T/R RF Switch with 150 ns Switching Time and over 100 dBc IMD for Wideband Mobile Applications in Thick Oxide SOI Process
Abstract
:1. Introduction
2. Low-Power SPDT Switch Design Considerations
2.1. Insertion Loss
2.2. Isolation
2.3. Power Handling
2.4. Harmonics
2.5. Switching Time
3. Analog Control Circuitry
3.1. BGR and LDO
3.2. Non-Overlap Clock Generator
3.3. Negative Charge Pump and Voltage Booster
3.4. Level Shifters and Drivers
3.5. Ring Oscillator
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.; Zhang, G.; Yu, K.; Lin, J.; Huang, L. Effects and contrasts of silicon-on-insulator floating-body and body-contacted field-effect transistors to the design of high-performance antenna switches. IET Microw. Antennas Propag. 2016, 10, 507–516. [Google Scholar] [CrossRef]
- Chaudhry, Q.; Bayruns, R.; Arnold, B.; Sheehy, P. A linear CMOS SOI SP14T antenna switch for cellular applications. In Proceedings of the 2012 IEEE Radio Frequency Integrated Circuits Symposium, Montreal, QC, Canada, 17–19 June 2012; pp. 155–158. [Google Scholar]
- Tombak, A.; Carroll, M.S.; Kerr, D.C.; Pierres, J.-B.; Spears, E. Design of high-order switches for multimode applications on a silicon-on-insulator technology. IEEE Trans. Microw. Theory Tech. 2013, 61, 3639–3649. [Google Scholar] [CrossRef]
- Ahn, M.; Cha, J.; Cho, C.; Lee, C.; Laskar, J. Ultra low loss and high linearity SPMT antenna switch using SOI CMOS process. In Proceedings of the 40th European Microwave Conference, Paris, France, 28–30 September 2010; pp. 652–655. [Google Scholar]
- Im, D.; Kim, B.; Im, D.; Lee, K. A Stacked-FET Linear SOI CMOS Cellular Antenna Switch With an Extremely Low-Power Biasing Strategy. IEEE Trans. Microw. Theory Tech. 2015, 63, 1964–1977. [Google Scholar] [CrossRef]
- Dong-Ming, L.; Chien-Chang, H.; Yi-Jen, C. A symmetrical model for microwave power AlGaAs/InGaAs pHEMTs for switch circuit applications. IEEE Trans. Electron Devices 2009, 56, 2638–2643. [Google Scholar]
- Yore, M.D.; Nevers, C.A.; Cortese, P. High-isolation low-loss SP7T pHEMT switch suitable for antenna switch modules. In Proceedings of the 5th European Microwave Integrated Circuits Conference, Paris, France, 27–28 September 2010; pp. 69–72. [Google Scholar]
- Shin, O.C.; Kim, Y.S.; Jeong, I.H. Implementation of new SP6T switch achieving high quality and small size at same time. In Proceedings of the 2010 Asia-Pacific Microwave Conference, Yokohama, Japan, 7–10 December 2010; pp. 473–476. [Google Scholar]
- Rao, C.V.N.; Ghodgaonkar, D.K.; Sinha, P.; Jyoti, R. MMIC High Power Transmit/Receive Switches with integrated Low Noise Amplifiers using GaAs and GaN Processes. In Proceedings of the 2018 IEEE MTT-S International Microwave and RF Conference (IMaRC), Kolkata, India, 28–30 November 2018; pp. 1–4. [Google Scholar]
- Shi, L.; Li, Q.; Dai, H.; Wang, Z.; Jing, H. GaAs pHEMT Single Pole Double Throw(SPDT) RF Switch Failure Analysis. In Proceedings of the International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA), Hangzhou, China, 2–5 July 2019; pp. 1–3. [Google Scholar]
- Sari, S.; Tulasi, S.D.; Nagaveni, H.; Karthik, S. DC–6 GHz GaAs MMIC Compact SPDT Switch. In Proceedings of the IEEE International Conference for Innovation in Technology (INOCON), Bangluru, India, 6–8 November 2020; pp. 1–4. [Google Scholar]
- Tombak, A.; Iversen, C.; Pierres, J.B.; Kerr, D.; Carroll, M.; Mason, P.; Spears, E.; Gillenwater, T. Cellular antenna switches for multimode applications based on a Silicon-on-Insulator technology. In Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium, Anaheim, CA, USA, 23–25 May 2010; pp. 271–274. [Google Scholar]
- Bonkowski, J.; Kelly, D. Integration of triple-band GSM antenna switch module using SOI CMOS. In Proceedings of the 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems, Forth Worth, TX, USA, 6–8 June 2004; pp. 511–514. [Google Scholar]
- Tombak, A. Silicon-on-insulator (SOI) switches for cellular and WLAN front-end applications. In Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium Workshop, Montreal, QC, Canada, 17–19 June 2012; pp. 17–22. [Google Scholar]
- Malladi, V.N.K.; Miller, M. A 48 dBm peak power RF switch in SOI process for 5G mMIMO applications. In Proceedings of the IEEE 19th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Orlando, FL, USA, 20–23 January 2019; pp. 1–3. [Google Scholar]
- Esfeh, B.K.; Makovejev, S.; Allibert, F.; Raksin, J.P. A SPDT RF switch small- and large-signal characteristics on TR-HR SOI substrates. IEEE J. Electron. Devices Soc. 2018, 6, 543–550. [Google Scholar] [CrossRef]
- Jaffe, M.; Abou-Khalil, M.; Botula, A.; Ellis-Monaghan, J.; Gambino, J.; Gross, J.; He, Z.; Joseph, A.; Phelps, R.; Shank, S.; et al. Improvements in SOI Technology for RF Switches. In Proceedings of the IEEE 15th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, San Diego, CA, USA, 26–28 January 2015; pp. 30–32. [Google Scholar]
- Joshi, A.; Lee, S.; Chen, Y.Y.; Lee, T.Y. Optimized CMOS-SOI process for high performance RF switches. In Proceedings of the IEEE International SOI Conference (SOI), Napa, CA, USA, 1–4 October 2012; pp. 1–2. [Google Scholar]
- Drillet, F.; Loraine, J.; Saleh, H.; Lahbib, I.; Grandchamp, B.; Iogna-Prat, L.; Lahbib, I.; Sow, O.; Uren, G. RF SPST Switch Based on Innovative Heterogeneous GaN/SOI Integration Technique. In Proceedings of the 15th European Microwave Integrated Circuits Conference (EuMIC), Utrecht, The Netherlands, 10–15 January 2021; pp. 117–120. [Google Scholar]
- Emam, M.; Raskin, J.P.; Janvier, D.V. RF antenna switch using dynamic threshold SOI MOSFET. In Proceedings of the IEEE 11th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Glendale, AZ, USA, 17–19 January 2011; pp. 89–92. [Google Scholar]
- Rikan, B.S.; Kim, D.; Choi, K.D.; Asl, S.A.H.; Yoo, J.M.; Pu, Y.; Kim, S.; Huh, H.; Jung, Y.; Lee, K.-Y. A Low-Band Multi-Gain LNA Design for Diversity Receive Module with 1.2 dB NF. Sensors 2021, 21, 8340. [Google Scholar] [CrossRef] [PubMed]
- Rikan, B.S.; Abbasizadeh, H.; Nga, T.T.K.; Kim, S.J.; Lee, K. A low leakage retention LDO and leakage-based BGR with 120nA quiescent current. In Proceedings of the International SoC Design Conference (ISOCC), Seoul, Korea, 5–8 November 2017; pp. 200–201. [Google Scholar]
- Rikan, B.S.; Abbasizadeh, H.; Kang, J.H.; Lee, K.H. A High Current Efficiency CMOS LDO Regulator with Low Power Consumption and Small Output Voltage Variation. J. IKEEE 2014, 18, 37–44. [Google Scholar] [CrossRef]
- Rikan, B.S.; Kim, S.-Y.; Ahmad, N.; Abbasizadeh, H.; Rahman, M.R.U.; Shahzad, K.; Hejazi, A.; Rad, R.E.; Verma, D.; Lee, K.-Y. A Sigma-Delta ADC for Signal Conditioning IC of Automotive Piezo-Resistive Pressure Sensors with over 80 dB SNR. Sensors 2018, 18, 4199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, K.; Li, S.; Zhang, G.; Zhang, Z.; Tong, Q.; Zou, X. Design Considerations of Charge Pump for Antenna Switch Controller With SOI CMOS Technology. IEEE Trans. Circuits Syst. II Express Briefs 2017, 64, 229–233. [Google Scholar] [CrossRef]
- Cho, C.; Cha, J.; Ahn, M.; Kim, J.J.; Lee, C. Negative charge-pump based antenna switch controller using 0.18 mm SOI CMOS technology. Electron. Lett. 2011, 647, 371–372. [Google Scholar] [CrossRef]
- Liu, P.; Wang, X.; Wu, D.; Zhang, Z.; Pan, L. A Novel High-Speed and Low-Power Negative Voltage Level Shifter for Low Voltage Applications. In Proceedings of the 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 30 May–2 June 2010; pp. 601–604. [Google Scholar]
- Michal, V. On the low-power design, stability improvement and frequency estimation of the CMOS ring oscillator. In Proceedings of the 22nd International Conference Radioelektronika, Brno, Czech Republic, 17–18 April 2012; pp. 1–4. [Google Scholar]
- Ahn, M.; Lee, C.; Kim, B.; Laskar, J. A high-power CMOS switch using a novel adaptive voltage swing distribution method in multistack FETs. IEEE Trans. Microw. Theory Tech. 2008, 56, 849–858. [Google Scholar]
- Infineon Technologies AG. Wideband RF SPDT Switch in Small Package with 0.77mm2 Footprint; Infineon Technologies AG: Munich, Germany, 2016; pp. 1–16. [Google Scholar]
Band | In-Band Freq. | Blocker Freq.1 | Blocker Power1 | Blocker Freq.2 | Blocker Power2 | IMD2 |
---|---|---|---|---|---|---|
(MHz) | (MHz) | (dBm) | (MHz) | (dBm) | (dBm) | |
B1 | 2140 | 1950 | 15 | 190 | −15 | −106 |
B8 | 942.5 | 897.5 | 15 | 45 | −15 | −94 |
B7 | 2655 | 2535 | 15 | 120 | −15 | −100 |
B1 | 2140 | 1950 | 20 | 190 | −15 | −101 |
B8 | 942.5 | 897.5 | 20 | 45 | −15 | −89 |
B7 | 2655 | 2535 | 20 | 120 | −15 | −95 |
B1 | 2140 | 1950 | 24 | 190 | −15 | −97 |
B8 | 942.5 | 897.5 | 24 | 45 | −15 | −85 |
B7 | 2655 | 2535 | 24 | 120 | −15 | −91 |
Band | In-Band Freq. | Blocker Freq.1 | Blocker Power1 | Blocker Freq.2 | Blocker Power2 | IMD3 |
---|---|---|---|---|---|---|
(MHz) | (MHz) | (dBm) | (MHz) | (dBm) | (dBm) | |
B1 | 2140 | 1950 | 15 | 1760 | −15 | −124 |
B8 | 942.5 | 897.5 | 15 | 852.5 | −15 | −130 |
B7 | 2655 | 2535 | 15 | 2415 | −15 | −125 |
B1 | 2140 | 1950 | 20 | 1760 | −15 | −114 |
B8 | 942.5 | 897.5 | 20 | 852.5 | −15 | −120 |
B7 | 2655 | 2535 | 20 | 2415 | −15 | −111 |
B1 | 2140 | 1950 | 24 | 1760 | −15 | −106 |
B8 | 942.5 | 897.5 | 24 | 852.5 | −15 | −112 |
B7 | 2655 | 2535 | 24 | 2415 | −15 | −101 |
Parameter | TMTT 2015 [5] | TMTT 2008 [29] | ESSCIRC 2010 [4] | Infineon BGS12SN6 [30] | This Work |
---|---|---|---|---|---|
Architecture | SP4T | SPDT | SP4T | SPDT | SPDT |
Frequency (GHz) | 1–2 | 1 | 1–2 | 0.05–6 | 0.698–5.925 |
Insertion Loss (dB) | 0.55–0.75 | 0.55 | 0.27–0.34 | 0.23–0.9 | 0.12–0.56 |
Return Loss (dB) | 30–20 | 30 | 30–24 | 22–16 | 30–12 |
Isolation (dB) | 39.4–32 | 39.4 | 40–35 | 43–21 | 45–23 |
2nd Harm. (dBc) | 82–83 | 82 | 90–84 | Typ:80, Max:75 3 | 62 + 24 1 |
3rd Harm. (dBc) | 80–81 | 80 | 87–80 | Typ:87, Max:80 3 | 76 + 24 1 |
IMD2 (dBm) | - | - | - | Typ:110, Max:100 2 | Typ:94, Max:106 4 |
IMD3 (dBm) | - | - | - | Typ:130, Max:120 2 | Typ:124, Max:130 4 |
Supply Voltage (V) | 2.5 | 3.3 | 2.5 | 2.85 | 1.8 |
Switching Time (µm) | - | - | - | 0.4 | 0.15 |
Power Handling (dBm) | 35 | 33 | 35 | 32 | 32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rikan, B.S.; Kim, D.; Choi, K.-D.; Hejazi, A.; Yoo, J.-M.; Pu, Y.; Kim, S.; Huh, H.; Jung, Y.; Lee, K.-Y. T/R RF Switch with 150 ns Switching Time and over 100 dBc IMD for Wideband Mobile Applications in Thick Oxide SOI Process. Sensors 2022, 22, 507. https://doi.org/10.3390/s22020507
Rikan BS, Kim D, Choi K-D, Hejazi A, Yoo J-M, Pu Y, Kim S, Huh H, Jung Y, Lee K-Y. T/R RF Switch with 150 ns Switching Time and over 100 dBc IMD for Wideband Mobile Applications in Thick Oxide SOI Process. Sensors. 2022; 22(2):507. https://doi.org/10.3390/s22020507
Chicago/Turabian StyleRikan, Behnam S., David Kim, Kyung-Duk Choi, Arash Hejazi, Joon-Mo Yoo, YoungGun Pu, Seokkee Kim, Hyungki Huh, Yeonjae Jung, and Kang-Yoon Lee. 2022. "T/R RF Switch with 150 ns Switching Time and over 100 dBc IMD for Wideband Mobile Applications in Thick Oxide SOI Process" Sensors 22, no. 2: 507. https://doi.org/10.3390/s22020507
APA StyleRikan, B. S., Kim, D., Choi, K. -D., Hejazi, A., Yoo, J. -M., Pu, Y., Kim, S., Huh, H., Jung, Y., & Lee, K. -Y. (2022). T/R RF Switch with 150 ns Switching Time and over 100 dBc IMD for Wideband Mobile Applications in Thick Oxide SOI Process. Sensors, 22(2), 507. https://doi.org/10.3390/s22020507