The Validity of the Energy Expenditure Criteria Based on Open Source Code through two Inertial Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Devices
2.3. R-Code Development
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kinoshita, K.; Ozato, N.; Yamaguchi, T.; Sudo, M.; Yamashiro, Y.; Mori, K.; Ishida, M.; Katsuragi, Y.; Sasai, H.; Yasukawa, T.; et al. Association of sedentary behaviour and physical activity with cardiometabolic health in Japanese adults. Sci. Rep. 2022, 12, 2262. [Google Scholar] [CrossRef]
- Curran, F.; Blake, C.; Cunningham, C.; Perrotta, C.; van der Ploeg, H.; Matthews, J.; O’Donoghue, G. Efficacy, characteristics, behavioural models and behaviour change strategies, of non-workplace interventions specifically targeting sedentary behaviour; a systematic review and meta-analysis of randomised control trials in healthy ambulatory adults. PLoS ONE 2021, 16, e0256828. [Google Scholar] [CrossRef]
- Martín-Martín, J.; Roldán-Jiménez, C.; De-Torres, I.; Muro-Culebras, A.; Escriche-Escuder, A.; Gonzalez-Sanchez, M.; Ruiz-Muñoz, M.; Mayoral-Cleries, F.; Biró, A.; Tang, W.; et al. Behavior Change Techniques and the Effects Associated with Digital Behavior Change Interventions in Sedentary Behavior in the Clinical Population: A Systematic Review. Front. Digit. Health 2021, 3, 620383. [Google Scholar] [CrossRef] [PubMed]
- Creaser, A.V.; Clemes, S.A.; Costa, S.; Hall, J.; Ridgers, N.D.; Barber, S.E.; Bingham, D.D. The Acceptability, Feasibility, and Effectiveness of Wearable Activity Trackers for Increasing Physical Activity in Children and Adolescents: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 6211. [Google Scholar] [CrossRef] [PubMed]
- Saeidifard, F.; Medina-Inojosa, J.R.; Supervia, M.; Olson, T.P.; Somers, V.K.; Erwin, P.J.; Lopez-Jimenez, F. Differences of energy expenditure while sitting versus standing: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2018, 25, 522–538. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R., Jr.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A Second Update of Codes and MET Values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrne, N.M.; Hills, A.P.; Hunter, G.R.; Weinsier, R.L.; Schutz, Y. Metabolic equivalent: One size does not fit all. J. Appl. Physiol. 2005, 99, 1112–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weir, J.B.D.B. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Plasqui, G.; Bonomi, A.G.; Westerterp, K.R. Daily physical activity assessment with accelerometers: New insights and validation studies. Obes. Rev. 2013, 14, 451–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montoye, A.H.K.; Moore, R.W.; Bowles, H.R.; Korycinski, R.; Pfeiffer, K.A. Reporting accelerometer methods in physical activity intervention studies: A systematic review and recommendations for authors. Br. J. Sports Med. 2018, 52, 1507–1516. [Google Scholar] [CrossRef]
- Lyden, K.; Kozey, S.L.; Staudenmeyer, J.W.; Freedson, P.S. A comprehensive evaluation of commonly used accelerometer energy expenditure and MET prediction equations. Eur. J. Appl. Physiol. 2011, 111, 187–201. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Wen, D.; Liang, L.; Jia, Y.; Gao, L.; Lei, J. Evaluating the Validity of Current Mainstream Wearable Devices in Fitness Tracking Under Various Physical Activities: Comparative Study. JMIR mHealth uHealth 2018, 6, e94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrahi, V.; Niemelä, M.; Kangas, M.; Korpelainen, R.; Jämsä, T. Calibration and validation of accelerometer-based activity monitors: A systematic review of machine-learning approaches. Gait Posture 2019, 68, 285–299. [Google Scholar] [CrossRef] [PubMed]
- O’Driscoll, R.; Turicchi, J.; Hopkins, M.; Horgan, G.W.; Finlayson, G.; Stubbs, J.R. Improving energy expenditure estimates from wearable devices: A machine learning approach. J. Sports Sci. 2020, 38, 1496–1505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponce, D.; de Goes, C.R.; de Andrade, L.G.M. Proposal of a new equation for estimating resting energy expenditure of acute kidney injury patients on dialysis: A machine learning approach. Nutr. Metab. 2020, 17, 96. [Google Scholar] [CrossRef] [PubMed]
- Evenson, K.R.; Goto, M.M.; Furberg, R.D. Systematic review of the validity and reliability of consumer-wearable activity trackers. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henrikisen, A.; Johansson, J.; Hartvigsen, G.; Grimsgaard, S.; Hopstock, L. Measuring Physical Activity Using Triaxial Wrist Worn Polar Activity Trackers: A Systematic Review. Int. J. Exerc. Sci. 2020, 13, 438–454. [Google Scholar]
- Shcherbina, A.; Mattsson, C.M.; Waggott, D.; Salisbury, H.; Christle, J.W.; Hastie, T.; Wheeler, M.T.; Ashley, E.A. Accuracy in Wrist-Worn, Sensor-Based Measurements of Heart Rate and Energy Expenditure in a Diverse Cohort. J. Pers. Med. 2017, 7, 3. [Google Scholar] [CrossRef]
- Slade, P.; Kochenderfer, M.J.; Delp, S.L.; Collins, S.H. Sensing leg movement enhances wearable monitoring of energy expenditure. Nat. Commun. 2021, 12, 4312. [Google Scholar] [CrossRef] [PubMed]
- Santos-Lozano, A.; Santín-Medeiros, F.; Cardon, G.; Torres-Luque, G.; Bailón, R.; Bergmeir, C.; Ruiz, J.R.; Lucia, A.; Garatachea, N. Actigraph GT3X: Validation and Determination of Physical Activity Intensity Cut Points. Int. J. Sports Med. 2013, 34, 975–982. [Google Scholar] [CrossRef]
- Duncan, M.J.; Wilson, S.; Tallis, J.; Eyre, E. Validation of the Phillips et al. GENEActiv accelerometer wrist cut-points in children aged 5–8 years old. Eur. J. Pediatr. 2016, 175, 2019–2021. [Google Scholar] [CrossRef]
- McClain, J.J.; Hart, T.L.; Getz, R.S.; Tudor-Locke, C. Convergent Validity of 3 Low Cost Motion Sensors With the ActiGraph Accelerometer. J. Phys. Act. Health 2010, 7, 662–670. [Google Scholar] [CrossRef] [PubMed]
- Esliger, D.W.; Rowlands, A.; Hurst, T.L.; Catt, M.; Murray, P.; Eston, R. Validation of the GENEA Accelerometer. Med. Sci. Sports Exerc. 2011, 43, 1085–1093. [Google Scholar] [CrossRef] [Green Version]
- Romanzini, M.; Petroski, E.L.; Ohara, D.; Dourado, A.C.; Reichert, F.F. Calibration of ActiGraph GT3X, Actical and RT3 accelerometers in adolescents. Eur. J. Sport Sci. 2014, 14, 91–99. [Google Scholar] [CrossRef] [PubMed]
- John, D.; Sasaki, J.; Hickey, A.; Mavilia, M.; Freedson, P.S. ActiGraph™ Activity Monitors: “The Firmware Effect”. Med. Sci. Sports Exerc. 2014, 46, 834–839. [Google Scholar] [CrossRef] [PubMed]
- Asimina, S.; Chapizanis, D.; Karakitsios, S.; Kontoroupis, P.; Asimakopoulos, D.N.; Maggos, T.; Sarigiannis, D. Assessing and enhancing the utility of low-cost activity and location sensors for exposure studies. Environ. Monit. Assess. 2018, 190, 155. [Google Scholar] [CrossRef] [PubMed]
- ActiGraph Link. ActiGraph. Available online: https://www.actigraphcorp.com/actigraph-link/ (accessed on 25 September 2019).
- Sensor ID—Proximity Wireless Technologies Made in Italy. Available online: http://www.sensorid.it/ (accessed on 25 September 2019).
- LIS2DH12. Available online: https://www.st.com/content/st_com/en/products/mems-and-sensors/accelerometers/lis2dh12.html (accessed on 25 September 2019).
- Crouter, S.E.; Kuffel, E.; Haas, J.D.; Frongillo, E.A.; Bassett, D.R. Refined Two-Regression Model for the ActiGraph Accelerometer. Med. Sci. Sports Exerc. 2010, 42, 1029–1037. [Google Scholar] [CrossRef] [Green Version]
- Brønd, J.C.; Andersen, L.B.; Arvidsson, D. Generating ActiGraph Counts from Raw Acceleration Recorded by an Alternative Monitor. Med. Sci. Sports Exerc. 2017, 49, 2351–2360. [Google Scholar] [CrossRef] [PubMed]
- Freedson, P.S.; Melanson, E.; Sirard, J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med. Sci. Sports Exerc. 1998, 30, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, J.E.; John, D.; Freedson, P.S. Validation and comparison of ActiGraph activity monitors. J. Sci. Med. Sport 2011, 14, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar-Farias, N.; Peeters, G.M.E.E.G.; Brychta, R.J.; Chen, K.Y.; Brown, W.J. Comparing ActiGraph equations for estimating energy expenditure in older adults. J. Sports Sci. 2019, 37, 188–195. [Google Scholar] [CrossRef]
- Ingraham, K.A.; Ferris, D.P.; Remy, C.D. Evaluating physiological signal salience for estimating metabolic energy cost from wearable sensors. J. Appl. Physiol. 2019, 126, 717–729. [Google Scholar] [CrossRef] [PubMed]
- Nagayoshi, S.; Oshima, Y.; Ando, T.; Aoyama, T.; Nakae, S.; Usui, C.; Kumagai, S.; Tanaka, S. Validity of estimating physical activity intensity using a triaxial accelerometer in healthy adults and older adults. BMJ Open Sport Exerc. Med. 2019, 5, e000592. [Google Scholar] [CrossRef] [PubMed]
- O’Driscoll, R.; Turicchi, J.; Beaulieu, K.; Scott, S.; Matu, J.; Deighton, K.; Finlayson, G.; Stubbs, R.J. How well do activity monitors estimate energy expenditure? A systematic review and meta-analysis of the validity of current technologies. Br. J. Sports Med. 2018, 54, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-H.; Lin, K.-C.; Ho, C.-S.; Huang, C.-C. Accuracy of the energy expenditure during uphill exercise measured by the Waist-worn ActiGraph. J. Exerc. Sci. Fit. 2019, 17, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.-S.; Chang, C.-H.; Lin, K.-C.; Huang, C.-C.; Hsu, Y.-J. Correction of estimation bias of predictive equations of energy expenditure based on wrist/waist-mounted accelerometers. PeerJ 2019, 7, e7973. [Google Scholar] [CrossRef]
- Yano, S.; Koohsari, M.J.; Shibata, A.; Ishii, K.; Frehlich, L.; McCormack, G.R.; Oka, K. Physical Activity and Sedentary Behavior Assessment: A Laboratory-Based Evaluation of Agreement between Commonly Used ActiGraph and Omron Accelerometers. Int. J. Environ. Res. Public Health 2019, 16, 3126. [Google Scholar] [CrossRef] [Green Version]
- Ellis, K.; Kerr, J.; Godbole, S.; Lanckriet, G.; Wing, D.; Marshall, S. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers. Physiol. Meas. 2014, 35, 2191–2203. [Google Scholar] [CrossRef]
- White, T.; Westgate, K.; Hollidge, S.; Venables, M.; Olivier, P.; Wareham, N.; Brage, S. Estimating energy expenditure from wrist and thigh accelerometry in free-living adults: A doubly labelled water study. Int. J. Obes. 2019, 43, 2333–2342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Project. The R Project for Statistical Computing. Available online: http://www.r-project.org/ (accessed on 3 April 2020).
- Omar, A.; Shaghayegh, Z.; Aerin, P.; Chul-Gyu, T.; Edward, J.P. Improving Energy Expenditure Estimation through Activity Classification and Walking Speed Estimation Using a Smartwatch. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Montreal, QC, Canada, 20–24 July 2020. [Google Scholar]
- Sama, A.J.; Hillstrom, H.; Daluiski, A.; Wolff, A. Reliability and agreement between two wearable inertial sensor devices for measurement of arm activity during walking and running gait. J. Hand Ther. 2022, 35, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Dibben, G.O.; Gandhi, M.M.; Taylor, R.S.; Dalal, H.M.; Metcalf, B.; Doherty, P.; Tang, L.H.; Kelson, M.; Hillsdon, M. Physical activity assessment by accelerometry in people with heart failure. BMC Sports Sci. Med. Rehabil. 2020, 12, 47. [Google Scholar] [CrossRef] [PubMed]
Freedson et al. 1998 [32] | ||
Crouter et al. 2010 [30] | Walking/Running | |
Santos-Lozano et al. VT 2013 [20] | Adults | |
Santos-Lozano et al. VM 2013 [20] | Adults | |
Sasaki et al. 2011 [33] | ||
Correction_METs | Female | |
Male | ||
Corrected | ||
: vertical axis; : vector of magnitude; : activity counts on vertical axis, counts per min; : activity counts on vertical axis, counts per 10 s; This is a special for Crouter et al. 2010; : activity counts on vector of magnitude (three axes), counts per min; : body mass (kg); : cm; : year; : female, : male. |
Speed | Crombach’s Standardised Items | Energy Expenditure Calculation System | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Freedson et al. 1998 [32] | Crouter et al. 2010 [30] | Santos-Lozano et al. VT 2013 [20] | Santos-Lozano et al. VM 2013 [20] | Sasaki et al. 2011 [33] | Corrected Freedson et al. 1998 [32] | Corrected Crouter et al. 2010 [30] | Corrected Santos-Lozano et al. VT 2013 [20] | Corrected Santos-Lozano et al. VM 2013 [20] | Corrected Sasaki et al. 2011 [33] | ||
1.4 km/h | 0.918 | 0.997 | 0.723 | 0.997 | 0.928 | −0.331 | 0.997 | 0.651 | 0.997 | 0.904 | 0.457 |
2.9 km/h | 0.992 | 0.992 | 0.941 | 0.994 | 0.928 | 0.979 | 0.993 | 0.800 | 0.994 | 0.958 | 0.926 |
4.3km/h | 0.982 | 0.935 | 0.835 | 0.951 | 0.957 | 0.929 | 0.932 | 0.932 | 0.950 | 0.957 | 0.929 |
5 km/h | 0.957 | 0.956 | 0.956 | 0.983 | 0.915 | 0.744 | 0.985 | 0.991 | 0.983 | 0.899 | 0.875 |
6 km/h | 0.850 | 0.951 | 0.958 | 0.946 | 0.518 | −0.005 | 0.957 | 0.968 | 0.956 | 0.110 | −0.310 |
6.5 km/h | 0.943 | 0.957 | 0.944 | 0.961 | 0.146 | 0.010 | 0.957 | 0.948 | 0.963 | −0.119 | −0.019 |
7 km/h | 0.955 | 0.941 | 0.931 | 0.936 | −0.359 | −0.157 | 0.962 | 0.949 | 0.960 | −0.357 | −0.015 |
8 km/h | 0.961 | 0.865 | 0.879 | 0.846 | −0.151 | 0.015 | 0.871 | 0.861 | 0.841 | −0.138 | 0.177 |
9 km/h | 0.940 | 0.989 | 0.989 | 0.989 | −0.613 | −0.709 | 0.991 | 0.991 | 0.989 | −0.301 | 0.032 |
10 km/h | 0.961 | 0.865 | 0.819 | 0.858 | −0.366 | −0.361 | 0.959 | 0.897 | 0.933 | 0.148 | 0.225 |
MEAN | 0.946 | 0.945 | 0.898 | 0.946 | 0.391 | 0.111 | 0.960 | 0.899 | 0.957 | 0.306 | 0.328 |
Speed | Crombach’s Standardised Items | Energy Expenditure Calculation System | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Freedson et al. 1998 [32] | Crouter et al. 2010 [30] | Santos-Lozano et al. VT 2013 [20] | Santos-Lozano et al. VM 2013 [20] | Sasaki et al. 2011 [33] | Corrected Freedson et al. 1998 [32] | Corrected Crouter et al. 2010 [30] | Corrected Santos-Lozano et al. VT 2013 [20] | Corrected Santos-Lozano et al. VM 2013 [20] | Corrected Sasaki et al. 2011 [33] | ||
1.4 km/h | 0.887 | 0.990 | 0.987 | 0.997 | 0.804 | −0.689 | 0.982 | 0.999 | 0.995 | −0.007 | −0.260 |
2.9 km/h | 0.993 | 0.989 | 0.993 | 0.994 | 0.915 | 0.879 | 0.989 | 0.994 | 0.994 | 0.913 | 0.881 |
4.3 km/h | 0.993 | 0.994 | 0.995 | 0.993 | 0.721 | 0.541 | 0.995 | 0.996 | 0.994 | 0.726 | 0.608 |
5 km/h | 0.974 | 0.986 | 0.990 | 0.981 | 0.195 | −0.176 | 0.989 | 0.991 | 0.987 | −0.035 | −0.279 |
6 km/h | 0.953 | 0.950 | 0.955 | 0.949 | −0.198 | −0.361 | 0.968 | 0.968 | 0.964 | −0.607 | −0.544 |
6.5 km/h | 0.954 | 0.996 | 0.996 | 0.989 | −0.327 | −0.441 | 0.989 | 0.987 | 0.984 | −0.702 | −0.555 |
7 km/h | 0.716 | 0.916 | 0.930 | 0.897 | 0.139 | −0.071 | 0.952 | 0.953 | 0.947 | −0.763 | −0.660 |
8km/h | 0.939 | 0.973 | 0.979 | 0.968 | 0.288 | 0.297 | 0.982 | 0.984 | 0.981 | −0.138 | 0.139 |
9 km/h | 0.966 | 0.955 | 0.962 | 0.947 | 0.756 | 0.921 | 0.965 | 0.965 | 0.960 | 0.642 | 0.781 |
10 km/h | 0.979 | 0.967 | 0.977 | 0.961 | 0.630 | 0.654 | 0.978 | 0.983 | 0.976 | 0.194 | 0.330 |
MEAN | 0.935 | 0.972 | 0.976 | 0.968 | 0.392 | 0.155 | 0.979 | 0.982 | 0.978 | 0.022 | 0.044 |
Speed | Crombach’s Standardized Items | Energy Expenditure Calculation System | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Freedson et al. 1998 [32] | Crouter et al. 2010 [30] | Santos-Lozano et al. VT 2013 [20] | Santos-Lozano et al. VM 2013 [20] | Sasaki et al. 2011 [33] | Corrected Freedson et al. 1998 [32] | Corrected Crouter et al. 2010 [30] | Corrected Santos-Lozano et al. VT 2013 [20] | Corrected Santos-Lozano et al. VM 2013 [20] | Corrected Sasaki et al. 2011 [33] | ||
1.4 km/h | 0.853 | −0.352 | −0.760 | 0.331 | 0.802 | 0.437 | −0.468 | −0.675 | 0.051 | 0.673 | 0.455 |
2.9 km/h | 0.961 | −0.143 | −0.057 | 0.259 | 0.819 | 0.749 | 0.042 | 0.098 | 0.245 | 0.822 | 0.771 |
4.3 km/h | 0.944 | −0.237 | −0.064 | 0.076 | 0.785 | 0.649 | −0.107 | 0.230 | 0.066 | 0.690 | 0.654 |
5 km/h | 0.948 | −0.018 | −0.022 | 0.185 | 0.529 | 0.473 | 0.173 | 0.272 | 0.284 | 0.549 | 0.632 |
6 km/h | 0.946 | 0.050 | 0.068 | 0.187 | 0.404 | 0.484 | 0.194 | 0.232 | 0.275 | 0.612 | 0.710 |
6.5 km/h | 0.755 | −0.368 | −0.420 | −0.037 | 0.053 | 0.344 | −0.212 | −0.217 | −00.30 | 0.257 | 0.521 |
7 km/h | 0.923 | −0.293 | −0.296 | −0.232 | 0.819 | 0.843 | −0.330 | −0.292 | −0.332 | 0.709 | 0.796 |
8 km/h | 0.957 | 0.243 | 0.227 | 0.144 | 0.508 | 0.542 | 0.501 | 0.368 | 0.447 | 0.279 | 0.419 |
9 km/h | 0.929 | 0.034 | 0.056 | −0.119 | −0.073 | −0.008 | 0.339 | 0.230 | 0.280 | −0.257 | −0.099 |
10 km/h | 0.922 | 0.243 | 0.251 | 0.198 | −0.585 | −0.533 | 0.384 | 0.321 | 0.315 | −0.583 | −0.496 |
MEAN | 0.921 | −0.084 | −0.102 | 0.099 | 0.406 | 0.398 | 0.052 | 0.057 | 0.133 | 0.375 | 0.436 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Martín, J.; Wang, L.; De-Torres, I.; Escriche-Escuder, A.; González-Sánchez, M.; Muro-Culebras, A.; Roldán-Jiménez, C.; Ruiz-Muñoz, M.; Mayoral-Cleries, F.; Biró, A.; et al. The Validity of the Energy Expenditure Criteria Based on Open Source Code through two Inertial Sensors. Sensors 2022, 22, 2552. https://doi.org/10.3390/s22072552
Martín-Martín J, Wang L, De-Torres I, Escriche-Escuder A, González-Sánchez M, Muro-Culebras A, Roldán-Jiménez C, Ruiz-Muñoz M, Mayoral-Cleries F, Biró A, et al. The Validity of the Energy Expenditure Criteria Based on Open Source Code through two Inertial Sensors. Sensors. 2022; 22(7):2552. https://doi.org/10.3390/s22072552
Chicago/Turabian StyleMartín-Martín, Jaime, Li Wang, Irene De-Torres, Adrian Escriche-Escuder, Manuel González-Sánchez, Antonio Muro-Culebras, Cristina Roldán-Jiménez, María Ruiz-Muñoz, Fermín Mayoral-Cleries, Attila Biró, and et al. 2022. "The Validity of the Energy Expenditure Criteria Based on Open Source Code through two Inertial Sensors" Sensors 22, no. 7: 2552. https://doi.org/10.3390/s22072552
APA StyleMartín-Martín, J., Wang, L., De-Torres, I., Escriche-Escuder, A., González-Sánchez, M., Muro-Culebras, A., Roldán-Jiménez, C., Ruiz-Muñoz, M., Mayoral-Cleries, F., Biró, A., Tang, W., Nikolova, B., Salvatore, A., & Cuesta-Vargas, A. I. (2022). The Validity of the Energy Expenditure Criteria Based on Open Source Code through two Inertial Sensors. Sensors, 22(7), 2552. https://doi.org/10.3390/s22072552