Colorimetric Sensor Based on Hydroxypropyl Cellulose for Wide Temperature Sensing Range
Abstract
:1. Introduction
2. Materials and Methods
2.1. Principle of HPC Colorimetric Sensor
2.2. Fabrication of HPC Colorimetric Sensor
3. Temperature Sensing of HPC Colorimetric Sensor
4. Properties of Ethylene Glycol-Modulated HPC Colorimetric Sensor
4.1. Principle of Ethylene Glycol-Modulated HPC Colorimetric Sensor
4.2. Quantification of Temperature Sensing of Modulated HPC Colorimetric Sensor
5. Application of HPC Colorimetric Sensors
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, X.; Liu, H.; Fang, Y.; Zhao, C.; Qu, Z.; Wang, Q.; Tu, L.-C. An Integrated Gold-Film Temperature Sensor for In Situ Temperature Measurement of a High-Precision MEMS Accelerometer. Sensors 2020, 20, 3652. [Google Scholar] [CrossRef] [PubMed]
- Sarma, S.; Lee, J.H. Developing Efficient Thin Film Temperature Sensors Utilizing Layered Carbon Nanotube Films. Sensors 2018, 18, 3182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, S.; Li, Q.; Wang, S.; Wang, B.; Hou, Y.; Zhang, T. Tunable Dual Temperature–Pressure Sensing and Parameter Self-Separating Based on Ionic Hydrogel via Multisynergistic Network Design. ACS Appl. Mater. Interfaces 2019, 11, 21049–21057. [Google Scholar] [CrossRef]
- Rivadeneyra, A.; Bobinger, M.; Albrecht, A.; Becherer, M.; Lugli, P.; Falco, A.; Salmerón, J.F. Cost-Effective PEDOT:PSS Temperature Sensors Inkjetted on a Bendable Substrate by a Consumer Printer. Sensors 2020, 20, 824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, J.; Jeong, B.; Kim, J.; Nam, V.B.; Yoon, Y.; Jung, J.; Hong, S.; Lee, H.; Eom, H.; Yeo, J.; et al. Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration. Adv. Mater. 2020, 32, 1905527. [Google Scholar] [CrossRef]
- Shin, J.; Han, S.G.; Lee, S. Dually tunable inverse opal hydrogel colorimetric sensor with fast and reversible color changes. Sens. Actuators B Chem. 2012, 168, 20–26. [Google Scholar] [CrossRef]
- Choe, A.; Yeom, J.; Shanker, R.; Kim, M.P.; Kang, S.; Ko, H. Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film. NGP Asia Mater. 2018, 10, 912–922. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Z.; Wang, Y.; Zhao, Y. Bioinspired conductive cellulose liquid-crystal hydrogels as multifunctional electrical skins. Proc. Natl. Acad. Sci. USA 2020, 117, 18310–18316. [Google Scholar] [CrossRef]
- Choi, J.; Bandodkar, A.J.; Reeder, J.T.; Ray, T.R.; Turnquist, A.; Kim, S.B.; Nyberg, N.; Fargette, A.H.; Model, J.B.; Aranyosi, A.J.; et al. Soft, Skin-Integrated Multifunctional Microfluidic Systems for Accurate Colorimetric Analysis of Sweat Biomarkers and Temperature. ACS Sens. 2019, 4, 379–388. [Google Scholar] [CrossRef]
- Park, C.H.; Yang, H.; Lee, J.; Cho, H.-H.; Kim, D.; Lee, D.C.; Kim, B.J. Multicolor Emitting Block Copolymer-Integrated Graphene Quantum Dots for Colorimetric, Simultaneous Sensing of Temperature, pH, and Metal Ions. Chem. Mater. 2015, 27, 5288–5294. [Google Scholar] [CrossRef]
- Phonchai, N.; Khanantong, C.; Kielar, F.; Traipho, R. Low-Temperature Reversible Thermochromic Polydiacetylene/Zinc(II)/Zinc Oxide Nanocomposites for Colorimetric Sensing. ACS Appl. Nano Mater. 2019, 2, 4489–4498. [Google Scholar] [CrossRef]
- Liu, C.; Yao, C.; Zhu, Y.; Ren, J.; Ge, L. Dually responsive one dimensional photonic crystals with reversible color changes. Sens. Actuators B Chem. 2015, 220, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Xi, Y.; Ke, Y.; Li, W.; Long, Y.; Li, J.; Wang, L.-N.; Zhang, Y. A skin-like stretchable colorimetric temperature sensor. Sci. China Mater. 2018, 61, 969–976. [Google Scholar] [CrossRef]
- Wang, X.; Song, X.; He, C.; Yang, C.J.; Chen, G. Preparation of Reversible Colorimetric Temperature Nanosensors and Their Application in Quantitative Two-Dimensional Thermo-Imaging. Anal. Chem. 2011, 83, 2434–2437. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Tiwari, K.R.; Raghavan, S.R. Biopolymer capsules bearing polydiacetylenic vesicles as colorimetric sensors of pH and temperature. Soft Matter 2011, 7, 3273–3276. [Google Scholar] [CrossRef]
- Liang, H.-L.; Bay, M.M.; Vadrucci, R.; Barty-King, C.H.; Peng, J.; Baumberg, J.J.; De Volder, M.F.L.; Vignolini, S. Roll-to-roll fabrication of touch-responsive cellulose photonic laminates. Nature. Commun. 2018, 9, 4632. [Google Scholar] [CrossRef]
- Yi, H.; Lee, S.-H.; Ko, H.; Lee, D.; Bae, W.-G.; Kim, T.-I.; Hwang, D.S.; Jeong, H.E. Ultra-Adaptable and Wearable Photonic Skin Based on a Shape-Memory, Responsive Cellulose Derivative. Adv. Funct. Mater. 2019, 29, 1902720. [Google Scholar] [CrossRef]
- Werbowyj, R.S.; Gray, D.G. Optical Properties of (Hydroxypropyl) cellulose Liquid Crystals. Cholesteric Pitch and Polymer Concentration. Macromolecules 1984, 17, 1512–1520. [Google Scholar] [CrossRef]
- Kamita, G.; Frka-Petesic, B.; Allard, A.; Dargaud, M.; King, K.; Dumanli, A.G.; Vignolini, S. Biocompatible and sustainable optical strain sensors for large-area applications. Adv. Opt. Mater. 2016, 4, 1950–1954. [Google Scholar] [CrossRef]
- Anyfantakis, M.; Jampani, V.S.R.; Kizhakidathazhath, R.; Binks, B.P.; Lagerwall, J.P.F. Responsive Photonic Liquid Marbles. Angew. Chem. Int. Ed. 2020, 132, 19422–19429. [Google Scholar] [CrossRef]
- Balcerzak, J.; Mucha, M. Study of Adsorption and Desorption Heats of Water in Chitosan and its Blends with Hydroxypropylcellulose. Mol. Cryst. Liq. 2008, 48, 99–106. [Google Scholar] [CrossRef]
- Guido, S. Phase behavior of Aqueous Solutions of Hydroxypropylcellulose. Macromolecules 1995, 28, 4530–4539. [Google Scholar] [CrossRef]
- Peyghambarzadeh, S.M.; Hashemabadi, S.H.; Hoseini, S.M.; Seifi Jamnani, M. Experimental Study of Heat Transfer Enhancement Using Water/Ethylene Glycol Based Nanofluidsas a New Coolant for Car Radiators. Int. Commun. Heat Mass Transf. 2011, 38, 1283–1290. [Google Scholar] [CrossRef]
- Azmi Roslan, A.M.; Tukiman, N.; Ibrahim, N.N.; Juanil, A.R. Heat and Mass Transfer, The Effects of Ethylene Glycol to Ultrapure Water on Its Specific Heat Capacity and Freezing Point. J. Appl. Environ. Biol. Sci. 2017, 7, 54–60. [Google Scholar]
- Miyagi, K.; Teramoto, Y. Construction of Functional Materials in Various Material Forms from Cellulosic Cholesteric Liquid Crystals. Nanomaterials 2021, 11, 2969. [Google Scholar] [CrossRef]
Temperature (°C) | Red | Green | Blue |
---|---|---|---|
0 | 20 | 83 | 173 |
5 | 15 | 133 | 147 |
10 | 75 | 170 | 111 |
15 | 158 | 167 | 36 |
20 | 187 | 137 | 9 |
25 | 192 | 120 | 67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, H.; Lee, S.-H.; Kim, D.; Jeong, H.E.; Jeong, C. Colorimetric Sensor Based on Hydroxypropyl Cellulose for Wide Temperature Sensing Range. Sensors 2022, 22, 886. https://doi.org/10.3390/s22030886
Yi H, Lee S-H, Kim D, Jeong HE, Jeong C. Colorimetric Sensor Based on Hydroxypropyl Cellulose for Wide Temperature Sensing Range. Sensors. 2022; 22(3):886. https://doi.org/10.3390/s22030886
Chicago/Turabian StyleYi, Hoon, Sang-Hyeon Lee, Dana Kim, Hoon Eui Jeong, and Changyoon Jeong. 2022. "Colorimetric Sensor Based on Hydroxypropyl Cellulose for Wide Temperature Sensing Range" Sensors 22, no. 3: 886. https://doi.org/10.3390/s22030886
APA StyleYi, H., Lee, S. -H., Kim, D., Jeong, H. E., & Jeong, C. (2022). Colorimetric Sensor Based on Hydroxypropyl Cellulose for Wide Temperature Sensing Range. Sensors, 22(3), 886. https://doi.org/10.3390/s22030886