Characterization and Evaluation of Human–Exoskeleton Interaction Dynamics: A Review
Abstract
:1. Introduction
2. Materials and Methods
- exoskeleton*, physical assist*, wearable rob*;
- physical human-rob*, human-robot inter*, phri, pressure, safety;
- measure*, asses*, benchmar*, eval*.
- Interaction forces: forces exchanged between the human body and wearable device.
- Interaction torques: torques produced by interaction forces.
- Interaction pressures: pressure calculated from interaction forces over a contact area.
- Force metrics: metrics extracted from interaction force measurement, including normal and shear forces as well as overall interaction force, peak, and average contact force.
- Torque metrics: metrics extracted from interaction torque measurement, normally represented by the single interaction torque generated during the task.
- Pressure metrics: metrics extracted from interaction pressure measurement such as maximum pressure and pressure distribution.
- Relative motions: relative motion (in one or more dimensions) between a defined part of the human body and the worn device (frame shift, skin slippage).
- Misalignment: Mismatch in the correspondence in position and orientation between the anatomical and device joint axes.
- Subjective experience metrics (SE): metrics extracted by means of live feedback or questionnaires (Table 1).
3. Results
Ref. | Questionnaire | Output |
---|---|---|
[45] | NASA TLX [71] | Comfort, Physical demand, Mental demand, Temporal demand, operator performance, Effort |
[47] | Custom Borg scale [72] | Perceived comfort, Physical load |
[54] | Custom | Comfort, interface preference |
[55] | Custom | Comfort |
[70] | Custom | Safety |
[68] | Borg category ratio (CR-10) [72] Van der Grinten and Smitt System Usability Scale (SUS) | Perceived musculoskeletal effort (arm, trunk, leg) Local Perceived Pressure (back/shoulders, arms, chest, and belly/hips) Usability of the exoskeleton |
4. Discussion
4.1. pHEI Metrics and Measurements
4.2. Safety Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peters, M.; Wischniewski, S. Impact of Using Exoskeletons on OSH; Discussion Paper; European Agency for Safety and Health at Work: Bilbao, Spain, 2019; pp. 1–10. [Google Scholar]
- Spada, S.; Ghibaudo, L.; Gilotta, S.; Gastaldi, L.; Cavatorta, M.P. Investigation into the Applicability of a Passive Upper-Limb Exoskeleton in Automotive Industry. Procedia Manuf. 2017, 11, 1255–1262. [Google Scholar] [CrossRef]
- van der Vorm, J.; Nugent, R.; O’Sullivan, L. Safety and Risk Management in Designing for the Lifecycle of an Exoskeleton: A Novel Process Developed in the Robo-Mate Project. Procedia Manuf. 2015, 3, 1410–1417. [Google Scholar] [CrossRef] [Green Version]
- Jhawar, V. Design of a Knee Exoskeleton for Gait Assistance. J. Chem. Inf. Model. 2013, 53, 1689–1699. [Google Scholar] [CrossRef]
- Alami, R.; Albu-Schaeffer, A.; Bicchi, A.; Bischoff, R.; Chatila, R.; De Luca, A.; De Santis, A.; Giralt, G.; Guiochet, J.; Hirzinger, G.; et al. Safe and Dependable Physical Human-Robot Interaction in Anthropic Domains: State of the Art and Challenges. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006. [Google Scholar] [CrossRef] [Green Version]
- Norm, D. ISO 13482; Safety Requirements for Personal Care Robots. ISO: Geneva, Switzerland, 2008; ISBN 9362178001.
- Massardi, S.; Pinto-Fernandez, D.; FVeneman, J.; Torricelli, D. Testing Safety of Lower Limbs Exoskeletons: Current Regulatory Gaps. In International Symposium on Wearable Robotics; Springer: Cham, Germany, 2020; pp. 145–149. [Google Scholar]
- Villaronga, E.F. New Trends in Medical and Service Robots. In Mechanisms and Machine Science; Springer: Berlin/Heidelberg, Germany, 2016; Volume 39, p. 59972. [Google Scholar] [CrossRef]
- Donati, M.; Vitiello, N.; de Rossi, S.M.M.; Lenzi, T.; Crea, S.; Persichetti, A.; Giovacchini, F.; Koopman, B.; Podobnik, J.; Munih, M.; et al. A Flexible Sensor Technology for the Distributed Measurement of Interaction Pressure. Sensors 2013, 13, 1021–1045. [Google Scholar] [CrossRef] [Green Version]
- Sposito, M.; Toxiri, S.; Caldwell, D.G.; Ortiz, J.; De Momi, E. Towards Design Guidelines for Physical Interfaces on Industrial Exoskeletons: Overview on Evaluation Metrics. Biosyst. Biorobot. 2019, 22, 170–174. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Ma, H.; Qin, L.Y.; Gao, F.; Chan, K.M.; Law, S.W.; Qin, L.; Liao, W.H. Recent Developments and Challenges of Lower Extremity Exoskeletons. J. Orthop. Transl. 2016, 5, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, C.A.C.; José, Á.; Perez, B.; Múnera, M.; Arévalo, A.S.; García, C.A.C. Biomechanical Assessment of a Lower Limb Exoskeleton; IX Congreso Iberoamericano de Tecnología de Apoyo a la Discapacidad: Bogotá, Colombia, 2017; pp. 416–423. [Google Scholar]
- Nabeshima, C.; Kawamoto, H.; Sankai, Y. Strength Testing Machines for Wearable Walking Assistant Robots Based on Risk Assessment of Robot Suit HAL. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 2743–2748. [Google Scholar] [CrossRef]
- Zeilig, G.; Weingarden, H.; Zwecker, M.; Dudkiewicz, I.; Bloch, A.; Esquenazi, A. Safety and Tolerance of the ReWalkTM Exoskeleton Suit for Ambulation by People with Complete Spinal Cord Injury: A Pilot Study. J. Spinal. Cord. Med. 2012, 35, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Kolakowsky-Hayner, S.A. Safety and Feasibility of Using the EksoTM Bionic Exoskeleton to Aid Ambulation after Spinal Cord Injury. J. Spine 2013, 43, 657–666. [Google Scholar] [CrossRef]
- Huysamen, K.; Bosch, T.; de Looze, M.; Stadler, K.S.; Graf, E.; O’Sullivan, L.W. Evaluation of a Passive Exoskeleton for Static Upper Limb Activities. Appl. Ergon. 2018, 70, 148–155. [Google Scholar] [CrossRef]
- Meyer, J.T.; Schrade, S.O.; Lambercy, O.; Gassert, R. User-Centered Design and Evaluation of Physical Interfaces for an Exoskeleton for Paraplegic Users. In Proceedings of the 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, 24–28 June 2019; pp. 1159–1166. [Google Scholar] [CrossRef] [Green Version]
- Langlois, K.; Rodriguez-Cianca, D.; Serrien, B.; De Winter, J.; Verstraten, T.; Rodriguez-Guerrero, C.; Vanderborght, B.; Lefeber, D. Investigating the Effects of Strapping Pressure on Human-Robot Interface Dynamics Using a Soft Robotic Cuff. IEEE Trans. Med. Robot Bionics 2020, 1, 146–165. [Google Scholar] [CrossRef]
- Choi, H.; Seo, K.; Hyung, S.; Shim, Y.; Lim, S.C. Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System. Sensors 2018, 18, 566. [Google Scholar] [CrossRef] [Green Version]
- Lenzi, T.; Vitiello, N.; De Rossi, S.M.M.; Persichetti, A.; Giovacchini, F.; Roccella, S.; Vecchi, F.; Carrozza, M.C. Measuring Human-Robot Interaction on Wearable Robots: A Distributed Approach. Mechatronics 2011, 21, 1123–1131. [Google Scholar] [CrossRef]
- De Rossi, S.M.M.; Vitiello, N.; Lenzi, T.; Ronsse, R.; Koopman, B.; Persichetti, A.; Giovacchini, F.; Vecchi, F.; Ijspeert, A.J.; Van Der Kooij, H.; et al. Soft Artificial Tactile Sensors for the Measurement of Human-Robot Interaction in the Rehabilitation of the Lower Limb. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 1279–1282. [Google Scholar] [CrossRef]
- Grosu, V.; Grosu, S.; Vanderborght, B.; Lefeber, D.; Rodriguez-Guerrero, C. Multi-Axis Force Sensor for Human-Robot Interaction Sensing in a Rehabilitation Robotic Device. Sensors 2017, 17, 1294. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Tayama, M.; Saito, T.; Sankai, Y. Active Air Mat for Comfortable and Easy to Wear a Forearm Support System. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 4899–4904. [Google Scholar] [CrossRef]
- Ito, D.; Funabora, Y.; Doki, S.; Doki, K. Prototype of Wearable Robot with Tactile Sensor Measurable Contact Force Distribution with User. In Proceedings of the 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 18–21 November 2018; pp. 960–965. [Google Scholar] [CrossRef]
- Tamez-Duque, J.; Cobian-Ugalde, R.; Kilicarslan, A.; Venkatakrishnan, A.; Soto, R.; Contreras-Vidal, J.L. Real-Time Strap Pressure Sensor System for Powered Exoskeletons. Sensors 2015, 15, 4550–4563. [Google Scholar] [CrossRef] [Green Version]
- Leal-Junior, A.G.; Frizera, A.; Marques, C.; Pontes, M.J. Development of Polymer Optical Fiber Sensors for Lower Limb Exoskeletons Instrumentation. Biosyst. Biorobot. 2019, 22, 155–159. [Google Scholar] [CrossRef]
- Leal-Junior, A.; Theodosiou, A.; Díaz, C.; Marques, C.; Pontes, M.J.; Kalli, K.; Frizera-Neto, A. Fiber Bragg Gratings in CYTOP Fibers Embedded in a 3D-Printed Flexible Support for Assessment of Human-Robot Interaction Forces. Materials 2018, 11, 2305. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, B. Differential Soft Sensor-Based Measurement of Interactive Force and Assistive Torque for a Robotic Hip Exoskeleton. Sensors 2021, 21, 6545. [Google Scholar] [CrossRef]
- Wilkening, A.; Puleva, N.; Ivlev, O. Estimation of Physical Human-Robot Interaction Using Cost-Effective Pneumatic Padding. Robotics 2016, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Bessler, J.; Schaake, L.; Kelder, R.; Buurke, J.H.; Prange-lasonder, G.B. Prototype Measuring Device for Assessing Interaction Forces between Human Limbs and Rehabilitation Robots—A Proof of Concept Study. In Proceedings of the 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, 24–28 June 2019; pp. 1109–1114. [Google Scholar]
- Kim, T.; Jeong, M.; Kong, K. Bio-Inspired Knee Joint of a Lower-Limb Exoskeleton for Misalignment Reduction. IEEE/ASME Trans. Mechatron. 2021, 4435, 1–10. [Google Scholar] [CrossRef]
- Langlois, K.; Roels, E.; Van De Velde, G.; Espadinha, C.; Van Vlerken, C.; Verstraten, T.; Vanderborght, B.; Lefeber, D. Integration of 3d Printed Flexible Pressure Sensors into Physical Interfaces for Wearable Robots. Sensors 2021, 21, 2157. [Google Scholar] [CrossRef]
- Islam, M.R.U.; Bai, S. Payload Estimation Using Forcemyography Sensors for Control of Upper-Body Exoskeleton in Load Carrying Assistance. Model. Identif. Control 2019, 40, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Long, Y.; Du, Z.J.; Chen, C.F.; Wang, W.D.; Dong, W. Development of a Lower Extremity Wearable Exoskeleton with Double Compact Elastic Module: Preliminary Experiments. Mech. Sci. 2017, 8, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Ghonasgi, K.; Yousaf, S.N.; Esmatloo, P.; Deshpande, A.D. A Modular Design for Distributed Measurement of Human–Robot Interaction Forces in Wearable Devices. Sensors 2021, 21, 1445. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Díaz, C.R.; Pontes, M.J.; Marques, C.; Frizera, A. Polymer Optical Fiber-Embedded, 3D-Printed Instrumented Support for Microclimate and Human-Robot Interaction Forces Assessment. Opt. Laser. Technol. 2019, 112, 323–331. [Google Scholar] [CrossRef]
- Mahdavian, M.; Toudeshki, A.G.; Yousefi-Koma, A. Design and Fabrication of a 3DoF Upper Limb Exoskeleton. In Proceedings of the 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM), Tehran, Iran, 7–9 October 2015; pp. 342–346. [Google Scholar] [CrossRef]
- Huang, J.; Huo, W.; Xu, W.; Mohammed, S.; Amirat, Y. Control of Upper-Limb Power-Assist Exoskeleton Using a Human-Robot Interface Based on Motion Intention Recognition. IEEE Trans. Autom. Sci. Eng. 2015, 12, 1257–1270. [Google Scholar] [CrossRef]
- Del-Ama, A.J.; Moreno, J.C.; Gil-Agudo, Á.; de-los-Reyes, A.; Pons, J.L. Online Assessment of Human-Robot Interaction for Hybrid Control of Walking. Sensors 2012, 12, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Beil, J.; Ehrenberger, I.; Scherer, C.; Mandery, C.; Asfour, T. Human Motion Classification Based on Multi-Modal Sensor Data for Lower Limb Exoskeletons. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 5431–5436. [Google Scholar] [CrossRef]
- Lee, H.D.; Lee, B.K.; Kim, W.S.; Han, J.S.; Shin, K.S.; Han, C.S. Human-Robot Cooperation Control Based on a Dynamic Model of an Upper Limb Exoskeleton for Human Power Amplification. Mechatronics 2014, 24, 168–176. [Google Scholar] [CrossRef]
- Levesque, L.; Pardoel, S.; Doumit, M. Experimental Comfort Assessment of an Active Exoskeleton Interface. In Proceedings of the 2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), Ottawa, ON, Canada, 5–7 October 2017. [Google Scholar]
- Christensen, S.; Bai, S. Kinematic Analysis and Design of a Novel Shoulder Exoskeleton Using a Double Parallelogram Linkage. J. Mech. Robot. 2018, 10, 041008. [Google Scholar] [CrossRef]
- Li, J.; Zuo, S.; Xu, C.; Zhang, L.; Dong, M.; Tao, C.; Ji, R. Influence of a Compatible Design on Physical Human-Robot Interaction Force: A Case Study of a Self-Adapting Lower-Limb Exoskeleton Mechanism. J. Intell. Robot Syst. Theory Appl. 2020, 98, 525–538. [Google Scholar] [CrossRef]
- Schiele, A.; van der Helm, F.C.T. Influence of Attachment Pressure and Kinematic Configuration on PHRI with Wearable Robots. Appl. Bionics Biomech. 2009, 6, 157–173. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, Y.; Yamada, Y.; Ito, K.; Oda, S.; Okamoto, S.; Hara, S. Test Method for Contact Safety Assessment of a Wearable Robot Analysis of Load Caused by a Misalignment of the Knee Joint. In Proceedings of the 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication, Paris, France, 9–13 September 2012; pp. 539–544. [Google Scholar] [CrossRef] [Green Version]
- Bartenbach, V.; Wyss, D.; Seuret, D.; Riener, R. A Lower Limb Exoskeleton Research Platform to Investigate Human-Robot Interaction. In Proceedings of the 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore, 11–14 August 2015; pp. 600–605. [Google Scholar] [CrossRef]
- Amigo, L.E.; Fernandez, Q.; Giralt, X.; Casals, A.; Amat, J. Study of Patient-Orthosis Interaction Forces in Rehabilitation Therapies. In Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; pp. 1098–1103. [Google Scholar] [CrossRef]
- Long, Y.; Du, Z.; Chen, C.; Wang, W.; He, L.; Mao, X.; Xu, G.; Zhao, G.; Li, X.; Dong, W. Development and Analysis of an Electrically Actuated Lower Extremity Assistive Exoskeleton. J. Bionic. Eng. 2017, 14, 272–283. [Google Scholar] [CrossRef]
- Masud, N.; Senkic, D.; Smith, C.; Isaksson, M. Modeling and Control of a 4-ADOF Upper-Body Exoskeleton with Mechanically Decoupled 3-D Compliant Arm-Supports for Improved-PHRI. Mechatronics 2021, 73, 102406. [Google Scholar] [CrossRef]
- Tran, H.T.; Tan, L.N.; Han, S.H. Model-Learning-Based Partitioned Control of a Human-Powered Augmentation Lower Exoskeleton. J. Electr. Eng. Technol. 2022, 17, 533–550. [Google Scholar] [CrossRef]
- Yousaf, S.N.; Esmatloo, P.; Ghonasgi, K.; Deshpande, A.D. A Method for the Analysis of Physical Human-Robot Interaction. In Proceedings of the 2021 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Delft, The Netherland, 12–16 July 2021; pp. 1249–1254. [Google Scholar] [CrossRef]
- Zanotto, D.; Akiyama, Y.; Stegall, P.; Agrawal, S.K. Knee Joint Misalignment in Exoskeletons for the Lower Extremities: Effects on User’s Gait. IEEE Trans. Robot 2015, 31, 978–987. [Google Scholar] [CrossRef]
- Lobo-Prat, J.; Kooren, P.N.; Janssen, M.M.H.P.; Keemink, A.Q.L.; Veltink, P.H.; Stienen, A.H.A.; Koopman, B.F.J.M. Implementation of EMG-and Force-Based Control Interfaces in Active Elbow Supports for Men with Duchenne Muscular Dystrophy: A Feasibility Study. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 1179–1190. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, J.; Cheng, H.; Zheng, X. Analysis of Human–Exoskeleton System Interaction for Ergonomic Design. Hum. Factors 2020. [Google Scholar] [CrossRef]
- Wan, X.; Liu, Y.; Akiyama, Y.; Yamada, Y. Monitoring Contact Behavior during Assisted Walking with a Lower Limb Exoskeleton. IEEE Trans. Neural. Syst. Rehabil. Eng. 2020, 28, 869–877. [Google Scholar] [CrossRef]
- Kim, J.H.; Han, J.W.; Kim, D.Y.; Baek, Y.S. Design of a Walking Assistance Lower Limb Exoskeleton for Paraplegic Patients and Hardware Validation Using CoP. Int. J. Adv. Robot Syst. 2013, 10. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Yin, Y. Active and Progressive Exoskeleton Rehabilitation Using Multisource Information Fusion from EMG and Force-Position EPP. IEEE Trans. Biomed. Eng. 2013, 60, 3314–3321. [Google Scholar] [CrossRef]
- Rathore, A.; Wilcox, M.; Ramirez, D.Z.M.; Loureiro, R.; Carlson, T. Quantifying the Human-Robot Interaction Forces between a Lower Limb Exoskeleton and Healthy Users. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 586–589. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, M.; Rathore, A.; Ramirez, D.Z.M.; Loureiro, R.C.V.; Carlson, T. Muscular Activity and Physical Interaction Forces during Lower Limb Exoskeleton Use. Healthc. Technol. Lett. 2016, 3, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Gcorgarakis, A.M.; Stampfli, R.; Wolf, P.; Riener, R.; Duartc, J.E. A Method for Quantifying Interaction Forces in Wearable Robots. In Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), Enschede, The Netherlands, 26–29 August 2018; pp. 789–794. [Google Scholar] [CrossRef]
- Tran, H.T.; Cheng, H.; Lin, X.C.; Duong, M.K.; Huang, R. The Relationship between Physical Human–Exoskeleton Interaction and Dynamic Factors: Using a Learning Approach for Control Applications. Sci. China Inf. Sci. 2014, 57, 1–13. [Google Scholar] [CrossRef]
- Long, Y.; Du, Z.J.; Wang, W.D.; He, L.; Mao, X.W.; Dong, W. Physical Human-Robot Interaction Estimation Based Control Scheme for a Hydraulically Actuated Exoskeleton Designed for Power Amplification. Front. Inf. Technol. Electron. Eng. 2018, 19, 1076–1085. [Google Scholar] [CrossRef]
- Akiyama, Y.; Yamada, Y.; Okamoto, S. Interaction Forces beneath Cuffs of Physical Assistant Robots and Their Motion-Based Estimation. Adv. Robot 2015, 29, 1315–1329. [Google Scholar] [CrossRef]
- Mouzo, F.; Michaud, F.; Lugris, U.; Cuadrado, J. Leg-Orthosis Contact Force Estimation from Gait Analysis. Mech. Mach. Theory 2020, 148, 103800. [Google Scholar] [CrossRef]
- Quinlivan, B.; Asbeck, A.; Wagner, D.; Ranzani, T.; Russo, S.; Walsh, C. Force Transfer Characterization of a Soft Exosuit for Gait Assistance. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (ASME 2015), Boston, MA, USA, 2–5 August 2015; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Xiloyannis, M.; Chiaradia, D.; Frisoli, A.; Masia, L. Characterisation of Pressure Distribution at the Interface of a Soft Exosuit: Towards a More Comfortable Wear; Springer: Berlin/Heidelberg, Germany, 2019; Volume 22, ISBN 9783030018870. [Google Scholar]
- Huysamen, K.; de Looze, M.; Bosch, T.; Ortiz, J.; Toxiri, S.; O’Sullivan, L.W. Assessment of an Active Industrial Exoskeleton to Aid Dynamic Lifting and Lowering Manual Handling Tasks. Appl. Ergon. 2018, 68, 125–131. [Google Scholar] [CrossRef]
- Akiyama, Y.; Okamoto, S.; Yamada, Y.; Ishiguro, K. Measurement of Contact Behavior Including Slippage of Cuff When Using Wearable Physical Assistant Robot. IEEE Trans. Neural. Syst. Rehabil. Eng. 2016, 24, 784–793. [Google Scholar] [CrossRef]
- Awad, L.N.; Esquenazi, A.; Francisco, G.E.; Nolan, K.J.; Jayaraman, A. The ReWalk ReStoreTM Soft Robotic Exosuit: A Multi-Site Clinical Trial of the Safety, Reliability, and Feasibility of Exosuit-Augmented Post-Stroke Gait Rehabilitation. J. Neuroeng. Rehabil. 2020, 17, 80. [Google Scholar] [CrossRef]
- Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. Adv. Psychol. 1988, 52, 139–183. [Google Scholar] [CrossRef]
- Borg, G.A.V. Psychophysical Bases of Perceived Exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- World Union of Wound Healing Societies (WUWHS). Role of Dressings in Pressure Ulcer Prevention: A Consensus Document; World Union of Wound Healing Societies: Abu Dhabi, United Arab Emirates, 2016. [Google Scholar] [CrossRef]
- Langlois, K.; Moltedo, M.; Bacek, T.; Rodriguez-Guerrero, C.; Vanderborght, B.; Lefeber, D. Design and Development of Customized Physical Interfaces to Reduce Relative Motion between the User and a Powered Ankle Foot Exoskeleton. In Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), Enschede, The Netherlands, 26–29 August 2018; pp. 1083–1088. [Google Scholar] [CrossRef]
- Norm, D. ISO TR 23482-1; Safety-Related Test Methods for ISO 13482. ISO: Geneva, Switzerland, 2008; Volume 2019, ISBN 9362178001.
- Kermavnar, T.; Power, V.; De Eyto, A.; O’Sullivan, L.W. Computerized Cuff Pressure Algometry as Guidance for Circumferential Tissue Compression for Wearable Soft Robotic Applications: A Systematic Review. Soft Robot 2018, 5, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemming, D.; Graven-Nielsen, T.; Sörensen, J.; Arendt-Nielsen, L.; Gerdle, B. Widespread Pain Hypersensitivity and Facilitat Ed Temporal Summati on of Deep Tissue Pain in Whiplash Associated Disorder: An Explorative Study of Women. J. Rehabil. Med. 2012, 44, 648–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hven, L.; Frost, P.; Bonde, J.P.E. Evaluation of Pressure Pain Threshold as a Measure of Perceived Stress and High Job Strain. PLoS ONE 2017, 12, e0167257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacourt, T.E.; Houtveen, J.H.; van Doornen, L.J.P. Experimental Pressure-Pain Assessments: Test-Retest Reliability, Convergence and Dimensionality. Scand. J. Pain. 2012, 3, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsson, M.; Latikka, P.; Kautiainen, H.; Isomeri, R.; Isomäki, H. Muscle and Bone Pressure Pain Threshold and Pain Tolerance in Fibromyalgia Patients and Controls. Arch. Phys. Med. Rehabil. 1992, 73, 814–818. [Google Scholar] [CrossRef]
- Kermavnar, T.; O’Sullivan, K.J.; Casey, V.; de Eyto, A.; O’Sullivan, L.W. Circumferential Tissue Compression at the Lower Limb during Walking, and Its Effect on Discomfort, Pain and Tissue Oxygenation: Application to Soft Exoskeleton Design. Appl. Ergon. 2020, 86, 103093. [Google Scholar] [CrossRef]
- Hobson, D.A. Comparative Effects of Posture on Pressure and Shear at the Body-Seat Interface. J. Rehabil. Res. Dev. 1992, 29, 21–31. [Google Scholar] [CrossRef]
- Lachenbruch, C.; Tzen, Y.; Brienza, D.M.; Karg, P.E.; Lachenbruch, P.A. The Relative Contributions of Interface Pressure, Shear Stress, and Temperature on Tissue Ischemia: A Cross-Sectional Pilot Study. Ostomy Wound Manag. 2013, 59, 25–34. [Google Scholar]
- Goossens, R.H.M.; Snijders, C.J.; Holscher, T.G.; Heerens, W.C.; Holman, A.E. Shear Stress Measured on Beds and Wheelchairs. Scand. J. Rehabil. Med. 1997, 29, 131–136. [Google Scholar]
- Polliack, A.A.; Scheinberg, S. A New Technology for Reducing Shear and Friction Forces on the Skin: Implications for Blister Care in the Wilderness Setting. Wilderness Environ. Med. 2006, 17, 109–119. [Google Scholar] [CrossRef]
- Goossens, R.H.M.; Zegers, R.; van Dijke, G.A.H.; Snijders, C.J. Influence of Shear on Skin Oxygen Tension. Clin. Physiol. 1994, 14, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Chimata, G.P.; Schwartz, C.J. Investigation of the Effect of the Normal Load on the Incidence of Friction Blisters in a Skin-Simulant Model. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2015, 229, 266–272. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Eguren, D.; Luu, T.P.; Contreras-Vidal, J.L. Risk and Adverse Events Related to Lower-Limb Exoskeletons. In Proceedings of the 2017 International Symposium on Wearable Robotics and Rehabilitation (WeRob), Houston, TX, USA, 5–8 November 2017; pp. 1–2. [Google Scholar] [CrossRef]
- Schick, J.; Glaser, M.; Kennel, R. Risk Assessment and Mitigation Strategies for Active Lower Limb Exoskeletons. In Proceedings of the 2020 Annual Reliability and Maintainability Symposium (RAMS), Palm Springs, CA, USA, 27–30 January 2020. [Google Scholar] [CrossRef]
- He, Y.; Eguren, D.; Luu, T.P.; Contreras-Vidal, J.L. Risk Management and Regulations for Lower Limb Medical Exoskeletons: A Review. Med. Devices Evid. Res. 2017, 10, 89–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reswick, J.B.; Rogers, J.E. Experience at Rancho Los Amigos Hospital with Devices and Techniques to Prevent Pressure Sores. In Bed Sore Biomechanics; Springer: Berlin, Gernamy, 1976; Volume 2, pp. 301–310. [Google Scholar] [CrossRef]
- Mao, X.; Yamada, Y.; Akiyama, Y.; Okamoto, S.; Yoshida, K. Safety Verification Method for Preventing Friction Blisters during Utilization of Physical Assistant Robots. Adv. Robot 2017, 31, 680–694. [Google Scholar] [CrossRef]
- Mao, X.; Yamada, Y.; Akiyama, Y.; Okamoto, S.; Yoshida, K. Development of a Novel Test Method for Skin Safety Verification of Physical Assistant Robots. In Proceedings of the 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore, 11–14 August 2015; pp. 319–324. [Google Scholar] [CrossRef]
- Kermavnar, T.; O’Sullivan, K.J.; de Eyto, A.; O’Sullivan, L.W. Relationship Between Interface Pressures and Pneumatic Cuff Inflation Pressure at Different Assessment Sites of the Lower Limb to Aid Soft Exoskeleton Design. Hum. Factors 2020, 63, 1061–1075. [Google Scholar] [CrossRef]
Author and Ref. | Year | pHEI Metrics | Sensor | Protocol | Device | Sensor Placement |
---|---|---|---|---|---|---|
Akyiama et al. [46] | 2012 | IF/support metrics: Normal force, Misalignment | Load cell 3D motion capture system | n.a. | Lower limb exoskeleton frame mounted on a dummy leg | Lower leg Upper leg |
Akyiama et al. [64] | 2015 | IF/support metrics: Normal/Tangential IF, Relative motions | 3-axis Load cell 3D optical motion capture system | 10 sit-to-stand motions | Leg type motor-actuated lower-limb orthosis | Lower leg Upper leg |
Akyiama et al. [69] | 2012 | IF/IT/support metrics: Normal/Tangential IF, Interaction moment, Skin slippage, Relative motions | 3-axis Load cell Slip sensor (2D imaging devices) 3D optical motion capture system | 15 sit-to-stand motions | Lower limb physical assistant robot | Upper leg |
Amigo et al. [48] | 2012 | IF/support metrics: Normal/Tangential IF, Misalignment | 6-axis Load cell Full bridge strain gauges | Forearm flexion-extension | Arm orthoses | Forearm |
Awad et al. [70] | 2020 | IF/support metrics: Disturbing force, Adverse event observation, Patient feedback | Load cell Questionnaire | 20 min of overground walking practice, 20 min of treadmill walking practice | Lower limb soft exosuits | Not specified |
Beil et al. [40] | 2018 | IF: Overall 3D IF | 3-axis Load cell | 13 different motion tasks | Lower limb exoskeleton | Upper leg Lower leg |
Bartenbach et al. [47] | 2015 | IF/support metrics: Overall IF, Misalignments, Perceived discomfort, Physical load | Load cell 3D optical motion capture system Questionnaire | 2 min of familiarization and 20 s of test on a treadmill | Lower limb exoskeleton | Lower leg Upper leg |
Bessler et al. [30] | 2019 | IF/IT: Normal/Tangential IF, Force distribution, Interaction torque | FSR sensor 3-axis load cell | Moving forearm along 3 axis | Forearm support | Forearm |
Choi et al. [19] | 2018 | IF: Normal force | FSR sensor | Treadmill walking | Hip exoskeleton | Thigh |
Christensen et al. [43] | 2018 | IF: Normal force | FSR sensor | n.a. | 3DOF spherical mechanism for shoulder joint exo | Arm Forearm |
Del-ama et al. [39] | 2011 | IF/IT: Mean interaction force Mean interaction torque (calculated) | Gauge bridge | 10 min leg swing | Lower limb exoskeleton | Lower leg |
De Rossi, Lenzi et al. [21] | 2010 | IP: Pressure distribution | Matrix of optoelectronic sensors | treadmill walk at 4 Km/h in 3 different conditions: “no-assistance” “low-assistance” and “high-assistance” | Lower limb robotic platform | Upper leg Lower leg |
Donati, De rossi et al. [9] | 2013 | IF/IP: Average IF, Maximum IF, Maximum IP | Load cell Matrix of optoelectronic sensors | Upper limb: Passive arm Active arc Lower limb: Transparent mode Viscous field | Elbow active orthoses Lower limb robotic platform | Forearm Upper leg Lower leg |
Fan et al. [58] | 2013 | IF: Max normal IF, Normal IF | Airbags sensor | knee extension to 30° and 60° | Lower limb exoskeleton | Calf |
Georgarakis et al. [61] | 2018 | IF/IP: Normal/tangential IF range, Max normal/tangential IF, Shear IP range | 3-axis Force sensor | relax or contract the forearm muscles by grasping a handle according to different force pattern | Upper limb exoskeleton | Forearm |
Ghonasgi et al. [35] | 2021 | IF: Force distribution | FSR sensor matrix | Elbow extensions | Upper limb exoskeleton | Upper arm |
Grosu et al. [22] | 2017 | IF: Normal force | 3-axis Force sensor | n.a. | Lower limb exoskeleton | Hip |
Hasegawa et al. [23] | 2011 | IP: Pressure distribution | Active air mat | Arm suspended Arm moving Arm lifting a weight | Upper limb exoskeleton | Forearm |
Huang et al. [38] | 2015 | IF: Total normal force over 4 point | FSR sensor | n.a. | Upper limb power-assist robotic exoskeleton | Forearm |
Huysamen et al. [68] | 2018 | IP/support metrics: Maximum pressure, Local perceived pressure, Subjective usability | Pressure mat Questionnaires | Lifting a load from the ground, with/without device, with/without load | Back powered exoskeleton | Shoulder Hip/lower back Thigh |
Islam et al. [33] | 2019 | IF: Normal force variation | FSR sensor band | Arm liftingh with different payloads | Passive arm exoskeleton | Upper arm |
Ito et al. [24] | 2018 | IF: Force distribution | Tactile sensor | n.a. | Wearable robot for upper limb | Upper arm |
Kim et al. [57] | 2013 | IF: Average normal IF | Load cell | Walking on a mat | Prototype lower limb exoskeleton | Shank |
Kim et al. [31] | 2021 | IP/support metrics: Maximum pressure, Average normalized IP, Misalignment | Air-bladder pressure sensor 3D optical motion capture system | Knee flexion-extension using a pulling cable attached to the foot | Lower limb exoskeleton | Shank |
Langlois et al. [18] | 2020 | IF/IP/support metrics: Normal IF, Strapping pressure, Relative motions, Energy dissipation, Perceived comfort | Air cushion 3D optical motion capture system Visual analog scale | randomly chosen motions at 5 different inflation pressure | 7 DOF robotic manipulator | Arm |
Langlois et al. [32] | 2021 | IP: Pressure distribution | 3D printed capacitive sensor pads | Lifting weights with arm straight | Upper arm interface | Arm |
Leal-junior et al. [26] | 2018 | IT: Lifting torque | Optical fiber sensor Potentiometer | Free knee flexion and extension | Lower limb exoskeleton | Shank |
Leal-junior et al. [27] | 2018 | IF: Normal force | Optical fiber sensor (Bragg) | Free knee flexion and extension | Lower limb exoskeleton | Shank |
Leal-junior et al. [36] | 2019 | IF: Normal force | Optical fiber sensor Load cell | Free knee flexion and extension | Lower limb exoskeleton | Calf |
Lee et al. [41] | 2014 | IF: Normal/Tangential IF | Load cell | Arm lifting at different load conditions | Upper limb exoskeleton | Handle |
Lenzi et al. [20] | 2011 | IP: Normal IP, Pression distribution | Matrix of optoelectronic sensors | 1. leaving arm passive; 2. moving faster (higher frequency) than the robot; 3. moving slower than the robot; 4. imposing higher flexion angle than the robot; 5. imposing a higher extension angle than the robot. | Elbow active orthoses | Forearm |
Levesque et al. [42] | 2017 | IF: Force distribution | FSR matrix sensor FSR sensor | legged deep squats, lunges, as well as stair climb and descent | Lower limb exoskeleton | Thigh Knee Tibia |
Li et al. [44] | 2019 | IF/IT: 3-D IF, Normalized IF over 3-axis, 3-D IT, Normalized IT over 3-axis | 6-axis Load cell | Walking on treadmill | Prototype lower limb exoskeleton | Upper limb Lower limb |
Lobo-prat et al. [54] | 2016 | IF/support metrics: Average normal IF, Comfort | Load cell EMG Questionnaire | Elbow flexion-extension movements against gravity | Passive upper limb support | Handle |
Long et al. [34] | 2017 | IT: Interaction torque | Elastic band | Leg swings in the air | Lower limb exoskeleton | Thigh and calf |
Long et al. [49] | 2017 | IP: Contact pressure | Pneumatic gas-bag | 40 m walk with (1) passive exo, (2) active exo without gravity compensation, (3) active exo with gravity compensation | Lower limb exoskeleton | Upper leg Lower leg |
Long et al. [63] | 2018 | IT: Interaction torque | Torque sensor | Natural speed of about 0.8 m/s and the maximum velocity up to 4 km/h with 30 kg loads | Lower limb exoskeleton | Knee |
Mahdavian et al. [37] | 2015 | IF: Normal IF | Strain gauges | n.a. | Prototype upper limb exoskeleton | Elbow |
Masud et al. [50] | 2021 | IF/(IT) Module magnitude of normal IF, Calculated IT | 6-axis Load cell | n.a. | Arm exoskeleton | Lower arm |
Muozo et al. [65] | 2020 | IT: Bending torque | Load cell 3D optical motion capture system | Normal walking with locked Orthotic knee and actuated Orthotic knee | Leg orthoses | Knee |
Quinlivan et al. [66] | 2015 | IP: Pressure distribution | Pressure mat | n.a. | Soft exosuit | Thigh Hip Belly |
Rathore et al. [59] | 2016 | IF: Maximum normal IF | FSR sensor | two steps forward (a full gait cycle) | Lower limb exoskeleton | Thigh braces Leg braces |
Schiele et al. [45] | 2010 | IF/IT/IP/support metrics: Mean absolute normal IF, Mean absolute IT, Fixation cuff IP, Tracking error, Subjective comfort and workload, Misalignments | 6-axis Load cell Pressure interface Questionnaire | visually track a random target on a screen | Upper limb exoskeleton | Forearm |
Tamez-Duque J. et al. [25] | 2015 | IP: Normal pressure, Pressure distribution | FSR pressure pad | sit to stand, walk forward, turn 180° to the right, turn 180° to the left, stand to sit | Lower limb exoskeleton | Upper leg Lower leg |
Tran et al. [62] | 2014 | IT: Interaction torque | Torque sensor Inclinometer | n.a. | Lower limb exoskeleton | Knee |
Tran et al. [51] | 2021 | IF/IT: Normal IF, Performance index: normalized square sum of the sagittal plane IF | 2-axis Force sensor | n.a. | Lower limb exoskeleton | Thigh Shank |
Wan et al. [56] | 2020 | IF/IP/support metrics: Average normalized IF (normal + shear), Maximum shear stress, Human-cuff relative motion, Cuff slip velocity | 3-axis Force sensor Laser mouse sensor | Walking on treadmill | Custom-made lower limb exoskeleton | Thigh Calf |
Wang et al. [55] | 2020 | IF/IP/support metrics: Average normal force, Maximum normal pressure, Comfort | FSR sensor Questionnaire | 10 repetitions of sit-to-stand, standing for 10 min, walking for 10 m, and stand-to-sit | Lower limb exoskeleton | Shin Hands |
Wang et al. [28] | 2021 | IF: Overall IF | Soft pneumatic force sensor | Walking on treadmill | Hip exoskeleton | Thigh |
Wilcox et al. [60] | 2016 | IF: Average peak force | FSR sensor EMG | Two steps forward Two steps backward Two sidesteps | Lower limb exoskeleton | Thigh Lower leg |
Wilkening et al. [29] | 2016 | IF/IT/IP Normal IF Interaction torque Normal pressure | Pneumatic pad 6-axis Load cell | n.a | Forearm interface | Forearm |
Xiloyannis et al. [67] | 2018 | IF/IT/IP Normal IF Interaction torque, Pressure distribution, Pressure peak | Pressure pad | Three flexion/extension movements between 0° and 90° | Elbow exosuit | Elbow |
Yousaf et al. [52] | 2021 | IF: Normal distribution, Average RMS normal distribution | 6-axis Load cell FSRs | n.a. | Upper arm exoskeleton interface | Arm |
Zanotto et al. [53] | 2015 | IF/IT: Average normal IF, RMS normal IF, Average IT | 6-axis Load cell Potentiometric goniometer | Treadmill walking in inertia, velocity, and alignment conditions | Treadmill-based exoskeleton | Thigh Shank |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massardi, S.; Rodriguez-Cianca, D.; Pinto-Fernandez, D.; Moreno, J.C.; Lancini, M.; Torricelli, D. Characterization and Evaluation of Human–Exoskeleton Interaction Dynamics: A Review. Sensors 2022, 22, 3993. https://doi.org/10.3390/s22113993
Massardi S, Rodriguez-Cianca D, Pinto-Fernandez D, Moreno JC, Lancini M, Torricelli D. Characterization and Evaluation of Human–Exoskeleton Interaction Dynamics: A Review. Sensors. 2022; 22(11):3993. https://doi.org/10.3390/s22113993
Chicago/Turabian StyleMassardi, Stefano, David Rodriguez-Cianca, David Pinto-Fernandez, Juan C. Moreno, Matteo Lancini, and Diego Torricelli. 2022. "Characterization and Evaluation of Human–Exoskeleton Interaction Dynamics: A Review" Sensors 22, no. 11: 3993. https://doi.org/10.3390/s22113993
APA StyleMassardi, S., Rodriguez-Cianca, D., Pinto-Fernandez, D., Moreno, J. C., Lancini, M., & Torricelli, D. (2022). Characterization and Evaluation of Human–Exoskeleton Interaction Dynamics: A Review. Sensors, 22(11), 3993. https://doi.org/10.3390/s22113993