Float like a Butterfly: Comparison between Off and On-Ice Torso Kinematics during the Butterfly Stance in Ice Hockey Goalkeepers
Abstract
:1. Introduction
2. Design and Participants
2.1. Materials and Methods
2.2. Instrumentation
3. Statistical Analysis
4. Results
5. Discussion
5.1. Acceleration Magnitudes of the Torso
5.2. Metabolic Equivalents of Task
5.3. Anthropometry
6. Limitations and Recommendations for Future Research
7. Practical Applications
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burr, J.F.; Jamnik, R.K.; Baker, J.; Macpherson, A.; Gledhill, N.; McGuire, E.J. Relationship of physical fitness test results and hockey playing potential in elite-level ice hockey players. J. Strength Cond. Res. 2008, 22, 1535–1543. [Google Scholar] [CrossRef] [PubMed]
- Peyer, K.L.; Pivarnik, J.M.; Eisenmann, J.C.; Vorkapich, M. Physiological characteristics of National Collegiate Athletic Association Division I ice hockey players and their relation to game performance. J. Strength Cond. Res. 2011, 25, 1183. [Google Scholar] [CrossRef] [PubMed]
- Cox, M.H.; Miles, D.S.; Verde, T.J.; Rhodes, E.C. Applied physiology of ice hockey. Sports Med. 1995, 19, 184. [Google Scholar] [CrossRef]
- Heller, J.; Vodicka, P.; Janek, M. Anaerobic performance in 30s Wingate test as one of the possible criteria for selection Czech hockey players into National Hockey League. Phys. Act. Rev. 2019, 7, 57–62. [Google Scholar] [CrossRef]
- Šiška, M.; Kováčiková, Z. Effect of the off-season training on the physical profile in U18 elite male ice hockey players. J. Phys. Educ. Sport 2017, 17, 1120–1124. [Google Scholar]
- Buchheit, M.; Lefebvre, B.; Laursen, P.B.; Ahmaidi, S. Reliability, usefulness, and validity of the 30-15 intermittent ice test in young elite ice hockey players. J. Strength Cond. Res. 2011, 25, 1457–1464. [Google Scholar] [CrossRef]
- Whiteside, D.; Deneweth, J.M.; Bedi, A.; Zernicke, R.F.; Goulet, G.C. Femoroacetabular impingement in elite ice hockey goaltenders: Etiological implications of on-ice hip mechanics. Am. J. Sports Med. 2015, 43, 1689–1697. [Google Scholar] [CrossRef]
- Wörner, T.; Clarsen, B.; Thorborg, K.; Eek, F. Elite ice hockey goalkeepers have a high prevalence of hip and groin problems associated with decreased sporting function: A single-season prospective cohort study. Orthop. J. Sports Med. 2019, 7, 2325967119892586. [Google Scholar] [CrossRef]
- Bell, G.J.; Snydmiller, G.D.; Game, A.B. An investigation of the type and frequency of movement patterns of National Hockey League goalkeepers. Int. J. Sports Physiol. Perform. 2008, 3, 80–87. [Google Scholar] [CrossRef]
- Pearsall, D.J.; Turcotte, R.A.; Murphy, S.D. The biomechanics of ice hockey. In Exercise & Sports Science; Garrett, W.E., Kirkendall, D.T., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2000. [Google Scholar]
- Epstein, D.M.; McHugh, M.; Yorio, M.; Neri, B. Intra-articular hip injuries in National Hockey League players: A descriptive epidemiological study. Am. J. Sports Med. 2013, 41, 343–348. [Google Scholar] [CrossRef]
- Novak, D.; Lipinska, P.; Roczniok, R.; Spieszny, M.; Stastny, P. Off-ice agility provide motor transfer to on-ice skating performance and agility in adolescent ice hockey players. J. Sports Sci. Med. 2019, 18, 680–694. [Google Scholar] [PubMed]
- Bracko, M.R.; George, J.D. Prediction of ice-skating performance with off-ice in women’s ice hockey players. J. Strength Cond. Res. 2001, 15, 116–122. [Google Scholar] [CrossRef]
- Quinney, H.A.; Dewart, R.; Game, A.; Snydmiller, G.; Warburton, D.; Bell, G. A 26-year physiological description of National Hockey League team. Appl. Physiol. Nutr. Metab. 2008, 33, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Vescovi, J.D.; Murray, T.M.; Vanheest, J.L. Positional performance profiling of elite ice hockey players. Int. J. Sports Physiol. Perform. 2006, 1, 84–94. [Google Scholar] [CrossRef]
- Houston, M.E.; Green, H.J. Physiological and anthropometric characteristics of elite Canadian ice hockey players. J. Sports Med. Phys. Fit. 1976, 16, 123–128. [Google Scholar]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar]
- Jetté, M.; Sidney, K.; Blümchen, G. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin. Cardiol. 1990, 13, 555–565. [Google Scholar] [CrossRef]
- Frayne, R.J.; Kelleher, L.K.; Wegscheider, P.K.; Dickey, J.P. Development and verification of a protocol to quantify hip joint kinematics: An evaluation of ice hockey goalkeepers pads on hip motion. Am. J. Sports Med. 2015, 43, 2157–2163. [Google Scholar] [CrossRef]
- National Hockey League. Available online: https://www.nhl.com/news/unmasked-goalies-talk-about-fighting-dehydration/c-312493986 (accessed on 6 June 2022).
- Lockie, R.; Murphy, A.; Spinks, C. Effects of resisted sled towing on sprint kinematics in field-sport athletes. J. Strength Cond. Res. 2003, 4, 760–767. [Google Scholar] [CrossRef]
- Linke, D.; Link, D.; Lames, M. Validation of electronic performance and tracking systems EPTS under field conditions. PLoS ONE 2018, 13, e0199519. [Google Scholar] [CrossRef]
- Sato, K.; Smith, S.L.; Sands, W.A. Validation of an accelerometer for measuring sport performance. J. Strength Cond. Res. 2009, 23, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.B.; Wheeler, K.; James, D. Wearable Sensors in Sport: A Practical Guide to Usage and Implementation; Springer International Publishing: Singapore, 2019. [Google Scholar]
- Fong, D.T.; Chan, Y.Y. The use of wearable inertial motion sensors in human lower limb biomechanics studies: A systematic review. Sensors 2010, 10, 11556–11565. [Google Scholar] [CrossRef] [PubMed]
- Chambers, R.; Gabbett, T.J.; Cole, M.H.; Beard, A. The use of wearable microsensors to quantify sport-specific movements. Sports Med. 2015, 45, 1065–1081. [Google Scholar] [CrossRef]
- Clauser, C.; McConville, T.; Young, J. Weight, Volume, and Center of Mass of Segments of the Human Body; (AMRL Technical Report); Wright-Patterson Air Force Base: Yellow Springs, OH, USA; Aerospace Medical Research Laboratories: Falls Church, VA, USA, 1969; pp. 69–70. [Google Scholar]
- Evans, S.A.; James, D.A.; Rowlands, D.; Lee, J.B. Using wearable technology to detect change to trunk position and power in cycling. In Proceedings of the 38th International Society of Biomechanics in Sport (ISBS), online, 20–24 July 2020. [Google Scholar]
- Lee, J.; Mellifont, R.; Burkett, B. The use of a single inertial sensor to identify stride, step, and stance durations of running gait. J. Sci. Med. Sport 2010, 13, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Bourassa, S.; Best, K.L.; Racine, M.; Borisoff, J.; Leblond, J.; Routhier, F. Use of actigraphy to measure real-world physical activities in manual wheelchair users. J. Rehabil. Assist. Technol. Eng. 2020, 7, 2055668320907814. [Google Scholar] [CrossRef]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R., Jr.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of Physical Activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32, S498–S516. [Google Scholar] [CrossRef]
- Chin, R.; Lee, Y.B. Analysis of data: Principles and practice of clinical trial medicine. In Foundations of Anesthesia, 2nd ed.; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef]
- Leone, M.; Léger, L.; Larivière, G.; Comtois, A.S. An on-ice aerobic maximal multistage shuttle skate test for elite adolescent hockey players. Int. J. Sports Med. 2007, 28, 823–828. [Google Scholar] [CrossRef]
- Petrella, N.J.; Montelpare, W.J.; Nystrom, M.; Plyley, M.; Faught, B.E. Validation of the fast-skating protocol to predict aerobic power in ice hockey players. Appl. Physiol. Nutr. Metab. 2007, 32, 693–700. [Google Scholar] [CrossRef]
- Wörner, T.; Frayne, R.J.; Magnusson, T.; Eek, F. The perceived demands of ice hockey goaltending movements on the hip and groin region: An elite coach and player perspective. Orthop. J. Sports Med. 2021, 9, 23259671211055699. [Google Scholar] [CrossRef]
- Martini, F.; Ober, W.; Nath, J.; Bartholomew, E.; Petti, K. Visual Anatomy & Physiology, 3rd ed.; Pearson Education Limited: London, UK, 2015. [Google Scholar]
- Mehta, N.; Nwachukwu, B.U.; Kelly, B.T. Hip injuries in ice hockey goalkeepers. Oper. Tech. Sports Med. 2019, 27, 132–137. [Google Scholar] [CrossRef]
- Albert, W.J.; Bonneau, J.; Stevenson, J.M.; Gledhill, N. Back fitness and back health assessment considerations for the Canadian physical activity, fitness and lifestyle appraisal. Can. J. Appl. Physiol. 2001, 26, 291–317. [Google Scholar] [CrossRef]
- Butcher, S.J.; Craven, B.R.; Chilibeck, P.D.; Spink, K.S.; Grona, S.L.; Sprigings, E.J. The effect of trunk stability training on vertical takeoff velocity. J. Orthop. Sports Phys. Ther. 2007, 37, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcotte-L’heureux, V.; Charron, J.; Panenic, R.; Comtois, A.S. Ice hockey goaltender physiology profile and physical testing: A systematic review and meta-analysis. Int. J. Exerc. Sci. 2021, 14, 855–875. [Google Scholar] [PubMed]
- Kilpivaara, P.; Häkkinen, K. Ice hockey goaltending: Physiological loading and game analysis. Master’s Thesis, University of Jyväskylä, Jyväskylä, Finland, 2012. [Google Scholar]
- Bassett, D.R., Jr.; Ainsworth, B.E.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; King, G.A. Validity of four motion sensors in measuring moderate intensity physical activity. Med. Sci. Sports Exerc. 2000, 32, S471–S480. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M.; Vanhatalo, A.; Burnley, M.; Morton, R.H.; Poole, D.C. Critical power: Implications for determination of VO2max and exercise tolerance. Med. Sci. Sports Exerc. 2010, 42, 1876–1890. [Google Scholar] [CrossRef]
- Montgomery, D.L. Physiology of ice hockey. Sports Med. 1988, 5, 99–126. [Google Scholar] [CrossRef]
- Twist, P.; Rhodes, T.A. Physiological analysis of ice hockey positions. Strength Cond. J. 1993, 15, 44–46. [Google Scholar] [CrossRef]
- Sherar, L.B.; Bruner, M.W.; Munkoe-Chandler, K.J.; Baxter-Jones, A.D. Relative age and fast tracking of elite major junior ice hockey players. Percept. Mot. Skills 2007, 104, 702–706. [Google Scholar] [CrossRef]
- Hoff, J.; Kemi, O.J.; Helgerud, J. Strength and endurance differences between elite and junior elite ice hockey players. The importance of allometric scaling. Int. J. Sports Med. 2005, 26, 537–541. [Google Scholar] [CrossRef]
- Thompson, K.M.A.; Safadie, A.; Ford, J.; Burr, J.F. Off-ice resisted sprints best predict all-out skating performance in varsity hockey players. J. Strength Cond. Res. 2020, 36, 2597–2601. [Google Scholar] [CrossRef] [PubMed]
- Pollitt, D.J. Using the Pavesled to develop the skating musculature. Strength Cond. J. 2004, 26, 66–69. [Google Scholar] [CrossRef]
Axis | On-Ice Butterfly Stance | Off-Ice Butterfly Stance | t | p * | Cohen’s d |
---|---|---|---|---|---|
Acceleration magnitude (m/s2) | Acceleration magnitude (m/s2) | ||||
Vertical (x) | −4.74 ± 0.2 | −7.61 ± 0.9 | 1.24 | <0.001 | >1 (extremely large) |
Anteroposterior (y) | −0.43 ± 0.3 | 0.10 ± 0.5 | 0.18 | <0.148 | 0.3 (moderate) |
Mediolateral (z) | 3.23 ± 0.2 | 5.19 ± 0.7 | −0.10 | <0.093 | >1 (extremely large) |
Vector magnitude | 8.13 ± 0.1 | 14.44 ± 1.3 | 2.12 | <0.001 | >1 (extremely large) |
Axis | Off-Ice MET (mL/kg/min1) Mean | On-Ice MET (mL/kg/min1) Mean | t | p | Nearest Compendium (MET mL/kg/min1) Heading & Description |
---|---|---|---|---|---|
Vertical (x) | 9.36 ± 0.3 | 10.15 ± 0.8 | 2.93 | 0.099 | MET 10.0: Conditioning exercise—Calisthenics (e.g., pushups, sit ups, pull-ups, jumping jacks), vigorous effort. |
Anteroposterior (y) | 10.01 ± 0.4 | 11.98 ± 0.5 | 3.46 | 0.146 | MET 10.0: hockey, ice, competitive |
Mediolateral (z) | 12.2 ± 0.1 | 13.3 ± 0.9 | 16.84 | <0.001 * | MET 10.0: hockey, ice, competitive |
Vector Magnitude | 13.93 ± 5.2 | 14.32 ± 3.2 | 5.85 | 0.179 | MET 14.0: rollerblading, in-line skating, 24.0 km/h (15.0 mph), maximal effort |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evans, S.A.; Bini, R.; Davis, G.; Lee, J. Float like a Butterfly: Comparison between Off and On-Ice Torso Kinematics during the Butterfly Stance in Ice Hockey Goalkeepers. Sensors 2022, 22, 7320. https://doi.org/10.3390/s22197320
Evans SA, Bini R, Davis G, Lee J. Float like a Butterfly: Comparison between Off and On-Ice Torso Kinematics during the Butterfly Stance in Ice Hockey Goalkeepers. Sensors. 2022; 22(19):7320. https://doi.org/10.3390/s22197320
Chicago/Turabian StyleEvans, Stuart A, Rodrigo Bini, Gregory Davis, and James Lee. 2022. "Float like a Butterfly: Comparison between Off and On-Ice Torso Kinematics during the Butterfly Stance in Ice Hockey Goalkeepers" Sensors 22, no. 19: 7320. https://doi.org/10.3390/s22197320
APA StyleEvans, S. A., Bini, R., Davis, G., & Lee, J. (2022). Float like a Butterfly: Comparison between Off and On-Ice Torso Kinematics during the Butterfly Stance in Ice Hockey Goalkeepers. Sensors, 22(19), 7320. https://doi.org/10.3390/s22197320