A 65 nm Duplex Transconductance Path Up-Conversion Mixer for 24 GHz Automotive Short-Range Radar Sensor Applications
Abstract
:1. Introduction
1.1. Automotive Radar Spectra
1.2. Literature Review
1.3. The Main Contributions of the Proposed Up-Conversion Mixer
- 1.
- In this paper, we propose a highly-linear and high gain 24 GHz up conversion mixer for the automotive radar SRRS applications.
- 2.
- It is designed using an enhanced transconductance stage consisting of a duplex transconductance path (DTP) to improve linearity.
- 3.
- To achieve the mixer’s high gain and linearity at once, the proposed mixer DTP includes two paths. The first one, MTP holds a common source (CS) amplifier. Besides, the second one, is STP employed as an ICQT.
- 4.
- To get a high gain of the proposed mixer besides linearity, we also have applied two inductors with a bypass capacitor in the transconductance and switching stage, which act as a resonator and assist to improve the gain and isolation of the designed mixer.
- 5.
- The proposed mixer implemented is to simplify the overall system complexity.
2. Proposed Up-Conversion Mixer Design
3. Results and Discussion
Implications and Findings of the Proposed Work
4. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Le, V.H.; Duong, H.T.; Huynh, A.T.; Ta, C.M.; Zhang, F.; Evans, R.J.; Skafidas, E. A CMOS 77-GHz receiver front-end for automotive radar. IEEE Trans. Microw. Theory Tech. 2013, 10, 3783–3793. [Google Scholar] [CrossRef]
- Gresham, I.; Jenkins, A.; Egri, R.; Eswarappa, C.; Kinayman, N.; Jain, N.; Anderson, R.; Kolak, F.; Wohlert, R.; Bawell, S.P.; et al. Ultra-wideband radar sensors for short-range vehicular applications. IEEE Trans. Microw. Theory Tech. 2004, 9, 2105–2122. [Google Scholar] [CrossRef]
- Gresham, I.; Kinayman, N.; Jenkins, A.; Point, R.; Street, A.; Lu, Y.; Khalil, A.; Ito, R.; Anderson, R. A fully integrated 24 GHz SiGe receiver chip in a low-cost QFN plastic package. In Proceedings of the IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, San Francisco, CA, USA, 10–13 June 2006; p. 4. [Google Scholar]
- Jain, V.; Heydari, P. A Single-Chip Dual-Band 22–29-GHz/77–81-GHz BiCMOS Transceiver. In Automotive Radar Sensors in Silicon Technologies; Springer: New York, NY, USA, 2019; pp. 65–89. [Google Scholar]
- Ragonese, E.; Scuderi, A.; Giammello, V.; Messina, E.; Palmisano, G. A fully integrated 24 GHz UWB radar sensor for automotive applications. In Proceedings of the IEEE International Solid-State Circuits Conference-Digest of Technical Papers, San Francisco, CA, USA, 8–12 February 2019; pp. 306–307. [Google Scholar]
- Moquillon, L.; Garcia, P.; Pruvost, S.; Le Tual, S.; Marchetti, M.; Chabert, L.; Bertholet, N.; Scuderi, A.; Scaccianoce, S.; Serratore, A.; et al. Low-cost fully integrated BiCMOS transceiver for pulsed 24-GHz automotive radar sensors. In Proceedings of the 2008 IEEE Custom Integrated Circuits Conference, San Jose, CA, USA, 21–24 September 2008; pp. 475–478. [Google Scholar]
- Nicolson, S.T.; Chevalier, P.; Sautreuil, B.; Voinigescu, S.P. Single-chip W-band SiGe HBT transceivers and receivers for doppler radar and millimeter-wave imaging. IEEE J. Solid-State Circuits 2008, 10, 2206–2217. [Google Scholar] [CrossRef]
- Forstner, H.P.; Knapp, H.; Jager, H.; Kolmhofer, E.; Platz, J.; Starzer, F.; Treml, M.; Schinko, A.; Birschkus, G.; Bock, J.; et al. A 77 GHz 4-channel automotive radar transceiver in SiGe. In Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium, Atlanta, GA, USA, 15–17 June 2008; pp. 233–236. [Google Scholar]
- Trotta, S.; Knapp, H.; Dibra, D.; Aufinger, K.; Meister, T.F.; Bock, J.; Simburger, W.; Scholtz, A.L. A 79 GHz SiGe-bipolar spread-spectrum TX for automotive radar. In Proceedings of the IEEE International Solid-State Circuits Conference, Digest of Technical Papers, San Francisco, CA, USA, 11–15 February 2007; pp. 430–613. [Google Scholar]
- Hartmann, M.; Wagner, C.; Seemann, K.; Platz, J.; Jager, H.; Weigel, R. A low-power low-noise single-chip receiver front-end for automotive radar at 77 GHz in silicon-germanium bipolar technology. In Proceedings of the IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Honolulu, HI, USA, 3–5 June 2007; pp. 149–152. [Google Scholar]
- Nicolson, S.T.; Yau, K.H.; Pruvost, S.; Danelon, V.; Chevalier, P.; Garcia, P.; Chantre, A.; Sautreuil, B.; Voinigescu, S.P. A low-voltage SiGe BiCMOS 77-GHz automotive radar chipset. IEEE Trans. Microw. Theory Tech. 2008, 56, 1092–1104. [Google Scholar] [CrossRef]
- Krishnaswamy, H.; Hashemi, H. A variable-phase ring oscillator and PLL architecture for integrated phased array transceivers. IEEE J. Solid-State Circuits 2008, 11, 2446–2463. [Google Scholar] [CrossRef]
- Yu, T.; Rebeiz, G.M. A 22–24 GHz 4-element CMOS phased array with on-chip coupling characterization. IEEE J. Solid-State Circuits 2008, 9, 2134–2143. [Google Scholar] [CrossRef]
- Guan, X.; Hashemi, H.; Hajimiri, A. A fully integrated 24-GHz eight-element phased-array receiver in silicon. IEEE J. Solid-State Circuits 2004, 12, 2311–2320. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, A.; Komijani, A.; Hajimiri, A. A fully integrated 24-GHz phased-array transmitter in CMOS. IEEE J. Solid-State Circuits 2004, 12, 2502–2514. [Google Scholar] [CrossRef] [Green Version]
- Chiou, H.K.; Chou, H.T. A 0.4 V microwatt power consumption current-reused up-conversion mixer. IEEE Microw. Wirel. Compon. Lett. 2013, 1, 40–42. [Google Scholar] [CrossRef]
- Won, Y.S.; Kim, C.H.; Lee, S.G. A 24 GHz Highly Linear Up-Conversion Mixer in CMOS 0.13 μm Technology. IEEE Microw. Wirel. Compon. Lett. 2015, 6, 400–402. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Z.; Jiang, Z.; Liu, P.; Liu, H.; Wu, Y.; Zhao, C.; Kang, K. A 27.5–43.5 GHz high linearity up-conversion CMOS mixer for 5G communication. In Proceedings of the IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), Haining, China, 14–16 December 2017; pp. 1–3. [Google Scholar]
- Siddique, A.; Delwar, T.S.; Ryu, J.Y. A high-linearity high-gain up-conversion mixer for 24 GHz automotive radar applications. Electron. Lett. 2021, 2, 48–50. [Google Scholar] [CrossRef]
- Siddique, A.; Delwar, T.S.; Behera, P.; Biswal, M.R.; Haider, A.; Ryu, J.Y. Design and Analysis of a Novel 24 GHz Up-Conversion Mixer with Improved Derivative Super-Position Linearizer Technique for 5G Applications. Sensors 2021, 18, 6118. [Google Scholar] [CrossRef] [PubMed]
- Huynh, C.; Lee, J.; Nguyen, C. A K-band SiGe BiCMOS fully integrated up-conversion mixer. In Proceedings of the Asia-Pacific Microwave Conference Proceedings (APMC), Seoul, Korea, 5–8 November 2013; pp. 185–187. [Google Scholar]
- Lai, I.C.; Fujishima, M. An integrated 20–26 GHz CMOS up-conversion mixer with low power consumption. In Proceedings of the 2006 Proceedings of the 32nd European Solid-State Circuits Conference, Montreux, Switzerland, 19–21 September 2006; pp. 400–403. [Google Scholar]
- Verma, A.; Lin, J. A low-power up-conversion CMOS mixer for 22–29-GHz ultra-wideband applications. IEEE Trans. Microw. Theory Tech. 2006, 8, 3295–3300. [Google Scholar] [CrossRef]
- Qayyum, J.A.; Albrecht, J.; Ulusoy, A.C. A Compact 24-32 GHz Linear Upconverting Mixer with-1.5 dBm OP1dB using 0.13μm SiGe BiCMOS Process. In Proceedings of the IEEE 19th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Orlando, FL, USA, 20–23 January 2019; pp. 1–4. [Google Scholar]
- Byeon, C.W.; Lee, J.H.; Lee, D.Y.; Kim, M.R.; Son, J.H. A high linearity, image/LO-rejection I/Q up-conversion mixer for 5G cellular communications. In Proceedings of the 10th European Microwave Integrated Circuits Conference (EuMIC), Paris, France, 7–8 September 2015; pp. 345–348. [Google Scholar]
- Chen, Z.; Liu, Z.; Jiang, Z.; Liu, P.; Yu, Y.; Liu, H.; Wu, Y.; Zhao, C.; Kang, K. A 27.5–43.5 GHz 65-nm CMOS up-conversion mixer with 0.42 dBm OP1dB for 5G applications. Int. J. Numer. Model. Electron. Netw. Devices Fields 2020, 3, e2550. [Google Scholar]
- Syu, J.S.; Meng, C.; Yen, Y.C.; Huang, G.W. Gilbert upconversion mixers using single-band/dual-band LC current combiners. Microw. Opt. Technol. Lett. 2009, 7, 1718–1722. [Google Scholar] [CrossRef]
- Comeau, J.P.; Cressler, J.D. A 28-GHz SiGe up-conversion mixer using a series-connected triplet for higher dynamic range and improved IF port return loss. IEEE J. Solid-State Circuits 2006, 3, 560–565. [Google Scholar] [CrossRef]
- Lin, Y.H.; Li, Y.C.; Lin, W.J.; Tsai, J.H.; Alshehri, A.; Almalki, M.; Sayed, A.; Huang, T.W. A Ka-band high linearity up-conversion mixer with LO boosting linearization technique. In Proceedings of the 48th European Microwave Conference (EuMC), Madrid, Spain, 23–27 September 2018; pp. 259–262. [Google Scholar]
- Tsai, J.H.; Lin, W.H.; Huang, C.J. Design of 15–34 GHz low-power up-conversion ring mixer using 0.18 μm CMOS technology. In Proceedings of the 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Taipei, Taiwan, 24–26 August 2016; pp. 1–3. [Google Scholar]
- Thomas, L.H. The design of CMOS Radio-Frequency Integrated Circuits; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Guan, X.; Hajimiri, A. A 24-GHz CMOS front-end. IEEE J. Solid-State Circuits 2008, 2, 368–373. [Google Scholar] [CrossRef]
- Valdes-Garcia, A.; Reynolds, S.; Plouchart, J.O. 60 GHz transmitter circuits in 65 nm CMOS. In Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium, Atlanta, GA, USA, 15–17 June 2008; pp. 641–644. [Google Scholar]
- Tiebout, M.; Kienmayer, C.; Thuringer, R.; Sandner, C.; Wohlmuth, H.D.; Berry, M.; Scholtz, A.L. 17 GHz transceiver design in 0.13-μm CMOS. In Proceedings of the IEEE Radio Frequency Integrated Circuits (RFIC) Symposium-Digest of Papers, Long Beach, CA, USA, 12–14 June 2005; pp. 101–104. [Google Scholar]
Ref. | Frequency Technology | Methodology | Result | Remarks |
---|---|---|---|---|
Chiou et al. [16] | 17.5–22.3 @ 90 nm | Current mirror reused topology | CG: −0.62 dB OP1dB: −13 dBm PDC 0.149 mW | Circuit suffers from poor linearity |
Won et al. [17] | 24 @ 130 nm | Adaptive biasing scheme | CG: −1.9 dB OP1dB: 0.3 dBm PDC: 22.8 mW | Circuit gives a small IF bandwidth |
Chen et al. [18] | 27.5–43.5 @ 65 nm | A linearized gm stage using coupled resonators | CG: −5 dB OP1dB: 0.4 dBm PDC: 14 mW | It shows an OP1dB of 0.42 dBm |
Siddique et al. [19] | 24 @ 65 nm | Neutralization technique | CG: 4.7 dB OP1dB of 0.42 dBm PDC: 5.2 mW | Lacking analytical discussion. |
Siddique et al. [20] | 24 @ 65 nm | An I-DS technique | CG: 6.5 dB OP1dB of 0.41 dBm PDC: 4.9 mW | Focused to achieve highly-linear, while ignore the effects of CG. |
Huynh et al. [21] | 24 @ 65 nm | Double balanced Gilbert mixer | CG: 6.5 dB IIP3: 15.3 dBm PDC: 6.8 mW | Has high current of 40 mA |
Lai et al. [22] | 20–26 @ 90 nm | Multi-layer marchand balun | CG: 2 dB IIP3: −14.8 dBm PDC: 11.1 mW | Achieves a CG of 2 dB @ 22.1 GHz |
Verma et al. [23] | 22–29 @ 130 nm | Dual-gate mixer | CG: −2 to−0.7 dB OP1dB: −7 to 5.2 dBm PDC: 8.0 mW | PDC shows almost 8.0 mW |
Qayyum et al. [24] | 24–32 @ 130 nm | Gilbert mixer transformer baluns | CG: 13.7 @ 26.5 dB OP1dB: 1.46 @ 28 PDC 90 mW | High CG, 13 dB @ 28 GHz |
Byeon et al. [25] | 27.5–43.5 @ 65 nm | Complementary DS technique | CG: 11.4 dB OP1dB: 2 dBm PDC: 15 mW | Improves the LO leakage and power capability performances |
Chen et al. [26] | 27.5–43.5 @ 65 nm | Applied TPTS I/p and O/p baluns | CG: −5 dB OP1dB: 0.42 dBm PDC: 14 mW | Impedance matching and linearity is good |
Syu et al. [27] | 27.5–43.5 @ 0.18 m | Utilizing n/pMOS TCAs | CG: −3 dB OP1dB: −11 dBm PDC < 6.8 mW | More DC power is required |
Comeau et al. [28] | 28 @ 0.18 m | Series connected triplet | CG: −0.8 dB IIP3: 2.2 dBm | Accommodates a larger input power, and enhances the SNR. |
Lin et al. [29] | 28.1 @ 0.18 m | Resistive mixer comprises LO boosting linearization technique | CG: −8.5 dB OP1dB: −2.7 dBm PDC: 0 mW | Zero dc power consumtion |
Tsai et al. [30] | 15–34 @ 0.18 m | A weak inversion biasing technique | CG: 3.5 dB OP1dB: −21.2 dBm @ 28 GHz PDC: 2.472 mW | Demonstrates flat CG and low dc power |
Definition | Notation |
---|---|
Main transconductance path | MTP |
Secondary transconductance path | STP |
Duplex transconductance path | DTP |
Improved cross-quad transconductor | ICQT |
Noise fig. | NF |
1-dB compression point | IP1dB |
Output 1-dB compression point | OP1dB |
Conversion gain | CG |
Short-range radar sensor | SRRS |
Millimeter-wavelength | mm-wave |
Local oscillator | LO |
Ultra-wideband | UWB |
Narrowband | NF |
Common source | CS |
IF currents of the MTP | IIFMTP |
IF currents of the STP | IIFSTP |
The total output IF current | IIFt |
Transconductances of MTP | gmMTP |
Transconductances of STP | gmSTP |
Total transconductance | gmt |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delwar, T.S.; Siddique, A.; Biswal, M.R.; Behera, P.; Choi, Y.; Ryu, J.-Y. A 65 nm Duplex Transconductance Path Up-Conversion Mixer for 24 GHz Automotive Short-Range Radar Sensor Applications. Sensors 2022, 22, 594. https://doi.org/10.3390/s22020594
Delwar TS, Siddique A, Biswal MR, Behera P, Choi Y, Ryu J-Y. A 65 nm Duplex Transconductance Path Up-Conversion Mixer for 24 GHz Automotive Short-Range Radar Sensor Applications. Sensors. 2022; 22(2):594. https://doi.org/10.3390/s22020594
Chicago/Turabian StyleDelwar, Tahesin Samira, Abrar Siddique, Manas Ranjan Biswal, Prangyadarsini Behera, Yeji Choi, and Jee-Youl Ryu. 2022. "A 65 nm Duplex Transconductance Path Up-Conversion Mixer for 24 GHz Automotive Short-Range Radar Sensor Applications" Sensors 22, no. 2: 594. https://doi.org/10.3390/s22020594
APA StyleDelwar, T. S., Siddique, A., Biswal, M. R., Behera, P., Choi, Y., & Ryu, J. -Y. (2022). A 65 nm Duplex Transconductance Path Up-Conversion Mixer for 24 GHz Automotive Short-Range Radar Sensor Applications. Sensors, 22(2), 594. https://doi.org/10.3390/s22020594