Temporal Synergies Detection in Gait Cyclograms Using Wearable Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Instrumentation
2.3. Experiment Protocol
2.4. Data Preprocessing
2.5. Detection of Temporal Synergies
2.6. Conventional Gait Analysis
3. Results
3.1. PCA Cyclograms
3.2. Temporal Synergies Extracted by KDE
3.3. Comparison of Synergies between Different Speeds in Healthy Subjects
3.4. Comparison of Synergies between Patients and Healthy Subjects
3.5. Comparison of Synergies between Patients before and after Therapy
3.6. Comparison with Conventional Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernstein, N. The Coordination and Regulation of Movements; Pergamon: Oxford, UK, 1967. [Google Scholar]
- Flash, T.; Hogan, N. The coordination of arm movements: An experimentally confirmed mathematical model. J. Neurosci. 1985, 5, 1688–1703. [Google Scholar] [CrossRef] [PubMed]
- Embry, K.R.; Villarreal, D.J.; Macaluso, R.L.; Gregg, R.D. Modeling the Kinematics of Human Locomotion Over Continuously Varying Speeds and Inclines. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 2342–2350. [Google Scholar] [CrossRef] [PubMed]
- Uno, Y.; Kawato, M.; Suzuki, R. Formation and control of optimal trajectory in human multijoint arm movement. Biol. Cybern. 1989, 61, 89–101. [Google Scholar] [CrossRef]
- Hasan, Z. Optimized movement trajectories and joint stiffness in unperturbed, inertially loaded movements. Biol. Cybern. 1986, 53, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, D.A.; Meulenbroek, R.; Vaughan, J.; Jansen, C. Posture-based motion planning: Applications to grasping. Psychol. Rev. 2001, 108, 709–734. [Google Scholar] [CrossRef]
- Oguz, O.S.; Zhou, Z.; Wollherr, D. A Hybrid Framework for Understanding and Predicting Human Reaching Motions. Front. Robot. AI 2018, 5, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- d’Avella, A.; Saltiel, P.; Bizzi, E. Combinations of muscle synergies in the construction of a natural motor behavior. Nat. Neurosci. 2003, 6, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Oshima, H.; Aoi, S.; Funato, T.; Tsujiuchi, N.; Tsuchiya, K. Variant and Invariant Spatiotemporal Structures in Kinematic Coordination to Regulate Speed During Walking and Running. Front. Comput. Neurosci. 2019, 13, 63. [Google Scholar] [CrossRef] [PubMed]
- Popovič, M.; Popovic, D. Cloning biological synergies improves control of elbow neuroprostheses. IEEE Eng. Med. Biol. 2001, 20, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Tagliabue, M.; Ciancio, A.L.; Brochier, T.; Eskiizmirliler, S.; Maier, M.A. Differences between kinematic synergies and muscle synergies during two-digit grasping. Front. Hum. Neurosci. 2015, 9, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esmaeili, S.; Karami, H.; Baniasad, M.; Shojaeefard, M.; Farahmand, F. The association between motor modules and movement primitives of gait: A muscle and kinematic synergy study. J. Biomech. 2022, 134, 110997. [Google Scholar] [CrossRef]
- Ivanenko, Y.P.; Cappellini, G.; Dominici, N.; Poppele, R.E.; Lacquaniti, F. Modular Control of Limb Movements during Human Locomotion. J. Neurosci. 2007, 27, 11149–11161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, B.; Xiong, C.; Chen, W.; Liang, J.; Sun, B.-Y.; Gong, X. Common kinematic synergies of various human locomotor behaviours. R. Soc. Open Sci. 2021, 8, 210161. [Google Scholar] [CrossRef] [PubMed]
- Cech, D.; Martin, S. Functional Movement Development Across the Life Span, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Chiovetto, E.; Berret, B.; Delis, I.; Panzeri, S.; Pozzo, T. Investigating reduction of dimensionality during single-joint elbow movements: A case study on muscle synergies. Front. Comput. Neurosci. 2013, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Clark, D.J.; Ting, L.H.; Zajac, F.E.; Neptune, R.R.; Kautz, S.A. Merging of Healthy Motor Modules Predicts Reduced Locomotor Performance and Muscle Coordination Complexity Post-Stroke. J. Neurophysiol. 2010, 103, 844–857. [Google Scholar] [CrossRef] [Green Version]
- Chvatal, S.A.P.; Ting, L.H.P. Common muscle synergies for balance and walking. Front. Comput. Neurosci. 2013, 7, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanenko, Y.P.; Grasso, R.; Zago, M.; Molinari, M.; Scivoletto, G.; Castellano, V.; Macellari, V.; Lacquaniti, F. Temporal Components of the Motor Patterns Expressed by the Human Spinal Cord Reflect Foot Kinematics. J. Neurophysiol. 2003, 90, 3555–3565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacquaniti, F.; Grasso, R.; Zago, M. Motor patterns in walking. Physiology 1999, 14, 168–174. [Google Scholar] [CrossRef]
- Ivanenko, Y.P.; Poppele, R.E.; Lacquaniti, F. Five basic muscle activation patterns account for muscle activity during human locomotion. J. Physiol. 2004, 556, 267–282. [Google Scholar] [CrossRef] [PubMed]
- Kuiken, T.A.; Lowery, M.; Stoykov, N.S. The effect of subcutaneous fat on myoelectric signal amplitude and cross-talk. Prosthetics Orthot. Int. 2003, 27, 48–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steele, K.M.; Tresch, M.C.; Perreault, E.J. The number and choice of muscles impact the results of muscle synergy analyses. Front. Comput. Neurosci. 2013, 7, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, E.J.; Tester, N.; Kautz, S.; Howland, D.R.; Clark, D.J.; Garvan, C.; Behrman, A.L. Modular control of varied locomotor tasks in children with incomplete spinal cord injuries. J. Neurophysiol. 2013, 110, 1415–1425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woolley, S.M. Characteristics of Gait in Hemiplegia. Top. Stroke Rehabil. 2001, 7, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhtaruzzaman, M.D.; Shafie, A.A.; Khan, M.R. Gait analysis: Systems, technologies, and importance. J. Mech. Med. Biol. 2016, 16, 1630003. [Google Scholar] [CrossRef]
- do Carmo Vilas-Boas, M.; Choupina, H.M.; Rocha, A.P.; Fernandes, J.M.; Cunha, J.P. Full-body motion assessment: Concurrent validation of two body tracking depth sensors versus a gold standard system during gait. J. Biomech. 2019, 87, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Benson, L.C.; Clermont, C.A.; Bošnjak, E.; Ferber, R. The use of wearable devices for walking and running gait analysis outside of the lab: A systematic review. Gait Posture 2018, 63, 124–138. [Google Scholar] [CrossRef] [PubMed]
- Kokolevich, Z.M.; Biros, E.; Tirosh, O.; Reznik, J.E. Distinct Ground Reaction Forces in Gait between the Paretic and Non-Paretic Leg of Stroke Patients: A Paradigm for Innovative Physiotherapy Intervention. Healthcare 2021, 9, 1542. [Google Scholar] [CrossRef] [PubMed]
- Petraglia, F.; Scarcella, L.; Pedrazzi, G.; Brancato, L.; Puers, R.; Costantino, C. Inertial sensors versus standard systems in gait analysis: A systematic review and meta-analysis. Eur. J. Phys. Rehabil. Med. 2019, 55, 265–280. [Google Scholar] [CrossRef] [PubMed]
- Panero, E.; Digo, E.; Dimanico, U.; Alberto Artusi, C.; Zibetti, M.; Gastaldi, L. Effect of Deep Brain Stimulation Frequency on Gait Symmetry, Smoothness and Variability using IMU. In Proceedings of the 2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Lausanne, Switzerland, 23–25 June 2021. [Google Scholar]
- Vienne, A.; Barrois, R.P.; Buffat, S.; Ricard, D.; Vidal, P.-P. Inertial Sensors to Assess Gait Quality in Patients with Neurological Disorders: A Systematic Review of Technical and Analytical Challenges. Front. Psychol. 2017, 8, 817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouwanda, D.; Gopalai, A.A.; Khoo, B.H. A Low Cost Alternative to Monitor Human Gait Temporal Parameters–Wearable Wireless Gyroscope. IEEE Sens. J. 2016, 16, 9029–9035. [Google Scholar] [CrossRef]
- Mei, C.; Gao, F.; Li, Y. A Determination Method for Gait Event Based on Acceleration Sensors. Sensors 2019, 19, 5499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Ibarra, J.C.; Williams, H.; Siqueira, A.A.; Krebs, H.I. Real-time identification of impaired gait phases using a single foot-mounted inertial sensor: Review and feasibility study. In Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), Enschede, The Netherlands, 26–29 August 2018; pp. 1157–1162. [Google Scholar]
- Lyons, G.; Sinkjaer, T.; Burridge, J.; Wilcox, D. A review of portable FES-based neural orthoses for the correction of drop foot. IEEE Trans. Neural Syst. Rehabil. Eng. 2002, 10, 260–279. [Google Scholar] [CrossRef]
- Beckerman, H.; Becher, J.; Lankhorst, G.J.; Verbeek, A. Walking ability of stroke patients: Efficacy of tibial nerve blocking and a polypropylene ankle-foot orthosis. Arch. Phys. Med. Rehabil. 1996, 77, 1144–1151. [Google Scholar] [CrossRef] [Green Version]
- Chau, T. A review of analytical techniques for gait data. Part 1: Fuzzy, statistical and fractal methods. Gait Posture 2001, 13, 49–66. [Google Scholar] [CrossRef]
- Daffertshofer, A.; Lamoth, C.J.; Meijer, O.G.; Beek, P.J. PCA in studying coordination and variability: A tutorial. Clin. Biomech. 2004, 19, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Milovanović, I.; Popovic, D.B. Principal Component Analysis of Gait Kinematics Data in Acute and Chronic Stroke Patients. Comput. Math. Methods Med. 2012, 2012, 649743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavrilović, M.; Popović, D.B. A principal component analysis (PCA) based assessment of the gait performance. Biomed. Tech. 2021, 66, 449–457. [Google Scholar] [CrossRef] [PubMed]
- 3F-FIT FABRICANDO FABER. Available online: https://www.3-x-f.com/ (accessed on 20 February 2022).
- Robotic Gait Therapy | OMEGO® Plus | Tyromotion. Available online: https://tyromotion.com/en/products/omegoplus/ (accessed on 20 February 2022).
- REHAB SHOP. Available online: https://www.rehabshop.rs (accessed on 20 February 2022).
- Fulk, G.D.; Echternach, J.L. Test-Retest Reliability and Minimal Detectable Change of Gait Speed in Individuals Undergoing Rehabilitation after Stroke. J. Neurol. Phys. Ther. 2008, 32, 8–13. [Google Scholar] [CrossRef]
- Bohannon, R.W. Comfortable and maximum walking speed of adults aged 20–79 years: Reference values and determinants. Age Ageing 1997, 26, 15–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asmussen, M.J.; Kaltenbach, C.; Hashlamoun, K.; Shen, H.; Federico, S.; Nigg, B.M. Force measurements during running on different instrumented treadmills. J. Biomech. 2018, 84, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Crenna, F.; Rossi, G.; Berardengo, M. Filtering Biomechanical Signals in Movement Analysis. Sensors 2021, 21, 4580. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, M.S. Properties of sufficiency and statistical tests. In Proceedings of the Royal Society of London; Series A-Mathematical and Physical Sciences; Royal Society: London, UK, 1937; Volume 160, pp. 268–282. [Google Scholar]
- Milovanović, I. Synergy Patterns of Stroke Subjects While Walking: Implications for Control of FES Assistive Devices. Ph.D. Thesis, Faculty of Electrical Engineering University of Belgrade, Belgrade, Serbia, 2013. [Google Scholar]
- Rosenblatt, M. Remarks on Some Nonparametric Estimates of a Density Function. Ann. Math. Stat. 1956, 27, 832–837. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Chapman and Hall: London, UK, 1986. [Google Scholar]
- Mann, H.B.; Whitney, D.R. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Fong, Y.; Huang, Y.; Lemos, M.P.; McElrath, M.J. Rank-based two-sample tests for paired data with missing values. Biostatistics 2017, 19, 281–294. [Google Scholar] [CrossRef]
- Gavrilović, M. Gyroscope based method for evaluation of gait symmetry. In Proceedings of the 5th IcETRAN, Palić, Serbia, 11–14 June 2018. [Google Scholar]
- Błażkiewicz, M.; Wiszomirska, I.; Wit, A. Comparison of four methods of calculating the symmetry of spatial-temporal parameters of gait. Acta Bioeng. Biomech. 2014, 16, 29–35. [Google Scholar] [CrossRef]
- Wing, K.; Lynskey, J.V.; Bosch, P.R. Walking speed in stroke survivors: Considerations for clinical practice. Top. Geriatr. Rehab. 2012, 28, 113–121. [Google Scholar] [CrossRef]
- Pearson, K.G. Common Principles of Motor Control in Vertebrates and Invertebrates. Annu. Rev. Neurosci. 1993, 16, 265–297. [Google Scholar] [CrossRef] [PubMed]
- Rinehart, N.J.; Tonge, B.J.; Iansek, R.; McGinley, J.; Brereton, A.V.; Enticott, P.G.; Bradshaw, J.L. Gait function in newly diagnosed children with autism: Cerebellar and basal ganglia related motor disorder. Dev. Med. Child Neurol. 2006, 48, 819–824. [Google Scholar] [CrossRef]
- Winter, D.A. Chapter 9: Kinesiological Electromyography. In Biomechanics and Motor Control of Human Movement, 3rd ed.; Winter, D.A., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Frenkel-Toledo, S.; Ofir-Geva, S.; Mansano, L.; Granot, O.; Soroker, N. Stroke Lesion Impact on Lower Limb Function. Front. Hum. Neurosci. 2021, 15, 27. [Google Scholar] [CrossRef]
- Maguire, C.C.; Sieben, J.M.; De Bie, R.A. Movement goals encoded within the cortex and muscle synergies to reduce redundancy pre and post-stroke. The relevance for gait rehabilitation and the prescription of walking-aids. A literature review and scholarly discussion. Physiother. Theory Pract. 2018, 35, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Goldie, P.A.; Matyas, T.A.; Evans, O.M. Gait after stroke: Initial deficit and changes in temporal patterns for each gait phase. Arch. Phys. Med. Rehabil. 2001, 82, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Gizzi, L.; Nielsen, J.F.; Felici, F.; Ivanenko, Y.; Farina, D. Impulses of activation but not motor modules are preserved in the locomotion of subacute stroke patients. J. Neurophysiol. 2011, 106, 202–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowden, M.G.; Clark, D.J.; Kautz, S.A. Evaluation of Abnormal Synergy Patterns Poststroke: Relationship of the Fugl-Meyer Assessment to Hemiparetic Locomotion. Neurorehabilit. Neural Repair 2009, 24, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Van Criekinge, T.; Vermeulen, J.; Wagemans, K.; Schröder, J.; Embrechts, E.; Truijen, S.; Hallemans, A.; Saeys, W. Lower limb muscle synergies during walking after stroke: A systematic review. Disabil. Rehabil. 2020, 42, 2836–2845. [Google Scholar] [CrossRef]
- Krasovsky, T.; Levin, M.F. Review: Toward a Better Understanding of Coordination in Healthy and Poststroke Gait. Neurorehabilit. Neural Repair 2009, 24, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Hausdorff, J.M. Gait variability: Methods, modeling and modeling meaning. J. Neuroeng. Rehab. 2005, 2, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keklicek, H.; Kirdi, E.; Yalcin, A.; Topuz, S.; Ulger, O.; Erbahceci, F.; Sener, G. Comparison of gait variability and symmetry in trained individuals with transtibial and transfemoral limb loss. J. Orthop. Surg. 2019, 27. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.-S.; Choi, H.; Jung, J.-W.; Yoon, J.S.; Jeoung, J.H. Asymmetry and Variability Should Be Included in the Assessment of Gait Function in Poststroke Hemiplegia with Independent Ambulation During Early Rehabilitation. Arch. Phys. Med. Rehabil. 2020, 102, 611–618. [Google Scholar] [CrossRef]
- Rosa, M.C.N.; Marques, A.; Demain, S.; Metcalf, C.D. Lower limb co-contraction during walking in subjects with stroke: A systematic review. J. Electromyogr. Kinesiol. 2014, 24, 1–10. [Google Scholar] [CrossRef]
- Tan, C.K.; Kadone, H.; Watanabe, H.; Marushima, A.; Hada, Y.; Yamazaki, M.; Sankai, Y.; Matsumura, A.; Suzuki, K. Differences in Muscle Synergy Symmetry Between Subacute Post-stroke Patients With Bioelectrically-Controlled Exoskeleton Gait Training and Conventional Gait Training. Front. Bioeng. Biotechnol. 2020, 8, 770. [Google Scholar] [CrossRef]
- Ambrosini, E.; Parati, M.; Peri, E.; De Marchis, C.; Nava, C.; Pedrocchi, A.; Ferriero, G.; Ferrante, S. Changes in leg cycling muscle synergies after training augmented by functional electrical stimulation in subacute stroke survivors: A pilot study. J. Neuroeng. Rehabil. 2020, 17, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Den Otter, A.R.; Geurts, A.C.H.; Mulder, T.H.; Duysens, J. Gait recovery is not associated with changes in the temporal patterning of muscle activity during treadmill walking in patients with post-stroke hemiparesis. Clin. Neurophysiol. 2006, 117, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Tresch, M.C.; Jarc, A. The case for and against muscle synergies. Curr. Opin. Neurobiol. 2009, 19, 601–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, V.C.K.; Seki, K. Approaches to revealing the neural basis of muscle synergies: A review and a critique. J. Neurophysiol. 2021, 125, 1580–1597. [Google Scholar] [CrossRef]
- Singh, R.E.; Iqbal, K.; White, G.; Hutchinson, T.E. A Systematic Review on Muscle Synergies: From Building Blocks of Motor Behavior to a Neurorehabilitation Tool. Appl. Bionics Biomech. 2018, 2018, 3615368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.; Fischer, E.; Tunca, C.; Brahms, C.M.; Ersoy, C.; Granacher, U.; Arnrich, B. How We Found Our IMU: Guidelines to IMU Selection and a Comparison of Seven IMUs for Pervasive Healthcare Applications. Sensors 2020, 20, 4090. [Google Scholar] [CrossRef] [PubMed]
Variable | Mean ± SD | |
---|---|---|
Healthy Subjects (n = 14) | Patients (n = 5) | |
Age (years) | 34.8 ± 12.6 | 61 ± 5.1 |
Gender | 8 male, 6 female | 1 male, 4 female |
Total body mass (kg) | 73.3 ± 12.7 | 78.4 ± 9.2 |
Height (m) | 1.78 ± 0.08 | 1.7 ± 0.05 |
BMI (kg/m2) | 23 ± 2.18 | 28.18 ± 3.6 |
Affected side | - | 4 left, 1 right |
SPM | |||||
---|---|---|---|---|---|
0.5 m | 240 | 192 | 120 | 96 | 48 |
0.75 m | 160 | 128 | 80 | 64 | 32 |
1 m | 120 | 96 | 60 | 48 | 24 |
Healthy Subjects | Patients before Therapy | Patients after Therapy | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
H2 | H1.6 | H1 | H0.8 | H0.4 | Pp.b | Pnp.b | Pp.a | Pnp.a | ||
cluster limits | [198–360] | [198–360] | [198–360] | [206–360] | [213–360] | [257–360] | [235–360] | [191–360] | [206–360] | |
mean ± SD | 265 ± 14.9 | 262 ± 15.7 | 266 ± 7.9 | 271 ± 15.8 | 276 ± 12.8 | 318 ± 24.4 | 295 ± 38.6 | 291 ± 40.3 | 272 ± 27.6 | |
cluster limits | [73–197] | [73–197] | [73–197] | [88–205] | [81–212] | [110–256] | [110–234] | [118–190] | [59–205] | |
mean ± SD | 138 ± 8.9 | 138 ± 7.5 | 140 ± 9.7 | 147 ± 14 | 147 ± 22.6 | 183 ± 26.1 | 172 ± 18.4 | 162 ± 4.3 | 152 ± 11.7 | |
cluster limits | [0–72] | [0–72] | [0–72] | [0–87] | [0–80] | [0–109] | [0–109] | [0–117] | [0–58] | |
mean ± SD | 16 ± 7 | 13 ± 5.2 | 13 ± 8.3 | 21 ± 12.9 | 23 ± 16.7 | 36 ± 18.9 | 39 ± 12.7 | 25 ± 12.7 | 12 ± 6.9 |
Patients | Pp.b. | Pnp.b. | Pp.a. | Pnp.a. | ||
---|---|---|---|---|---|---|
Healthy | ||||||
0 * | 0 * | 0 * | 0 * | |||
0 * | 0 * | 0 * | 0 * | |||
0 * | 0 * | 0 * | 0.008 | |||
0 * | 0 * | 0 * | 0 * | |||
0 * | 0 * | 0 * | 0 * | |||
0 * | 0 * | 0 * | 0.332 | |||
0 * | 0 * | 0.001 | 0.115 | |||
0 * | 0 * | 0 * | 0 * | |||
0 * | 0 * | 0 * | 0.594 | |||
0 * | 0 * | 0.022 | 0.045 | |||
0 * | 0 * | 0 * | 0.004 | |||
0 * | 0 * | 0.024 | 0.002 | |||
0 * | 0.588 | 0.301 | 0.001 | |||
0 * | 0 * | 0.008 | 0.138 | |||
0 * | 0.002 | 0.190 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavrilović, M.M.; Janković, M.M. Temporal Synergies Detection in Gait Cyclograms Using Wearable Technology. Sensors 2022, 22, 2728. https://doi.org/10.3390/s22072728
Gavrilović MM, Janković MM. Temporal Synergies Detection in Gait Cyclograms Using Wearable Technology. Sensors. 2022; 22(7):2728. https://doi.org/10.3390/s22072728
Chicago/Turabian StyleGavrilović, Marija M., and Milica M. Janković. 2022. "Temporal Synergies Detection in Gait Cyclograms Using Wearable Technology" Sensors 22, no. 7: 2728. https://doi.org/10.3390/s22072728
APA StyleGavrilović, M. M., & Janković, M. M. (2022). Temporal Synergies Detection in Gait Cyclograms Using Wearable Technology. Sensors, 22(7), 2728. https://doi.org/10.3390/s22072728