An Electrophysiological Model for Assessing Cognitive Load in Tacit Coordination Games
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. EEG Recording and Preprocessing
2.3. Experimental Design
2.4. Measures
3. Results
3.1. Differences in TBR among the Three Conditions
3.2. The Relationship between CI and TBR
3.3. The Relationship between Response Time and iCA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Tacit Coordination Game List
Game Number | Option 1 | Option 2 | Option 3 | Option 4 |
---|---|---|---|---|
1 | Water | Beer | Wine | Whisky |
2 | Tennis | Volleyball | Football | Chess |
3 | Blue | Gray | Green | Red |
4 | Iron | Steel | Plastic | Bronze |
5 | Ford | Ferrari | Jaguar | Porsche |
6 | 1 | 8 | 5 | 16 |
7 | Haifa | Tel-Aviv | Jerusalem | Netanya |
8 | Spinach | Carrot | Lettuce | Pear |
9 | London | Paris | Rome | Madrid |
10 | Hazel | Cashew | Almond | Peanut |
11 | Strawberry | Melon | Banana | Mango |
12 | Noodles | Pizza | Hamburger | Sushi |
References
- Wooldridge, M. An Introduction to MultiAgent Systems; Wiley Publishing: Chichester, UK, 2009. [Google Scholar]
- Klein, G.; Woods, D.D.; Bradshaw, J.M.; Hoffman, R.R.; Feltovich, P.J. Ten challenges for making automation a “team player” in joint human-agent activity. IEEE Intell. Syst. 2004, 19, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Bradshaw, J.M.; Feltovich, P.J.; Johnson, M.J.; Bunch, L.; Breedy, M.R.; Eskridge, T.; Jung, H.; Lott, J.; Uszok, A. Coordination in human-agent-robot teamwork. In Proceedings of the 2008 International Symposium on Collaborative Technologies and Systems, CTS’08, Irvine, CA, USA, 19–23 May 2008; Volume 1, pp. 467–476. [Google Scholar]
- Consoli, A.; Tweedale, J.; Jain, L. The Link between Agent Coordination and Cooperation. In Proceedings of the International Conference on Intelligent Information Processing, Adelaide, Australia, 20–23 September 2006; Volume 228, pp. 11–19. [Google Scholar]
- Mutlu, B.; Terrell, A.; Huang, C. Coordination Mechanisms in Human-Robot Collaboration. In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction (HRI)-Workshop on Collaborative Manipulation, Tokyo, Japan, 3–6 March 2013; pp. 1–6. [Google Scholar]
- Schelling, T.C. The Strategy of Conflict; Harvard university press: Cambridge, UK, 1960. [Google Scholar]
- Mehta, J.; Starmer, C.; Sugden, R. The Nature of Salience: An Experimental Investigation of Pure Coordination Games. Am. Econ. Rev. 1994, 84, 658–673. [Google Scholar]
- Mehta, J. Telling Tales: Actors’Accounts of their Behavior in Coordination Games. In Proceedings of the 17th Arne Ryde Symposium, “Focal Points—Coordination, Complexity, and Communication in Strategic Contexts”, Lund, Sweden, 21–22 August 1997. [Google Scholar]
- Zuckerman, I.; Kraus, S.; Rosenschein, J.S. Using focal point learning to improve human-machine tacit coordination. Auton. Agent. Multi. Agent. Syst. 2011, 22, 289–316. [Google Scholar] [CrossRef] [Green Version]
- Bacharach, M. Interactive team reasoning: A contribution to the theory of cooperation. Res. Econ. 1999, 53, 117–147. [Google Scholar] [CrossRef] [Green Version]
- Bacharach, M.; Bernasconi, M. The Variable Frame Theory of Focal Points: An Experimental Study. Games Econ. Behav. 1997, 19, 1–45. [Google Scholar] [CrossRef]
- Bacharach, M. Beyond Individual Choice: Teams and Frames in Game Theory; Wiley and Sons: New York, NY, USA, 2006. [Google Scholar]
- Frankish, K. Dual-process and dual-system theories of reasoning. Philos. Compass 2010, 5, 914–926. [Google Scholar] [CrossRef]
- De Neys, W.; Pennycook, G. Logic, fast and slow: Advances in dual-process theorizing. Curr. Dir. Psychol. Sci. 2019, 28, 503–509. [Google Scholar] [CrossRef]
- Sahlin, N.-E.; Wallin, A.; Persson, J. Decision science: From Ramsey to dual process theories. Synthese 2010, 172, 129–143. [Google Scholar] [CrossRef] [Green Version]
- Belloc, M.; Bilancini, E.; Boncinelli, L.; D’Alessandro, S. Intuition and Deliberation in the Stag Hunt Game. Sci. Rep. 2019, 9, 14833. [Google Scholar] [CrossRef] [PubMed]
- De Freitas, J.; Thomas, K.; DeScioli, P.; Pinker, S. Common knowledge, coordination, and strategic mentalizing in human social life. Proc. Natl. Acad. Sci. USA 2019, 116, 13751–13758. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, A.; Sonntag, A. Focality Is Intuitive—Experimental Evidence on the Effects of Time Pressure in Coordination Games; University of East Anglia: Norwich, UK, 2019. [Google Scholar]
- Krueger, J.I. From social projection to social behaviour. Eur. Rev. Soc. Psychol. 2008, 18, 1–35. [Google Scholar] [CrossRef]
- Bacharach, M.; Stahl, D.O. Variable-Frame Level-n Theory. Games Econ. Behav. 2000, 32, 220–246. [Google Scholar] [CrossRef]
- Tversky, A.; Kahneman, D. Prospect theory: An analysis of decision under risk. Econometrica 1979, 47, 263–291. [Google Scholar]
- Tversky, A.; Kahneman, D. Loss Aversion in Riskless Choice: A Reference-Dependent Model. Q. J. Econ. 1991, 106, 1039–1061. [Google Scholar] [CrossRef]
- Mizrahi, D.; Laufer, I.; Zuckerman, I. Individual strategic profiles in tacit coordination games. J. Exp. Theor. Artif. Intell. 2020, 33, 63–78. [Google Scholar] [CrossRef]
- Mizrahi, D.; Laufer, I.; Zuckerman, I. Modeling Individual Tacit Coordination Abilities. In Proceedings of the International Conference on Brain Informatics, Haikou, China, 13–15 December 2019; Springer: Haikou, China, 2019; pp. 29–38. [Google Scholar]
- Mizrahi, D.; Laufer, I.; Zuckerman, I. Collectivism-individualism: Strategic behavior in tacit coordination games. PLoS ONE 2020, 15, e0226929. [Google Scholar] [CrossRef] [Green Version]
- Mizrahi, D.; Laufer, I.; Zuckerman, I. The Effect of Individual Coordination Ability on Cognitive-Load in Tacit Coordination Games. In Proceedings of the NeuroIS Retreat 2020, Vienna, Austria, 2–4 June 2020; Davis, F., Riedl, R., Brocke, J.V., Léger, P.-M., Randolph, A., Fischer, T., Eds.; Springer: Vienna, Austria, 2020. [Google Scholar]
- Sitzia, S.; Zheng, J. Group Behaviour in Tacit Coordination Games with Focal Points—An Experimental Investigation. Games Econ. Behav. 2019. [Google Scholar] [CrossRef]
- Mehta, J.; Starmer, C.; Sugden, R. Focal points in pure coordination games: An experimental investigation. Theory Decis. 1994, 36, 163–185. [Google Scholar] [CrossRef]
- Bardsley, N.; Mehta, J.; Starmer, C.; Sugden, R. Explaining Focal Points: Cognitive Hierarchy Theory versus Team Reasoning. Econ. J. 2009, 120, 40–79. [Google Scholar] [CrossRef] [Green Version]
- Mizrahi, D.; Laufer, I.; Zuckerman, I.; Zhang, T. The effect of culture and social orientation on Player’s performances in tacit coordination games. In Proceedings of the International Conference on Brain Informatics, Arlington, TX, USA, 7–9 December 2018; Springer: Arlington, TX, USA, 2018; pp. 437–447. [Google Scholar]
- Gartner, M.; Grimm, S.; Bajbouj, M. Frontal midline theta oscillations during mental arithmetic: Effects of stress. Front. Behav. Neurosci. 2015, 9, 96. [Google Scholar] [CrossRef] [Green Version]
- Fernandez Rojas, R.; Debie, E.; Fidock, J.; Barlow, M.; Kasmarik, K.; Anavatti, S.; Garratt, M.; Abbass, H. Electroencephalographic Workload Indicators During Teleoperation of an Unmanned Aerial Vehicle Shepherding a Swarm of Unmanned Ground Vehicles in Contested Environments. Front. Neurosci. 2020, 14, 40. [Google Scholar] [CrossRef] [PubMed]
- Zarjam, P.; Epps, J.; Chen, F. Spectral EEG features for evaluating cognitive load. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Boston, MA, USA, 30 August–3 September 2011; pp. 3841–3844. [Google Scholar]
- Tay, S.W.; Ryan, P.; Ryan, C.A. Systems 1 and 2 thinking processes and cognitive reflection testing in medical students. Can. Med. Educ. J. 2016, 7, e97–e103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renard, Y.; Lotte, F.; Gibert, G.; Congedo, M.; Maby, E.; Delannoy, V.; Bertrand, O.; Le´cuyer, A. Openvibe: An open-source software platform to design, test, and use brain–computer interfaces in real and virtual environments. Presence Teleoper. Virtual Environ. 2010, 19, 35–53. [Google Scholar] [CrossRef] [Green Version]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vigário, R.; Sarela, J.; Jousmiki, V.; Hämäläinen, M.; Oja, E. Independent component approach to the analysis of EEG and MEG recordings. IEEE Trans. Biomed. Eng. 2000, 47, 589–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagyaraj, S.; Ravindran, G.; Shenbaga Devi, S. Analysis of spectral features of EEG during four different cognitive tasks. Int. J. Eng. Technol. 2014, 6, 725–734. [Google Scholar]
- Van Son, D.; de Rover, M.; De Blasio, F.M.; van der Does, W.; Barry, R.J.; Putman, P. Electroencephalography theta/beta ratio covaries with mind wandering and functional connectivity in the executive control network. Ann. N. Y. Acad. Sci. 2019, 1452, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Swart, E.K.; Nielen, T.M.J.; Shaul, S.; Sikkema-de Jong, M.T. Frontal theta/beta-ratio (TBR) as potential biomarker for attentional control during reading in healthy females. Cogn. Brain Behav. 2020, 24, 187–211. [Google Scholar] [CrossRef]
- Mizrahi, D.; Laufer, I.; Zuckerman, I. Topographic Analysis of Cognitive Load in Tacit Coordination Games Based on Electrophysiological Measurements. In Proceedings of the NeuroIS Retreat 2021, Vienna, Austria, 1–3 June 2021. [Google Scholar]
- Shensa, M.J. The Discrete Wavelet Transform: Wedding the a Trous and Mallat Algorithms. IEEE Trans. Signal Process. 1992, 40, 2464–2482. [Google Scholar] [CrossRef] [Green Version]
- Jensen, A.; la Cour-Harbo, A. Ripples in Mathematics: The Discrete Wavelet Transform; Springer Science & Business Media: Berlin, Germany, 2001. [Google Scholar]
- Pyka, M.; Hahn, T.; Heider, D.; Krug, A.; Sommer, J.; Kircher, T.; Jansen, A. Baseline activity predicts working memory load of preceding task condition. Hum. Brain Mapp. 2013, 34, 3010–3022. [Google Scholar] [CrossRef]
- Rioul, O.; Duhamel, P. Fast algorithms for discrete and continuous wavelet transforms. IEEE Trans. Inf. Theory 1992, 38, 569–586. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Sokhadze, E.M.; El-Baz, A.S.; Li, X.; Sears, L.; Casanova, M.F.; Tasman, A. Relative power of specific eeg bands and their ratios during neurofeedback training in children with autism spectrum disorder. Front. Hum. Neurosci. 2016, 9, 723. [Google Scholar] [CrossRef] [PubMed]
- Bian, Z.; Li, Q.; Wang, L.; Lu, C.; Yin, S.; Li, X. Relative power and coherence of EEG series are related to amnestic mild cognitive impairment in diabetes. Front. Aging Neurosci. 2014, 6, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vico Fallani, F.; Nicosia, V.; Sinatra, R.; Astolfi, L.; Cincotti, F.; Mattia, D.; Wilke, C.; Doud, A.; Latora, V.; He, B.; et al. Defecting or not defecting: How to “read” human behavior during cooperative games by EEG measurements. PLoS ONE 2010, 5, e14187. [Google Scholar] [CrossRef] [Green Version]
- Boudewyn, M.; Roberts, B.M.; Mizrak, E.; Ranganath, C.; Carter, C.S. Prefrontal transcranial direct current stimulation (tDCS) enhances behavioral and EEG markers of proactive control. Cogn. Neurosci. 2019, 10, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Moliadze, V.; Sierau, L.; Lyzhko, E.; Stenner, T.; Werchowski, M.; Siniatchkin, M.; Hartwigsen, G. After-effects of 10 Hz tACS over the prefrontal cortex on phonological word decisions. Brain Stimul. 2019, 12, 1464–1474. [Google Scholar] [CrossRef] [Green Version]
- Gevins, A.; Smith, M.E. Neurophysiological measures of cognitive workload during human-computer interaction. Theor. Issues Ergon. Sci. 2003, 4, 113–131. [Google Scholar] [CrossRef]
- Tukey, J.W. Comparing Individual Means in the Analysis of Variance. Biometrics 1949, 5, 99–114. [Google Scholar] [CrossRef]
- Tran, Q.-H.; Chin, T.-J.; Carneiro, G.; Brown, M.S. David Suter in defence of RANSAC for outlier rejection in deformable registration. In Proceedings of the European Conference on Computer Vision, Florence, Italy, 7–13 Octorber 2012; Springer: Berlin, Heidelberg, 2012; pp. 274–287. [Google Scholar]
- Choi, S.; Kim, T.; Yu, W. Performance evaluation of RANSAC family. J. Comput. Vis. 1997, 24, 271–300. [Google Scholar]
- Chum, O.; Matas, J. Optimal randomized RANSAC. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 1472–1482. [Google Scholar] [CrossRef] [Green Version]
- Raguram, R.; Frahm, J.-M.; Pollefeys, M. A comparative analysis of RANSAC techniques leading to adaptive real-time random sample consensus. In Proceedings of the European Conference on Computer Vision, Marseille, France, 12–18 October 2008; Springer: Berlin, Heidelberg, 2008; pp. 500–513. [Google Scholar]
- Kiwelekar, A.W.; Navandar, S.; Yadav, D.K. A Two-Systems Perspective for Computational Thinking. In Proceedings of the International Conference on Intelligent Human Computer Interaction, Daegu, Korea, 24–26 November 2020. [Google Scholar]
- Debie, E.; Rojas, R.F.; Fidock, J.; Barlow, M.; Kasmarik, K.; Anavatti, S.; Garratt, M.; Abbass, H.A. Multimodal Fusion for Objective Assessment of Cognitive Workload: A Review. IEEE Trans. Cybern. 2019, 51, 1542–1555. [Google Scholar] [CrossRef]
- Mizrahi, D.; Laufer, I.; Zuckerman, I. Level-K Classification from EEG Signals Using Transfer Learning. Sensors 2021, 21, 7908. [Google Scholar] [CrossRef]
- Faillo, M.; Smerilli, A.; Sugden, R. The Roles of Level-k and Team Reasoning in Solving Coordination Games; Cognitive and Experimental Economics Laboratory: Trento, Italy, 2013. [Google Scholar]
- Jin, Y. Does level-k behavior imply level-k thinking? Exp. Econ. 2018, 24, 330–353. [Google Scholar] [CrossRef]
- Cooper, D.J.; Fatas, E.; Morales, A.J.; Qi, S. Consistent Depth of Reasoning in Level-k Models; Technical Reports; University of Malaga: Málaga, Spain, 2016. [Google Scholar]
- Mizrahi, D.; Zuckerman, I.; Laufer, I. Using a Stochastic Agent Model to Optimize Performance in Divergent Interest Tacit Coordination Games. Sensors 2020, 20, 7026. [Google Scholar] [CrossRef]
- Mizrahi, D.; Laufer, I.; Zuckerman, I. The Effect of Loss-Aversion on Strategic Behaviour of Players in Divergent Interest Tacit Coordination Games. In Proceedings of the International Conference on Brain Informatics, Padova, Italy, 18–20 September 2020; Springer: Padova, Italy, 2020; pp. 41–49. [Google Scholar]
- Mizrahi, D.; Laufer, I.; Zuckerman, I. Predicting focal point solution in divergent interest tacit coordination games. J. Exp. Theor. Artif. Intell. 2021, 1–21. [Google Scholar] [CrossRef]
- Mizrahi, D.; Laufer, I.; Zuckerman, I. The Effect of Expected Revenue Proportion and Social Value Orientation Index on Players’ Behavior in Divergent Interest Tacit Coordination Games. In Proceedings of the International Conference on Brain Informatics, Online, 17–19 September 2021; Springer: New York, NY, USA, 2021; pp. 25–34. [Google Scholar]
- Haier, R.J.; Siegel, B.V.; MacLachlan, A.; Soderling, E.; Lottenberg, S.; Buchsbaum, M.S. Regional glucose metabolic changes after learning a complex visuospatial/motor task: A positron emission tomographic study. Brain Res. 1992, 570, 134–143. [Google Scholar] [CrossRef]
- Haier, R.J.; LaFalase, J.; Katz, M.; Nuechterlein, K.; Buchsbaum, M.S. Brain efficiency and intelligence: Inverse correlations between cerebral glucose metabolic rate and abstract reasoning. Manuscr. Submitt. Publ. 1992, 16, 415–426. [Google Scholar]
- Hazletr, E. Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence 1988, 12, 199–217. [Google Scholar]
- Hong, J.C.; Liu, M.C. A study on thinking strategy between experts and novices of computer games. Comput. Human Behav. 2003, 19, 245–258. [Google Scholar] [CrossRef]
- Hung, S.Y. Expert versus novice use of the executive support systems: An empirical study. In Proceedings of the Proceedings of the 34th Annual Hawaii International Conference on System Sciences, Maui, HI, USA, 6 January 2001; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Leger, P.-M.; René, R.; vom Brocke, J. Emotions and ERP information sourcing: The moderating role of expertise. Ind. Manag. Data Syst. 2014, 114, 456–471. [Google Scholar] [CrossRef] [Green Version]
- Angelidis, A.; Hagenaars, M.; van Son, D.; van der Does, W.; Putman, P. Do not look away! Spontaneous frontal EEG theta/beta ratio as a marker for cognitive control over attention to mild and high threat. Biol. Psychol. 2018, 135, 8–17. [Google Scholar] [CrossRef]
- Nezarat, A.; Dastghaibifard, G.H. Efficient nash equilibrium resource allocation based on game theory mechanism in cloud computing by using auction. PLoS ONE 2015, 10, e0138424. [Google Scholar] [CrossRef] [Green Version]
- Krockow, E.M.; Colman, A.M.; Pulford, B.D. Exploring cooperation and competition in the Centipede game through verbal protocol analysis. Eur. J. Soc. Psychol. 2016, 46, 746–761. [Google Scholar] [CrossRef] [Green Version]
- Nutz, M.; Zhang, J. Optimal stopping under adverse nonlinear expectation and related games. Ann. Appl. Probab. 2015, 25, 2503–2534. [Google Scholar] [CrossRef]
- Riedel, F. Optimal stopping with multiple priors. Econometrica 2009, 77, 857–908. [Google Scholar]
- Cox, T.H.; Lobel, S.A.; Mcleod, P.L. Effects of ethnic group cultural differences on cooperative and competitive behavior on a group task. Acad. Manag. J. 1991, 34, 827–847. [Google Scholar]
- Andrighetto, G.; Capraro, V.; Guido, A.; Szekely, A. Cooperation, response time, and social value orientation: A meta-analysis. PsyArXiv 2020. [Google Scholar] [CrossRef]
- Rosenfeld, A.; Zuckerman, I.; Azaria, A.; Kraus, S. Combining psychological models with machine learning to better predict people’s decisions. Synthese 2012, 189, 81–93. [Google Scholar] [CrossRef] [Green Version]
- Rosse, J.G.; Miller, J.L.; Stecher, M.D. A field study of job applicants’ reactions to personality and cognitive ability testing. J. Appl. Psychol. 1994, 79, 987. [Google Scholar] [CrossRef]
- Kluemper, D.H. Social network screening: Pitfalls, possibilities, and parallels in employment selection. Soc. Media Hum. Resour. Manag. 2013, 12, 1–21. [Google Scholar]
- Kahneman, D. Thinking, Fast and Slow; Macmillan: New York, NY, USA, 2011. [Google Scholar]
- Israel, A.; Rosenboim, M.; Shavit, T. Time preference under cognitive load-An experimental study. J. Behav. Exp. Econ. 2021, 90, 101633. [Google Scholar] [CrossRef]
Resting State | Picking | Coordination | |
25th percentile | 2.5332 | 2.2242 | 1.5009 |
Median | 4.6337 | 4.1214 | 2.9274 |
75th percentile | 8.3537 | 7.7705 | 5.4127 |
Game Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CI | 0.288 | 0.222 | 0.222 | 0.200 | 0.355 | 0.266 | 0.444 | 0.288 | 0.178 | 0.266 | 0.222 | 0.355 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laufer, I.; Mizrahi, D.; Zuckerman, I. An Electrophysiological Model for Assessing Cognitive Load in Tacit Coordination Games. Sensors 2022, 22, 477. https://doi.org/10.3390/s22020477
Laufer I, Mizrahi D, Zuckerman I. An Electrophysiological Model for Assessing Cognitive Load in Tacit Coordination Games. Sensors. 2022; 22(2):477. https://doi.org/10.3390/s22020477
Chicago/Turabian StyleLaufer, Ilan, Dor Mizrahi, and Inon Zuckerman. 2022. "An Electrophysiological Model for Assessing Cognitive Load in Tacit Coordination Games" Sensors 22, no. 2: 477. https://doi.org/10.3390/s22020477
APA StyleLaufer, I., Mizrahi, D., & Zuckerman, I. (2022). An Electrophysiological Model for Assessing Cognitive Load in Tacit Coordination Games. Sensors, 22(2), 477. https://doi.org/10.3390/s22020477