, D.; Ruiz, R.; López Droguett, E. A Deep Learning Framework for Damage Assessment of Composite Sandwich Structures. Shock Vib. 2021, 2021. [Google Scholar] [CrossRef]
- Avci, O.; Abdeljaber, O.; Kiranyaz, S.; Hussein, M.; Gabbouj, M.; Inman, D.J. A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications. Mech. Syst. Signal Process. 2021, 147, 107077. [Google Scholar] [CrossRef]
- Pandey, A.; Biswas, M.; Samman, M. Damage detection from changes in curvature mode shapes. J. Sound Vib. 1991, 145, 321–332. [Google Scholar] [CrossRef]
- Wu, D.; Law, S. Damage localization in plate structures from uniform load surface curvature. J. Sound Vib. 2004, 276, 227–244. [Google Scholar] [CrossRef]
- Wu, D.; Law, S. Sensitivity of uniform load surface curvature for damage identification in plate structures. J. Vib. Acoust. 2005, 127, 84–92. [Google Scholar] [CrossRef]
- Wang, J.; Qiao, P. Improved damage detection for beam-type structures using a uniform load surface. Struct. Health Monit. 2007, 6, 99–110. [Google Scholar] [CrossRef]
- Cornwell, P.; Doebling, S.W.; Farrar, C.R. Application of the strain energy damage detection method to plate-like structures. J. Sound Vib. 1999, 224, 359–374. [Google Scholar] [CrossRef]
- Yoon, M.; Heider, D.; Gillespie, J.; Ratcliffe, C.; Crane, R. Local damage detection using the two-dimensional gapped smoothing method. J. Sound Vib. 2005, 279, 119–139. [Google Scholar] [CrossRef]
- Qiao, P.; Lu, K.; Lestari, W.; Wang, J. Curvature mode shape-based damage detection in composite laminated plates. Compos. Struct. 2007, 80, 409–428. [Google Scholar] [CrossRef]
- Chang, C.C.; Chen, L.W. Damage detection of a rectangular plate by spatial wavelet based approach. Appl. Acoust. 2004, 65, 819–832. [Google Scholar] [CrossRef]
- Frans, R.; Arfiadi, Y.; Parung, H. Comparative study of mode shapes curvature and damage locating vector methods for damage detection of structures. Procedia Eng. 2017, 171, 1263–1271. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, W.; Gao, Y.; Zhang, G.; Wen, M. An experimental study of the feasibility of identifying the impact damages of reinforced concrete piers using a modal frequency method. Adv. Civ. Eng. 2020, 2020, 6365354. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Kumar, P.A. Damage assessment in concrete marine structures using damage plasticity model. In Progress in the Analysis and Design of Marine Structures; CRC Press: Boca Raton, FL, USA, 2017; pp. 733–744. [Google Scholar]
- EN1994:2004. Eurocode 4: Design of Composite Steel and Concrete Structures. European Committee for Standardization (CEN): Brussels, Belgium, 2004.
- AISI/AISC 360-05, Specification for Structural Steel Buildings; American Institute of Steel Construction: Chicago, IL, USA, 2005.
- American Concrete Institute (ACI). Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete. In ACI 211.1-91; American Concrete Institute: Farmington Hills, MI, USA, 2002. [Google Scholar]
- INN—Instituto Nacional de Normalización. NCh170/1:2016.—Hormigón: Requisitos Generales; INN—Instituto Nacional de Normalización: Santiago, Chile, 2016. [Google Scholar]
- Yanez, S.J. Linear and Nonlinear Analytical Stud Anchor Models for Application to Composite Steel Joists. Ph.D. Thesis, Villanova University, Villanova, PA, USA, 2015. [Google Scholar]
- Gippert Albarrán, E.; Ferreira Almarza, E. Ensayo Experimental de Losa Colaborante para Análisis de Vibraciones. Undergraduate’s Thesis, Universidad de Santiago de Chile, Santiago, Chile, 2017. [Google Scholar]
- Dynamic Design Solutions. Femtools 3.8.1 Software. 2015. Available online: www.femtools.com (accessed on 10 May 2022).
- Zanarini, A. Full field optical measurements in experimental modal analysis and model updating. J. Sound Vib. 2019, 442, 817–842. [Google Scholar] [CrossRef]
- Sanda, M.S.; Gauron, O.; Turcotte, N.; Lamarche, C.P.; Paultre, P.; Talbot, M.; Laflamme, J.F. Efficient finite elements model updating for damage detection in bridges. In Proceedings of the International Conference on Experimental Vibration Analysis for Civil Engineering Structures, San Diego, CA, USA, 12–14 July 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 293–305. [Google Scholar]
- Jayanthan, M.; Srinivas, V. Structural damage identification based on finite element model updating. J. Mech. Eng. Autom. 2015, 5, 59–63. [Google Scholar]
- Maio, D.D.; Ramakrishnan, G.; Rajasagaran, Y. Chapter 34: Experimental model validation of an aero-engine casing assembly. Model Validation and Uncertainty Quantification. In Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics; Springer: Berlin/Heidelberg, Germany; 2017; Volume 3, pp. 339–348. [Google Scholar]
- Ge, Y.; Kuang, K.; Quek, S. Fabrication and test of a low-cost intensity-based optical fibre accelerometer for wind turbine blade monitoring application. Structural Health Monitoring 2013: A Roadmap to Intelligent Structures. In Proceedings of the 9th International Workshop on Structural Health Monitoring, Standford University, Stanford, CA, USA, 10–2 September 2013; DEStech Publications Inc.: Lancaster, PA, USA, 2013; Volume 2, pp. 2048–2054. [Google Scholar]
- Zhou, J.; Li, Z.; Chen, J. Damage identification method based on continuous wavelet transform and mode shapes for composite laminates with cutouts. Compos. Struct. 2018, 191, 12–23. [Google Scholar] [CrossRef]
Element | Parameter | Value [mm] |
---|---|---|
Composite beam | 117.0 | |
53.0 | ||
e | 8.0 | |
a | 510.0 | |
B | 280.0 | |
t | 13.0 | |
73.0 | ||
H | 270.0 | |
Stud anchor | D | 31.8 |
C | 10.0 | |
L | 110.0 | |
V | 19.0 |
Initial Mode ID | Hz | Damage Mode ID | Hz | Diff. (%) | MAC (%) |
---|---|---|---|---|---|
10 | 109.11 | 8 | 107.24 | −1.71 | 86.9 |
12 | 122.57 | 9 | 122.94 | 0.30 | 83.9 |
15 | 155.53 | 10 | 153.39 | −1.37 | 87.6 |
16 | 171.86 | 11 | 161.19 | −6.21 | 91.9 |
17 | 198.69 | 13 | 197.71 | −0.49 | 94.2 |
18 | 206.70 | 14 | 205.87 | −0.40 | 95.8 |
21 | 253.70 | 16 | 253.40 | −0.12 | 95.1 |
22 | 263.56 | 17 | 262.51 | −0.40 | 96.8 |
23 | 279.27 | 18 | 278.37 | −0.32 | 91.5 |
24 | 297.38 | 19 | 295.83 | −0.52 | 93.8 |
27 | 323.18 | 21 | 321.20 | −0.61 | 83.8 |
28 | 356.74 | 22 | 354.40 | −0.66 | 98.4 |
29 | 385.36 | 23 | 381.28 | −1.06 | 97.4 |
30 | 419.65 | 24 | 415.87 | −0.90 | 97.8 |
31 | 451.10 | 25 | 449.50 | −0.35 | 98.1 |
32 | 494.66 | 26 | 492.18 | −0.50 | 97.8 |
33 | 531.86 | 28 | 528.56 | −0.62 | 97.7 |
35 | 560.22 | 30 | 557.55 | −0.48 | 93.7 |
37 | 576.38 | 31 | 574.29 | −0.36 | 98.1 |
Initial Mode ID | Hz | Damaged Mode ID | Hz | Diff. (%) | MAC (%) |
---|---|---|---|---|---|
13 | 129.42 | 9 | 118.38 | −8.53 | 87.7 |
15 | 155.53 | 11 | 148.30 | −4.65 | 89.4 |
16 | 171.86 | 12 | 160.06 | −6.87 | 82.4 |
18 | 206.70 | 14 | 201.31 | −2.61 | 94.4 |
22 | 263.56 | 17 | 251.68 | −4.51 | 87.0 |
24 | 297.38 | 20 | 285.48 | −4.00 | 88.0 |
28 | 356.74 | 23 | 344.84 | −3.34 | 84.6 |
29 | 385.36 | 24 | 370.36 | −3.89 | 83.5 |
30 | 419.65 | 25 | 402.47 | −4.09 | 93.0 |
31 | 451.10 | 26 | 436.78 | −3.17 | 96.8 |
32 | 494.66 | 27 | 473.91 | −4.20 | 96.0 |
33 | 531.86 | 28 | 508.94 | −4.31 | 93.2 |
37 | 576.38 | 29 | 539.03 | −6.48 | 87.5 |
Initial State | 40 kN Load | 70 kN Load | 100 kN Load | 150 kN Load | 250 kN Load | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mode ID | Freq. [Hz] | Mode ID | Freq. [Hz] | Mode ID | Freq. [Hz] | Mode ID | Freq. [Hz] | Mode ID | Freq. [Hz] | Mode ID | Freq. [Hz] | |||||
15 | 155.5 | 10 | 153.4 | 12 | 152.9 | 11 | 159.7 | 12 | 147.1 | 11 | 148.3 | |||||
16 | 171.8 | 11 | 161.2 | 13 | 159.5 | 12 | 164.7 | 13 | 159.3 | 12 | 160.1 | |||||
18 | 206.7 | 14 | 205.9 | 16 | 205.4 | 14 | 204.7 | 15 | 204.2 | 14 | 201.3 | |||||
22 | 263.5 | 17 | 262.5 | 19 | 261.8 | 16 | 261.1 | 16 | 253.0 | 17 | 251.7 | |||||
24 | 297.3 | 19 | 295.8 | 21 | 294.8 | 18 | 294.3 | 19 | 295.8 | 20 | 285.5 | |||||
28 | 356.7 | 22 | 354.4 | 24 | 352.2 | 22 | 352.2 | 22 | 349.6 | 23 | 344.8 | |||||
29 | 385.3 | 23 | 381.3 | 26 | 380.0 | 23 | 378.3 | 23 | 375.8 | 24 | 370.4 | |||||
30 | 419.6 | 24 | 415.9 | 27 | 413.7 | 24 | 411.9 | 24 | 408.7 | 25 | 402.5 | |||||
31 | 451.1 | 25 | 449.5 | 28 | 448.3 | 25 | 446.3 | 25 | 443.0 | 26 | 436.8 | |||||
32 | 494.6 | 26 | 492.2 | 29 | 490.8 | 27 | 488.2 | 26 | 479.6 | 27 | 473.9 | |||||
33 | 531.8 | 28 | 528.6 | 31 | 527.3 | 28 | 525.4 | 28 | 522.9 | 28 | 508.9 | |||||
37 | 576.3 | 31 | 574.3 | 34 | 571.3 | 31 | 567.4 | 30 | 564.5 | 29 | 539.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meruane, V.; Yanez, S.J.; Quinteros, L.; Saavedra Flores, E.I. Damage Detection in Steel–Concrete Composite Structures by Impact Hammer Modal Testing and Experimental Validation. Sensors 2022, 22, 3874. https://doi.org/10.3390/s22103874
Meruane V, Yanez SJ, Quinteros L, Saavedra Flores EI. Damage Detection in Steel–Concrete Composite Structures by Impact Hammer Modal Testing and Experimental Validation. Sensors. 2022; 22(10):3874. https://doi.org/10.3390/s22103874
Chicago/Turabian StyleMeruane, Viviana, Sergio J. Yanez, Leonel Quinteros, and Erick I. Saavedra Flores. 2022. "Damage Detection in Steel–Concrete Composite Structures by Impact Hammer Modal Testing and Experimental Validation" Sensors 22, no. 10: 3874. https://doi.org/10.3390/s22103874
APA StyleMeruane, V., Yanez, S. J., Quinteros, L., & Saavedra Flores, E. I. (2022). Damage Detection in Steel–Concrete Composite Structures by Impact Hammer Modal Testing and Experimental Validation. Sensors, 22(10), 3874. https://doi.org/10.3390/s22103874