Clinical–Functional Evaluation and Test–Retest Reliability of the G-WALK Sensor in Subjects with Bimalleolar Ankle Fractures 6 Months after Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Type of Study
2.2. Participants
2.3. Procedure
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shibuya, N.; Davis, M.L.; Jupiter, D.C. Epidemiology of Foot and Ankle Fractures in the United States: An Analysis of the National Trauma Data Bank (2007 to 2011). J. Foot Ankle Surg. 2014, 53, 606–608. [Google Scholar] [CrossRef] [PubMed]
- Elsoe, R.; Ostgaard, S.E.; Larsen, P. Population-based epidemiology of 9767 ankle fractures. Foot Ankle Surg. 2018, 24, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Juto, H.; Nilsson, H.; Morberg, P. Epidemiology of Adult Ankle Fractures: 1756 cases identified in Norrbotten County during 2009–2013 and classified according to AO/OTA. BMC Musculoskelet. Disord. 2018, 19, 441. [Google Scholar] [CrossRef] [Green Version]
- Stufkens, S.A.S.; van den Bekerom, M.P.J.; Kerkhoffs, G.M.M.J.; Hintermann, B.; van Dijk, C.N. Long-term outcome after 1822 operatively treated ankle fractures: A systematic review of the literature. Injury 2011, 42, 119–127. [Google Scholar] [CrossRef]
- Beckenkamp, P.R.; Lin, C.-W.C.; Chagpar, S.; Herbert, R.D.; van der Ploeg, H.P.; Moseley, A.M. Prognosis of physical function following ankle fracture: A systematic review with meta-analysis. J. Orthop. Sports Phys. Ther. 2014, 44, 841–851. [Google Scholar] [CrossRef]
- Elbaz, A.; Mor, A.; Segal, G.; Bar, D.; Monda, M.K.; Kish, B.; Nyska, M.; Palmanovich, E. Lower Extremity Kinematic Profile of Gait of Patients After Ankle Fracture: A Case-Control Study. J. Foot Ankle Surg. 2016, 55, 918–921. [Google Scholar] [CrossRef]
- Segal, G.; Elbaz, A.; Parsi, A.; Heller, Z.; Palmanovich, E.; Nyska, M.; Feldbrin, Z.; Kish, B. Clinical outcomes following ankle fracture: A cross-sectional observational study. J. Foot Ankle Res. 2014, 7, 50. [Google Scholar] [CrossRef]
- Losch, A.; Meybohm, P.; Schmalz, T.; Fuchs, M.; Vamvukakis, F.; Dresing, K.; Blumentritt, S.; Stürmer, K.M. Functional results of dynamic gait analysis after 1 year of hobby-athletes with a surgically treated ankle fracture. Sportverletz. Sportschaden Organ Ges. Orthopadisch-Traumatol. Sportmed. 2002, 16, 101–107. [Google Scholar] [CrossRef]
- Wang, R.; Thur, C.K.; Gutierrez-Farewik, E.M.; Wretenberg, P.; Broström, E. One year follow-up after operative ankle fractures: A prospective gait analysis study with a multi-segment foot model. Gait Posture 2010, 31, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, M.A.; Okereke, E.; Esterhai, J.L.; Elliott, M.A.; Walter, G.A.; Yim, S.H.; Vandenborne, K. Effects of Immobilization on Plantar-Flexion Torque, Fatigue Resistance, and Functional Ability Following an Ankle Fracture. Phys. Ther. 2000, 80, 769–780. [Google Scholar] [CrossRef] [Green Version]
- Hong, C.C.; Roy, S.P.; Nashi, N.; Tan, K.J. Functional outcome and limitation of sporting activities after bimalleolar and trimalleolar ankle fractures. Foot Ankle Int. 2013, 34, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Dudek, K.; Drużbicki, M.; Przysada, G.; Śpiewak, D. Assessment of standing balance in patients after ankle fractures. Acta Bioeng. Biomech. Wroc. Univ. Technol. 2014, 16, 59–65. [Google Scholar]
- Salas-Gómez, D.; Fernández-Gorgojo, M.; Sanchez-Juan, P.; Bercero, E.L.; Perez-Núñez, M.I.; Barbado, D. Quantifying balance deficit in people with ankle fracture six months after surgical intervention through the Y-Balance test. Gait Posture 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Day, G.A.; Swanson, C.E.; Hulcombe, B.G. Operative treatment of ankle fractures: A minimum ten-year follow-up. Foot Ankle Int. 2001, 22, 102–106. [Google Scholar] [CrossRef]
- Nilsson, G.; Nyberg, P.; Ekdahl, C.; Eneroth, M. Performance after surgical treatment of patients with ankle fractures—14-month follow-up. Physiother. Res. Int. J. Res. Clin. Phys. Ther. 2003, 8, 69–82. [Google Scholar] [CrossRef]
- Dean, D.M.; Ho, B.S.; Lin, A.; Fuchs, D.; Ochenjele, G.; Merk, B.; Kadakia, A.R. Predictors of Patient-Reported Function and Pain Outcomes in Operative Ankle Fractures. Foot Ankle Int. 2017, 38, 496–501. [Google Scholar] [CrossRef]
- Kitaoka, H.B.; Alexander, I.J.; Adelaar, R.S.; Nunley, J.A.; Myerson, M.S.; Sanders, M. Clinical rating systems for the ankle-hindfoot, midfoot, hallux, and lesser toes. Foot Ankle Int. 1994, 15, 349–353. [Google Scholar] [CrossRef]
- Olerud, C.; Molander, H. A scoring scale for symptom evaluation after ankle fracture. Arch. Orthop. Trauma. Surg. Arch. Orthopadische Unf.-Chir. 1984, 103, 190–194. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Tsai, Y.-S.; Yau, C.-S.; Shie, H.-H.; Wu, C.-M. Differences in gait and trunk movement between patients after ankle fracture and healthy subjects. Biomed. Eng. Online 2019, 18, 26. [Google Scholar] [CrossRef] [Green Version]
- Ng, R.; Broughton, N.; Williams, C. Measuring Recovery After Ankle Fractures: A Systematic Review of the Psychometric Properties of Scoring Systems. J. Foot Ankle Surg. 2018, 57, 149–154. [Google Scholar] [CrossRef] [Green Version]
- Ekinci, M.; Birisik, F.; Ersin, M.; Şahinkaya, T.; Öztürk, İ. A prospective evaluation of strength and endurance of ankle dorsiflexors-plantar flexors after conservative management of lateral malleolar fractures. Turk. J. Phys. Med. Rehabil. 2021, 67, 300–307. [Google Scholar] [CrossRef]
- Hollman, J.H.; McDade, E.M.; Petersen, R.C. Normative spatiotemporal gait parameters in older adults. Gait Posture 2011, 34, 111–118. [Google Scholar] [CrossRef] [Green Version]
- McKay, M.J.; Baldwin, J.N.; Ferreira, P.; Simic, M.; Vanicek, N.; Wojciechowski, E.; Mudge, A.; Burns, J. 1000 Norms Project Consortium, Spatiotemporal and plantar pressure patterns of 1000 healthy individuals aged 3–101 years. Gait Posture 2017, 58, 78–87. [Google Scholar] [CrossRef]
- Rosenbaum, D.; Macri, F.; Lupselo, F.S.; Preis, O.C. Gait and function as tools for the assessment of fracture repair—The role of movement analysis for the assessment of fracture healing. Injury 2014, 45, S39–S43. [Google Scholar] [CrossRef]
- Chaparro-Cárdenas, S.L.; Lozano-Guzmán, A.A.; Ramirez-Bautista, J.A.; Hernández-Zavala, A. A review in gait rehabilitation devices and applied control techniques. Disabil. Rehabil. Assist. Technol. 2018, 13, 819–834. [Google Scholar] [CrossRef]
- Muyor, J.M.; Arrabal-Campos, F.M.; Martínez-Aparicio, C.; Sánchez-Crespo, A.; Villa-Pérez, M. Test-retest reliability and validity of a motion capture (MOCAP) system for measuring thoracic and lumbar spinal curvatures and sacral inclination in the sagittal plane. J. Back Musculoskelet. Rehabil. 2017, 30, 1319–1325. [Google Scholar] [CrossRef]
- Lee, M.M.; Song, C.H.; Lee, K.J.; Jung, S.W.; Shin, D.C.; Shin, S.H. Concurrent Validity and Test-retest Reliability of the OPTOGait Photoelectric Cell System for the Assessment of Spatio-temporal Parameters of the Gait of Young Adults. J. Phys. Ther. Sci. 2014, 26, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Bilney, B.; Morris, M.; Webster, K. Concurrent related validity of the GAITRite walkway system for quantification of the spatial and temporal parameters of gait. Gait Posture 2003, 17, 68–74. [Google Scholar] [CrossRef]
- Washabaugh, E.P.; Kalyanaraman, T.; Adamczyk, P.G.; Claflin, E.S.; Krishnan, C. Validity and repeatability of inertial measurement units for measuring gait parameters. Gait Posture 2017, 55, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Kobsar, D.; Charlton, J.M.; Tse, C.T.F.; Esculier, J.-F.; Graffos, A.; Krowchuk, N.M.; Thatcher, D.; Hunt, M.A. Validity and reliability of wearable inertial sensors in healthy adult walking: A systematic review and meta-analysis. J. Neuroeng. Rehabil. 2020, 17, 62. [Google Scholar] [CrossRef]
- Zijlstra, W.; Hof, A.L. Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 2003, 18, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bugané, F.; Benedetti, M.G.; Casadio, G.; Attala, S.; Biagi, F.; Manca, M.; Leardini, A. Estimation of spatial-temporal gait parameters in level walking based on a single accelerometer: Validation on normal subjects by standard gait analysis. Comput. Methods Programs Biomed. 2012, 108, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Bravi, M.; Gallotta, E.; Morrone, M.; Maselli, M.; Santacaterina, F.; Toglia, R.; Foti, C.; Sterzi, S.; Bressi, F.; Miccinilli, S. Concurrent validity and inter trial reliability of a single inertial measurement unit for spatial-temporal gait parameter analysis in patients with recent total hip or total knee arthroplasty. Gait Posture 2020, 76, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Park, G.; Woo, Y. Comparison between a center of mass and a foot pressure sensor system for measuring gait parameters in healthy adults. J. Phys. Ther. Sci. 2015, 27, 3199–3202. [Google Scholar] [CrossRef]
- De Ridder, R.; Lebleu, J.; Willems, T.; de Blaiser, C.; Detrembleur, C.; Roosen, P. Concurrent Validity of a Commercial Wireless Trunk Triaxial Accelerometer System for Gait Analysis. J. Sport Rehabil. 2019, 28, jsr.2018-0295. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, G.M.; Jonsson, K.; Ekdahl, C.S.; Eneroth, M. Effects of a training program after surgically treated ankle fracture: A prospective randomised controlled trial. BMC Musculoskelet. Disord. 2009, 10, 118. [Google Scholar] [CrossRef] [Green Version]
- Suciu, O.; Onofrei, R.R.; Totorean, A.D.; Suciu, S.C.; Amaricai, E.C. Gait analysis and functional outcomes after twelve-week rehabilitation in patients with surgically treated ankle fractures. Gait Posture 2016, 49, 184–189. [Google Scholar] [CrossRef]
- Van Hoeve, S.; Houben, M.; Verbruggen, J.P.A.M.; Willems, P.; Meijer, K.; Poeze, M. Gait analysis related to functional outcome in patients operated for ankle fractures. J. Orthop. Res. 2019, 37, 1658–1666. [Google Scholar] [CrossRef]
- The American Orthopedic Foot and Ankle Score (AOFAS). Code Technol. We Collect Orthop. Patient Outcomes. 2017. Available online: https://www.codetechnology.com/american-orthopedic-foot-ankle-score-aofas/ (accessed on 23 February 2017).
- Yang, S.; Li, Q. Inertial Sensor-Based Methods in Walking Speed Estimation: A Systematic Review. Sensors 2012, 12, 6102–6116. [Google Scholar] [CrossRef] [Green Version]
- Vítečková, S.; Horáková, H.; Poláková, K.; Krupička, R.; Růžička, E.; Brožová, H. Agreement between the GAITRite® System and the Wearable Sensor BTS G-Walk® for measurement of gait parameters in healthy adults and Parkinson’s disease patients. PeerJ 2020, 8, e8835. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar] [CrossRef]
- Kottner, J.; Audige, L.; Brorson, S.; Donner, A.; Gajewski, B.J.; Hróbjartsson, A.; Roberts, C.; Shoukri, M.; Streiner, D.L. Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were proposed. Int. J. Nurs. Stud. 2011, 48, 661–671. [Google Scholar] [CrossRef]
- De Vet, H.C.W.; Terwee, C.B.; Knol, D.L.; Bouter, L.M. When to use agreement versus reliability measures. J. Clin. Epidemiol. 2006, 59, 1033–1039. [Google Scholar] [CrossRef] [Green Version]
- Tyler, A.F.; Rose, T.; Day, S.; Kenia, J.; Horan, A.D.; Mehta, S.; Donegan, D.J. Comparison of Spatiotemporal Gait Parameters Following Operative Treatment of Trimalleolar Ankle Fractures vs Healthy Controls. Foot Ankle Orthop. 2020, 5, 247301142093105. [Google Scholar] [CrossRef]
- Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 2012, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-W.C.; Donkers, N.A.J.; Refshauge, K.M.; Beckenkamp, P.R.; Khera, K.; Moseley, A.M. Rehabilitation for ankle fractures in adults. Cochrane Database Syst. Rev. 2012, 11, CD005595. [Google Scholar] [CrossRef]
- Larsen, P.; Nielsen, H.B.; Lund, C.; Sørensen, D.S.; Larsen, B.T.; Matthews, M.; Vicenzino, B.; Elsoe, R. A novel tool for measuring ankle dorsiflexion: A study of its reliability in patients following ankle fractures. Foot Ankle Surg. 2016, 22, 274–277. [Google Scholar] [CrossRef]
- Böpple, J.C.; Tanner, M.; Campos, S.; Fischer, C.; Müller, S.; Wolf, S.I.; Doll, J. Short-term results of gait analysis with the Heidelberg foot measurement method and functional outcome after operative treatment of ankle fractures. J. Foot Ankle Res. 2022, 15, 2. [Google Scholar] [CrossRef]
- Stevens, J.E.; Walter, G.A.; Okereke, E.; Scarborough, M.T.; Esterhai, J.L.; George, S.Z.; Kelley, M.J.; Tillman, S.M.; Gibbs, J.D.; Elliott, M.A.; et al. Muscle adaptations with immobilization and rehabilitation after ankle fracture. Med. Sci. Sports Exerc. 2004, 36, 1695–1701. [Google Scholar] [CrossRef]
- Stevens, J.E.; Pathare, N.C.; Tillman, S.M.; Scarborough, M.T.; Gibbs, C.P.; Shah, P.; Jayaraman, A.; Walter, G.A.; Vandenborne, K. Relative contributions of muscle activation and muscle size to plantarflexor torque during rehabilitation after immobilization. J. Orthop. Res. 2006, 24, 1729–1736. [Google Scholar] [CrossRef]
- Hsiao, H.; Knarr, B.A.; Higginson, J.S.; Binder-Macleod, S.A. The relative contribution of ankle moment and trailing limb angle to propulsive force during gait. Hum. Mov. Sci. 2015, 39, 212–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egol, K.A.; Tejwani, N.C.; Walsh, M.G.; Capla, E.L.; Koval, K.J. Predictors of short-term functional outcome following ankle fracture surgery. J. Bone Jt. Surg. Am. 2006, 88, 974–979. [Google Scholar] [CrossRef]
- Donisi, L.; Pagano, G.; Cesarelli, G.; Coccia, A.; Amitrano, F.; D’Addio, G. Benchmarking between two wearable inertial systems for gait analysis based on a different sensor placement using several statistical approaches. Measurement 2021, 173, 108642. [Google Scholar] [CrossRef]
- Greene, B.R.; Foran, T.G.; McGrath, D.; Doheny, E.P.; Burns, A.; Caulfield, B. A Comparison of Algorithms for Body-Worn Sensor-Based Spatiotemporal Gait Parameters to the GAITRite Electronic Walkway. J. Appl. Biomech. 2012, 28, 349–355. [Google Scholar] [CrossRef]
Type (n = 22) | AFG (n = 22) Mean ± SD | 95%CI | CG (n = 11) Mean ± SD | 95%CI |
---|---|---|---|---|
Age (years) | 43.5 ± 10.2 | 39.0; 48.0 | 39.9 ± 8.6 | 34.1; 45.7 |
Sex Women (%); Men (%) | 45% (W); 55% (M) | 55% (W); 45% (M) | ||
Height (cm) | 169.3 ± 9.5 | 164.8; 173.7 | 170.5 ± 7.9 | 165.2; 175.8 |
Weight (kg) | 77.8 ± 10.6 | 73.1; 82.5 | 74.0 ± 9.1 | 67.9; 80.1 |
Operated Limb Length | 85.6 ± 5.9 | 82.9; 88.2 | 86.2 ± 5.5 * | 82.6; 89.9 * |
Healthy Limb Length (cm) | 85.6 ± 5.9 | 82.9; 88.2 | ||
Days from injury to surgery | 4.8 ± 7.6 | 1.4; 8.1 | ||
Immobilization (weeks) | 3.4 ± 1.2 | 2.8; 3.9 | ||
AOFAS Ankle Hindfoot score | 73.6 ± 11.4 | 71.9; 75.3 | ||
OMAS | 57.3 ± 22.0 | 54.1; 60.6 |
Type (n = 22) | Operated Ankle Mean ± SD/Median (Range) | Non-Operated Ankle Mean ± SD/Median (Range) | Differences between Ankles Mean (95% CI)/Z 1 | Cohen’s d/Hedges’ g | p Value * | |
---|---|---|---|---|---|---|
Clinical measurements | Calf perimeter (cm) | 34.2 ± 4.0 | 35.5 ± 4.4 | −1.3 (−2.0; −0.5) | 0.78 | 0.001 * |
Bimalleolar perimeter (cm) | 25.1 ± 2.1 | 24.1 ± 2.1 | 1.0 (0.8; 1.2) | 2.30 | <0.001 * | |
ADF ROM (degrees) | 22.8 ± 7.7 | 35.4 ± 5.3 | −12.7 (−15.1; −10.3) | 2.23 | <0.001 * | |
Strength ABD (%) | 25.5 ± 7.2 | 29.3 ± 8.6 | −3.8 (−6.4; −1.2) | 0.62 | 0.006 * | |
Strength ADD (%) | 26.3 ± 9.1 | 25.8 ± 8.6 | 0.6 (−1.1; −2.2) | 0.15 | 0.491 | |
Spatiotemporal parameters | Cadence (step/min) | 99.9 ± 9.8 | ||||
Speed (m/s) | 0.94 ± 0.1 | |||||
Stride length (m) | 1.28 ± 0.1 | |||||
Stride time (s) | 1.21 ± 0.1 | |||||
Step length % SL | 48.1 ± 3.1 | 51.9 ± 3.1 | −3.8 (−6.7; −1.1) | 0.61 | 0.009 * | |
Stance % GC 1 | 63.4 (20.3) | 67.4 (17.9) | −2.9 | 0.76 | 0.004 * | |
Swing % GC 1 | 36.6 (20.3) | 32.6 (17.9) | 2.9 | 0.76 | 0.004 * | |
Double support % GC | 15.0 ± 4.3 | 16 ± 2.1 | −1.0 (−2.8; −0.8) | 0.25 | 0.267 | |
Single support % GC 1 | 32.6 (17.6) | 36.7 (20.6) | −3.0 | 0.80 | 0.002 * | |
Propulsion index (m/s2) | 5.2 ± 1.8 | 6.0 ± 1.4 | −0.8 (−0.2; −1.2) | 0.62 | 0.010 * |
Type | AFG (n = 22) Mean ± SD/Median (Range) | CG (n = 11) Mean ± SD/Median (Range) | Differences between Ankles Mean (95% CI)/Z 1 | Cohen’s d/Hedges’ g | p Value * | |
---|---|---|---|---|---|---|
Clinical measurements | Calf perimeter (cm) | 34.2 ± 4.0 | 33.7 ± 2.5 | 0.5 (3.1; −2.3) | −0.14 | 0.76 |
Bimalleolar perimeter (cm) | 25.1 ± 2.1 | 21.9 ± 1.6 | 3.2 (4.6; 1.7) | −1.64 | <0.001 * | |
ADF ROM (degrees) | 22.8 ± 7.4 | 41.9 ± 6.1 | −19.1 (−13.8; −24.4) | 2.71 | <0.001 * | |
Strength ABD (%) | 25.5 ± 7.2 | 34.2 ± 8.8 | −8.6 (−2.7; −14.5) | 1.12 | 0.005 * | |
Strength ADD (%) | 26.3 ± 9.1 | 32.7 ± 9.2 | −6.4 (0.5; −13.2) | 0.72 | 0.06 | |
Spatiotemporal parameters | Cadence (step/min) | 99.9 ± 9.8 | 113.7 ± 5.2 | −13.8 (−8.4; −19.1) | 1.61 | <0.001 * |
Speed (m/s) | 0.94 ± 0.1 | 1.18 ± 0.2 | −0.24 (−0.12; −0.36) | 1.71 | <0.001 * | |
Stride length (m) | 1.28 ± 0.1 | 1.46 ± 0.1 | −0.18 (−0.06; −0.27) | 1.82 | 0.003 * | |
Stride time (s) | 1.21 ± 0.1 | 1.05 ± 0.1 | 0.16 (0.23; 0.08) | −1.65 | <0.001 * | |
Step length % SL | 48.1 ± 3.1 | 49.2 ± 1.2 | −1.1 (0.6; −2.8) | 0.42 | 0.196 | |
Stance % GC 1 | 63.4 (20.3) | 63.6 (9.5) | −0.2 | 0.03 | 0.834 | |
Swing % GC 1 | 36.6 (20.3) | 36.4 (10.3) | −0.4 | −0.02 | 0.688 | |
Double support % GC | 15.0 ± 4.3 | 14.3 ± 3.3 | 0.7 (−2.3; 3.7) | −0.17 | 0.612 | |
Single support % GC | 32.6 ± 4.5 | 35.6 ± 3.6 | −3.0 (−0.1; −6.2) | 0.71 | 0.045 * | |
Propulsion index (m/s2) | 5.2 ± 1.8 | 6.9 ± 1.6 | −1.7 (−1.1; −2.3) | 0.98 | 0.013 * |
Clinical Measurements and Functional Scales | ||||||
---|---|---|---|---|---|---|
Spatiotemporal Gait Parameters | ADF ROM | Strength ABD | Bimalleolar Perimeter | Calf Perimeter | AOFAS | OMAS |
Cadence (step/min) 1 | 0.552 ** | 0.405 | 0.230 | 0.177 | 0.540 ** | 0.415 |
Speed (m/s) 1 | 0.533 * | 0.436 * | 0.335 | −0.124 | 0.428 * | 0.247 |
Stride length (m) 1 | 0.413 | 0.444 * | 0.070 | −0.289 | 0.247 | 0.083 |
Stride time (s) | −0.554 ** | −0.393 | −0.263 | −0.205 | −0.547 ** | −0.398 |
Step length % SL 1 | −0.001 | 0.231 | 0.056 | −0.144 | 0.163 | 0.205 |
Stance % GC 2 | −0.054 | −0.178 | −0.112 | 0.144 | 0.115 | 0.172 |
Swing % GC 2 | 0.054 | 0.178 | 0.112 | −0.144 | −0.115 | −0.172 |
Double support % GC 1 | −0.224 | −0.303 | −0.060 | 0.222 | −0.069 | 0.036 |
Single support % GC 2 | 0.318 | 0.491 * | −0.001 | −0.076 | 0.402 | 0.284 |
Propulsion index (m/s2) 1 | 0.516 * | −0.052 | 0.122 | 0.449 * | 0.407 | 0.261 |
Spatiotemporal Gait Parameters | ICC (95%CI) | SEM (95% CI) | SEM% | LoA (Lower; Upper) | Bias | |
---|---|---|---|---|---|---|
Cadence (step/min) | 0.95 (0.89; 0.97) | 2.21 (0.79; −3.64) | 2.21 | −3.91; 2.12 | −0.89 | |
Speed (m/s) | 0.97 (0.93; 0.98) | 0.02 (0.01; 0.05) | 2.12 | −0.06; 0.04 | −0.01 | |
Stride length (m) | 0.98 (0.97; 0.99) | 0.02 (0.01; 0.03) | 1.56 | −0.07; 0.06 | 0.01 | |
Stride time (s) | 0.95 (0.70 0.98) | 0.03 (0.01; 0.05) | 2.47 | −0.06; 0.10 | 0.02 | |
Operated Ankle | Step length % SL | 0.90 (0.82; 0.94) | 1.01 (0.55; 1.46) | 2.09 | −2.17; 1.92 | −0.12 |
Stance phase % GC | 0.91 (0.84; 0.94) | 1.43 (0.75; 2.12) | 2.25 | −5.02; 4.51 | −0.26 | |
Swing phase % GC | 0.86 (0.75; 0.91) | 1.79 (1.10; 2.47) | 4.89 | −4.51; 5.02 | 0.26 | |
Double support % GC | 0.85 (0.74; 0.91) | 1.68 (1.06; 2.31) | 11.20 | −6.80; 7.74 | 0.47 | |
Single support % GC | 0.84 (0.74; 0.91) | 1.82 (1.17; 2.48) | 5.58 | −9.21; 5.63 | −1.79 | |
Propulsion index (m/s2) | 0.90 (0.83; 0.94) | 0.45 (0.24; 0.65) | 7.50 | −1.79; 1.89 | 0.05 | |
Non-operated Ankle | Step length % GC | 0.90 (0.84; 0.95) | 1.01 (0.55; 1.46) | 1.94 | −1.92; 2.17 | 0.12 |
Stance phase % GC | 0.94 (0.89; 0.96) | 1.12 (0.46; 1.77) | 1.66 | −2.96; 4.50 | 0.77 | |
Swing phase % GC | 0.92 (0.86; 0.95) | 1.29 (0.63; 1.95) | 3.95 | −4.50; 2.96 | −0.77 | |
Double support % GC | 0.84 (0.73; 0.90) | 1.06 (0.68; 1.44) | 6.62 | −5.57; 7.83 | 1.13 | |
Single support % GC | 0.84 (0.73; 0.91) | 1.90 (1.22; 2.58) | 5.17 | −7.59; 8.17 | 0.29 | |
Propulsion index (m/s2) | 0.95 (0.92; 0.97) | 0.41 (0.15; 0.68) | 7.88 | −1.89; 1.20 | −0.34 | |
Propulsion index (m/s2) | 0.95 (0.92; 0.97) | 0.41 (0.15; 0.68) | 7.88 | −1.89; 1.20 | −0.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Gorgojo, M.; Salas-Gómez, D.; Sánchez-Juan, P.; Barbado, D.; Laguna-Bercero, E.; Pérez-Núñez, M.I. Clinical–Functional Evaluation and Test–Retest Reliability of the G-WALK Sensor in Subjects with Bimalleolar Ankle Fractures 6 Months after Surgery. Sensors 2022, 22, 3050. https://doi.org/10.3390/s22083050
Fernández-Gorgojo M, Salas-Gómez D, Sánchez-Juan P, Barbado D, Laguna-Bercero E, Pérez-Núñez MI. Clinical–Functional Evaluation and Test–Retest Reliability of the G-WALK Sensor in Subjects with Bimalleolar Ankle Fractures 6 Months after Surgery. Sensors. 2022; 22(8):3050. https://doi.org/10.3390/s22083050
Chicago/Turabian StyleFernández-Gorgojo, Mario, Diana Salas-Gómez, Pascual Sánchez-Juan, David Barbado, Esther Laguna-Bercero, and María Isabel Pérez-Núñez. 2022. "Clinical–Functional Evaluation and Test–Retest Reliability of the G-WALK Sensor in Subjects with Bimalleolar Ankle Fractures 6 Months after Surgery" Sensors 22, no. 8: 3050. https://doi.org/10.3390/s22083050
APA StyleFernández-Gorgojo, M., Salas-Gómez, D., Sánchez-Juan, P., Barbado, D., Laguna-Bercero, E., & Pérez-Núñez, M. I. (2022). Clinical–Functional Evaluation and Test–Retest Reliability of the G-WALK Sensor in Subjects with Bimalleolar Ankle Fractures 6 Months after Surgery. Sensors, 22(8), 3050. https://doi.org/10.3390/s22083050