Non-Invasive Muscular Atrophy Causes Evaluation for Limb Fracture Based on Flexible Surface Electromyography System
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Overview
2.2. Design and Fabrication of the Sensor
2.3. In Vitro Tests
2.4. In Vivo Tests
2.4.1. Verification of the FSES System on Rats
Animals
Data Acquisition
Feature Extraction
Machine-Learning Algorithms
Performance Metric for Classifier
2.4.2. Clinical Applications
2.4.3. Statistical Analysis
3. Results
3.1. Flexibility and Reliability of FSES System
3.2. In Vivo Tests on Rats
3.2.1. Traditional Diagnosis
3.2.2. Statistical Features for Nerve-Injury and Limb Immobilization Rats’ EMG Signals
3.2.3. Classification with Features
3.3. Clinical Application on Patients
3.3.1. Statistical Features for Nerve-Injury and Limb Immobilization Patients’ EMG Signals
3.3.2. Classification with Features
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bodine, S.C. Disuse-induced muscle wasting. Int. J. Biochem. Cell Biol. 2013, 45, 2200–2208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudrappa, S.S.; Wilkinson, D.J.; Greenhaff, P.L.; Kenneth, S.; Iskandar, I.; Atherton, P.J. Human Skeletal Muscle Disuse Atrophy: Effects on Muscle Protein Synthesis, Breakdown, and Insulin Resistance—A Qualitative Review. Front. Physiol. 2016, 7, 361. [Google Scholar] [CrossRef] [PubMed]
- Mirzoev, T.M. Skeletal Muscle Recovery from Disuse Atrophy: Protein Turnover Signaling and Strategies for Accelerating Muscle Regrowth. Int. J. Mol. Sci. 2020, 21, 7940. [Google Scholar] [CrossRef] [PubMed]
- Atherton, P.J.; Greenhaff, P.L.; Phillips, S.M.; Bodine, S.C.; Adams, C.M.; Lang, C.H. Control of skeletal muscle atrophy in response to disuse: Clinical/preclinical contentions and fallacies of evidence. Am. J. Physiol. Endocrinol. Metab. 2016, 311, E594–E604. [Google Scholar] [CrossRef] [Green Version]
- Ferrando, A.A.; Stuart, C.A.; Brunder, D.G.; Hillman, G.R. Magnetic resonance imaging quantitation of changes in muscle volume during 7 days of strict bed rest. Aviat. Space Environ. Med. 1995, 66, 976–981. [Google Scholar] [PubMed]
- Lee, D.H.; Claussen, G.C.; Oh, S. Clinical Nerve Conduction and Needle Electromyography Studies. J. Am. Acad. Orthop. Surg. 2004, 12, 276–287. [Google Scholar] [CrossRef]
- O’Bryan, R.; Kincaid, J. Nerve Conduction Studies: Basic Concepts and Patterns of Abnormalities. Neurol. Clin. 2021, 39, 897–917. [Google Scholar] [CrossRef]
- Siao, P.; Kaku, M. A Clinician’s Approach to Peripheral Neuropathy. Semin. Neurol. 2019, 39, 519–530. [Google Scholar] [CrossRef]
- Dy, C.J.; Colorado, B.S.; Landau, A.J.; Brogan, D.M. Interpretation of Electrodiagnostic Studies: How to Apply It to the Practice of Orthopaedic Surgery. J. Am. Acad. Orthop. Surg. 2021, 29, e646–e654. [Google Scholar] [CrossRef]
- Coelho, N.A.; Landucci, P.E.; Da, S.; Raquel, S.; Losso, L.; Grassi, S.A.; De, F.; Rolf, G.J.A.C.B.S.B.P.D.P.E.C. Tibial and fibular nerves evaluation using intraoperative electromyography in rats. Acta Cirúrgica Bras. 2016, 31, 542–548. [Google Scholar]
- Cushman, D.M.; Strenn, Q.; Elmer, A.; Yang, A.J.; Onofrei, L. Complications Associated With Electromyography: A Systematic Review. Am. J. Phys. Med. Rehabil. 2020, 99, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Higashihara, M.; Sonoo, M.; Yamamoto, T.; Nagashima, Y.; Uesugi, H.; Terao, Y.; Ugawa, Y.; Stålberg, E.; Tsuji, S. Evaluation of spinal and bulbar muscular atrophy by the clustering index method. Muscle Nerve 2011, 44, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Meigal, A.I.; Rissanen, S.; Tarvainen, M.P.; Karjalainen, P.A.; Iudina-Vassel, I.A.; Airaksinen, O.; Kankaanpää, M. Novel parameters of surface EMG in patients with Parkinson’s disease and healthy young and old controls. J. Electromyogr. Kinesiol. 2009, 19, e206–e213. [Google Scholar] [CrossRef] [PubMed]
- Rissanen, S.M.; Kankaanpää, M.; Meigal, A.; Tarvainen, M.P.; Nuutinen, J.; Tarkka, I.M.; Airaksinen, O.; Karjalainen, P. Surface EMG and acceleration signals in Parkinson’s disease: Feature extraction and cluster analysis. Med. Biol. Eng. Comput. 2008, 46, 849–858. [Google Scholar] [CrossRef]
- Zhang, X.; Barkhaus, P.E.; Rymer, W.Z.; Zhou, P. Machine Learning for Supporting Diagnosis of Amyotrophic Lateral Sclerosis Using Surface Electromyogram. IEEE Trans. Neural. Syst. Rehabil. Eng. 2014, 22, 96–103. [Google Scholar] [CrossRef]
- Hogrel, J.-Y. Clinical applications of surface electromyography in neuromuscular disorders. Neurophysiol. Clin. Neurophysiol. 2005, 35, 59–71. [Google Scholar] [CrossRef]
- Kumar, A.; Pahuja, S.K.; Singh, A. Real time monitoring of muscle fatigue and muscle disorder of biceps brachii using Surface Electromyography (sEMG). In Proceedings of the 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), Jalandhar, India, 15–17 December 2018; pp. 401–405. [Google Scholar] [CrossRef]
- Cleland, J.C.; Logigian, E.L. Clinical evaluation of membrane excitability in muscle channel disorders: Potential applications in clinical trials. Neurotherapeutics 2007, 4, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Heatwole, C.R.; Statland, J.M.; Logigian, E.L. The diagnosis and treatment of myotonic disorders. Muscle Nerve 2013, 47, 632–648. [Google Scholar] [CrossRef]
- Arikidis, N.S.; Abel, E.W.; Forster, A. Interscale wavelet maximum—A fine to coarse algorithm for wavelet analysis of the EMG interference pattern. IEEE Trans. Biomed. Eng. 2002, 49, 337–344. [Google Scholar] [CrossRef]
- Swaroop, R.; Kaur, M.; Suresh, P.; Sadhu, P.K. Classification of myopathy and neuropathy EMG signals using neural network. In Proceedings of the 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT), Kollam, India, 20–21 April 2017; pp. 1–5. [Google Scholar]
- Song, W.; Han, Q.; Lin, Z.; Yan, N.; Luo, D.; Liao, Y.; Zhang, M.; Wang, Z.; Xie, X.; Wang, A.; et al. Design of a Flexible Wearable Smart sEMG Recorder Integrated Gradient Boosting Decision Tree Based Hand Gesture Recognition. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1563–1574. [Google Scholar] [CrossRef]
- Doulah, A.B.M.S.U.; Fattah, S.A.; Zhu, W.-P.; Ahmad, M.O. Wavelet Domain Feature Extraction Scheme Based on Dominant Motor Unit Action Potential of EMG Signal for Neuromuscular Disease Classification. IEEE Trans. Biomed. Circuits Syst. 2014, 8, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Pei, X.C.; Jin, H.; Dong, S.R.; Lou, D.; Ma, L.; Wang, X.G.; Cheng, W.W.; Wong, H. Flexible wireless skin impedance sensing system for wound healing assessment. Vacuum 2019, 168, 108808. [Google Scholar] [CrossRef]
- Guo, B.-S.; Cheung, K.-K.; Yeung, S.S.; Zhang, B.-T.; Yeung, E.W. Electrical Stimulation Influences Satellite Cell Proliferation and Apoptosis in Unloading-Induced Muscle Atrophy in Mice. PLoS ONE 2012, 7, e30348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwarts, M.J.; Drost, G.; Stegeman, D.F. Recent progress in the diagnostic use of surface EMG for neurological diseases. J. Electromyogr. Kinesiol. 2000, 10, 287–291. [Google Scholar] [CrossRef]
- Chen, W.; Wang, Z.; Xie, H.; Yu, W. Characterization of Surface EMG Signal Based on Fuzzy Entropy. IEEE Trans. Neural. Syst. Rehabil. Eng. 2007, 15, 266–272. [Google Scholar] [CrossRef]
- Istenič, R.; Kaplanis, P.A.; Pattichis, C.S.; Zazula, D. Multiscale entropy-based approach to automated surface EMG classification of neuromuscular disorders. Med. Biol. Eng. Comput. 2010, 48, 773–781. [Google Scholar] [CrossRef]
- Liu, Y.; Kankaanpää, M.; Zbilut, J.P.; Webber, J.C.L. EMG recurrence quantifications in dynamic exercise. Biol. Cybern. 2004, 90, 337–348. [Google Scholar] [CrossRef]
- Boser, B.E. A Training Algorithm for Optimal Margin Classifiers. Proc. Annu. Acm Workshop Comput. Learn. Theory 2008, 5, 144–152. [Google Scholar]
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K. xgboost: Extreme Gradient Boosting. 2016. Available online: https://cran.microsoft.com/snapshot/2017-12-11/web/packages/xgboost/vignettes/xgboost.pdf (accessed on 10 February 2022).
- Chatzimilioudis, G.; Konstantinidis, A.; Zeinalipour-Yazti, D. Nearest Neighbor Queries on Big Data. In Information Granularity, Big Data, and Computational Intelligence; Springer: Cham, Switzerland, 2015; pp. 3–22. [Google Scholar]
Patient No. | Fracture Diagnosis | Tags (Nerve-Injury = 0, Immobility = 1) | Gender |
---|---|---|---|
1 | Tibial plateau fracture | 1 | Male |
2 | Tibial plateau fracture | 0 | Male |
3 | Patella fracture | 1 | Female |
4 | Radial head fracture | 0 | Female |
5 | Patella fracture | 1 | Female |
6 | Rehabilitation failure of elbow fracture | 0 | Female |
7 | Tibial fracture | 1 | Female |
8 | Tibial fracture | 1 | Male |
9 | Distal radius fracture | 1 | Male |
10 | Tibial fracture | 1 | Male |
Classifiers | Accuracy (%) | Specificity (%) | Sensitivity (%) |
---|---|---|---|
XGBoost | 96.67 | 95.28 | 98.98 |
SVM | 95.56 | 95.77 | 95.56 |
KNN | 95.78 | 94.22 | 97.72 |
Classifiers | Accuracy (%) | Specificity (%) | Sensitivity (%) |
---|---|---|---|
XGBoost | 86.74 | 89.72 | 91.94 |
SVM | 85.99 | 87.38 | 85.99 |
KNN | 86.22 | 89.37 | 91.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, X.; Yan, R.; Jiang, G.; Qi, T.; Jin, H.; Dong, S.; Feng, G. Non-Invasive Muscular Atrophy Causes Evaluation for Limb Fracture Based on Flexible Surface Electromyography System. Sensors 2022, 22, 2640. https://doi.org/10.3390/s22072640
Pei X, Yan R, Jiang G, Qi T, Jin H, Dong S, Feng G. Non-Invasive Muscular Atrophy Causes Evaluation for Limb Fracture Based on Flexible Surface Electromyography System. Sensors. 2022; 22(7):2640. https://doi.org/10.3390/s22072640
Chicago/Turabian StylePei, Xiachuan, Ruijian Yan, Guangyao Jiang, Tianyu Qi, Hao Jin, Shurong Dong, and Gang Feng. 2022. "Non-Invasive Muscular Atrophy Causes Evaluation for Limb Fracture Based on Flexible Surface Electromyography System" Sensors 22, no. 7: 2640. https://doi.org/10.3390/s22072640
APA StylePei, X., Yan, R., Jiang, G., Qi, T., Jin, H., Dong, S., & Feng, G. (2022). Non-Invasive Muscular Atrophy Causes Evaluation for Limb Fracture Based on Flexible Surface Electromyography System. Sensors, 22(7), 2640. https://doi.org/10.3390/s22072640