Design and Testing of Real-Time Sensing System Used in Predicting the Leakage of Subsea Pipeline
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Finding the Location of Leakage
3.2. Calculating the Size of Leakage
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nadzri, M.M.M.; Ahmad, A. Design Issues and Challenges of Long-Range Ultrasonic Testing (LRUT) for Pipeline Inspection. In Proceedings of the 12th National Technical Seminar on Unmanned System Technology, Kuala Lumpur, Malaysia, 27–28 October 2020; pp. 115–126. [Google Scholar]
- Butterfield, J.D.; Meruane, V.; Collins, R.P.; Meyers, G.; Beck, S.B. Prediction of leak flow rate in plastic water distribution pipes using vibro-acoustic measurements. Struct. Health Monit. 2018, 17, 959–970. [Google Scholar] [CrossRef]
- Atef, A.; Zayed, T.; Hawari, A.; Khader, M.; Moselhi, O. Multi-tier method using infrared photography and GPR to detect and locate water leaks. Autom. Constr. 2016, 61, 162–170. [Google Scholar] [CrossRef]
- Davis, P.; Brockhurst, J. Subsea pipeline infrastructure monitoring: A framework for technology review and selection. Ocean. Eng. 2015, 104, 540–548. [Google Scholar] [CrossRef]
- Ong, K.; Png, W.; Lin, H.; Pua, C.; Rahman, F. Acoustic vibration sensor based on macro-bend coated fiber for pipeline leakage detection. In Proceedings of the 2017 17th International Conference on Control, Automation and Systems (ICCAS), Jeju, Korea, 18–21 October 2017; pp. 167–171. [Google Scholar]
- Zhang, J.; Lian, Z.; Zhou, Z.; Song, Z.; Liu, M.; Yang, K. Leakage detection in a buried gas pipeline based on distributed optical fiber time-domain acoustic wave signal. Eng. Fail. Anal. 2022, 141, 106594. [Google Scholar] [CrossRef]
- Yi-lai, M.; Jin-zhong, C.; Jian, L.; Guan-nan, S. Structure Design of Magnetization Device of Magnetic Leakage Internal Detector for Small-Diameter Oil and Gas Pipeline. In Proceedings of the 2021 7th International Symposium on Mechatronics and Industrial Informatics (ISMII), Zhuhai, China, 22–24 January 2021; pp. 111–114. [Google Scholar]
- Frittelli, J.; Andrews, A.; Parfomak, P.W.; Pirog, R.; Ramseur, J.L.; Ratner, M. US Rail Transportation of Crude Oil: Background and Issues for Congress; Congressional Research Service: Washington, DC, USA, 2014; Volume 4.
- Li, G.; Zhu, J.; Sun, R.; Lin, X.; Yang, W.; Zeng, K.; Wang, F.; Wang, C.; Zhou, B. Pipe line safety monitoring using distributed optical fiber vibration sensor in the China west-east gas pipeline project. In Proceedings of the Asia Communications and Photonics Conference, Hangzhou, China, 26–29 October 2018; p. Su2A. 70. [Google Scholar]
- Bolotina, I.; Borikov, V.; Ivanova, V.; Mertins, K.; Uchaikin, S. Application of phased antenna arrays for pipeline leak detection. J. Pet. Sci. Eng. 2018, 161, 497–505. [Google Scholar] [CrossRef]
- Wu, Y.-K.; Shen, S.-C.; Lee, C.-Y.; Chen, Y.-J. A Self-Powered Strain Sensor Applied to Real-Time Monitoring for Movable Structures. Sensors 2022, 22, 6084. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Xiao, Y.; Liu, X.; Liu, G.; Jiang, W.; Qin, J. Time-frequency distribution map-based convolutional neural network (CNN) model for underwater pipeline leakage detection using acoustic signals. Sensors 2020, 20, 5040. [Google Scholar] [CrossRef] [PubMed]
- Eastvedt, D.; Naterer, G.; Duan, X. Detection of faults in subsea pipelines by flow monitoring with regression supervised machine learning. Process Saf. Environ. Prot. 2022, 161, 409–420. [Google Scholar] [CrossRef]
- Aloqaily, A. Cross Country Pipeline Risk Assessments and Mitigation Strategies; Gulf Professional Publishing: Houston, TX, USA, 2018. [Google Scholar]
- Ho, M.; El-Borgi, S.; Patil, D.; Song, G. Inspection and monitoring systems subsea pipelines: A review paper. Struct. Health Monit. 2020, 19, 606–645. [Google Scholar] [CrossRef]
- Wang, X.; Simpson, A.; Lambert, M.; Vítkovský, J. Leak detection in pipeline systems using hydraulic methods: A review. In Proceedings of the Conference on Hydraulics in Civil Engineering, the Institutuion of Engineers, Hobart, Australia, 28–30 November 2001; pp. 23–30. [Google Scholar]
- Hough, J.E. Leak testing of pipelines uses pressure and acoustic velocity. Oil Gas J. 1988, 86, 35–41. [Google Scholar]
- Sood, R.; Kaur, M.; Lenka, H. Design and development of automatic water flow meter. Int. J. Comput. Sci. Eng. Appl. 2013, 3, 49. [Google Scholar]
- Gosavi, G.; Gawde, G.; Gosavi, G. Smart water flow monitoring and forecasting system. In Proceedings of the 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 19–20 May 2017; pp. 1218–1222. [Google Scholar]
- Kolhare, N.; Thorat, P. An approach of flow measurement in solar water heater using turbine flow meter. Int. J. Comput. Technol. 2013, 4, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Yang, L.; Gao, S. Propagation Characteristics of Magnetic Tomography Method Detection Signals of Oil and Gas Pipelines Based on Boundary Conditions. Sensors 2022, 22, 6065. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Zeng, Z.; Huang, X.; Li, J.; Feng, H. Pipeline leak detection based on variational mode decomposition and support vector machine using an interior spherical detector. Process Saf. Environ. Prot. 2021, 153, 167–177. [Google Scholar] [CrossRef]
- Kim, J.; Chae, M.; Han, J.; Park, S.; Lee, Y. The development of leak detection model in subsea gas pipeline using machine learning. J. Nat. Gas Sci. Eng. 2021, 94, 104134. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Zhang, M.; Yu, T.; Yan, B.; Zhou, X.; Yu, F.; Zhang, J.; Qiao, L.; Wang, T. Pipeline leak detection using Raman distributed fiber sensor with dynamic threshold identification method. IEEE Sens. J. 2020, 20, 7870–7877. [Google Scholar] [CrossRef]
Flowrate of Hall Sensor (L/h) | Flowrate of Pipeline (L/h) | Proportion |
---|---|---|
32 | 604 | 0.053 |
45 | 928 | 0.048 |
52 | 1231 | 0.042 |
72 | 1382 | 0.052 |
85 | 1951 | 0.044 |
Sensor A (L/h) | Sensor B (L/h) | Sensor C (L/h) | Flowrate in the Leakage (cm3/s) | Flow Velocity in Leakage (cm/s) | Leakage Area (cm2) |
---|---|---|---|---|---|
82.8 | 44.5 | 44.5 | 226.36 | 79.03 | 2.86 |
67.6 | 31.5 | 31.5 | 213.36 | 72.66 | 2.94 |
43.08 | 20 | 20 | 136.41 | 69.96 | 1.95 |
Sensor A (L/h) | Sensor B (L/h) | Sensor C (L/h) | Flowrate in the Leakage (cm3/s) | Flow Velocity in Leakage (cm/s) | Leakage Area (cm2) |
---|---|---|---|---|---|
82.8 | 62 | 44.5 | 122.93 | 79.03 | 1.56 |
67.6 | 50.5 | 31.5 | 101.06 | 72.66 | 1.39 |
43.08 | 31.65 | 20 | 67.55 | 69.96 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-H.; Shen, S.-C.; Wu, Y.-K.; Lee, C.-Y.; Chen, Y.-J. Design and Testing of Real-Time Sensing System Used in Predicting the Leakage of Subsea Pipeline. Sensors 2022, 22, 6846. https://doi.org/10.3390/s22186846
Chen Y-H, Shen S-C, Wu Y-K, Lee C-Y, Chen Y-J. Design and Testing of Real-Time Sensing System Used in Predicting the Leakage of Subsea Pipeline. Sensors. 2022; 22(18):6846. https://doi.org/10.3390/s22186846
Chicago/Turabian StyleChen, Yung-Hsu, Sheng-Chih Shen, Yan-Kuei Wu, Chun-Yen Lee, and Yen-Ju Chen. 2022. "Design and Testing of Real-Time Sensing System Used in Predicting the Leakage of Subsea Pipeline" Sensors 22, no. 18: 6846. https://doi.org/10.3390/s22186846
APA StyleChen, Y. -H., Shen, S. -C., Wu, Y. -K., Lee, C. -Y., & Chen, Y. -J. (2022). Design and Testing of Real-Time Sensing System Used in Predicting the Leakage of Subsea Pipeline. Sensors, 22(18), 6846. https://doi.org/10.3390/s22186846