Wideband Filtering Slot Antenna Design with Stable Gain Using Characteristic Mode Analysis
Abstract
:1. Introduction
2. Antenna Design
2.1. Antenna Design Stages
2.2. Folding-Line Slot
2.3. Double-Ring Slot
2.4. Working Principles of the Proposed Antenna
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Chen, Z.N.; Wu, D.; Zhang, G.; Wu, Y. Dual-Beam Filtering Patch Antennas for Wireless Communication Application. IEEE Trans. Antennas Propag. 2018, 66, 3730–3734. [Google Scholar] [CrossRef]
- Jin, J.Y.; Liao, S.; Xue, Q. Design of filtering-radiating patch antennas with tunable radiation nulls for high selectivity. IEEE Trans. Antennas Propag. 2018, 66, 2125–2130. [Google Scholar] [CrossRef]
- Mallat, N.K.; Amjad, I. Out-of-band suppressed SIW-DRA based filter-antenna subsystem with flexible bandwidth and transmission zeros. AEU-Int. J. Electron. Commun. 2021, 135, 153735. [Google Scholar] [CrossRef]
- Allam, V.K.; Madhav, B.T.; Anilkumar, T.; Maloji, S. A Novel Reconfigurable Bandpass Filtering Antenna for IoT Communication Applications. Prog. Electromagn. Res. C 2019, 96, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Al-Yasir, Y.I.A.; AAlhamadani, H.; Kadhim, A.S.; Ojaroudi Parchin, N.; Saleh, A.L.; Elfergani, I.T.E.; Rodriguez, J.; Abd-Alhameed, R.A. Design of a Wide-Band Microstrip Filtering Antenna with Modified Shaped Slots and SIR Structure. Inventions 2020, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhao, F.; Yan, L.; Zhang, W. A compact filtering antenna with flat gain response within the passband. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 857–860. [Google Scholar] [CrossRef]
- Lin, C.K.; Chung, S.J. A compact filtering microstrip antenna with quasi-elliptic broadside antenna gain response. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 381–384. [Google Scholar] [CrossRef]
- Wu, W.J.; Yin, Y.Z.; Zuo, S.L.; Zhang, Z.Y.; Xie, J.J. A new compact filter-antenna for modern wireless communication systems. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1131–1134. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Duan, W.; Pan, Y.-M. High-gain filtering patch antenna without extra circuit. IEEE Trans. Antennas Propag. 2015, 63, 5883–5888. [Google Scholar] [CrossRef]
- Yang, W.; Chen, S.; Xue, Q.; Che, W.; Shen, G.; Feng, W. Novel Filtering Method Based on Metasurface Antenna and Its Application for Wideband High-Gain Filtering Antenna with Low Profile. IEEE Trans. Antennas Propag. 2019, 67, 1535–1544. [Google Scholar] [CrossRef]
- Mao, C.X.; Gao, S.; Wang, Y.; Wang, Z.; Qin, F.; Sanz-Izquierdo, B.; Chu, Q.X. An integrated filtering antenna array with high selectivity and harmonics suppression. IEEE Trans. Microw. Theory Tech. 2016, 64, 1798–1805. [Google Scholar] [CrossRef]
- Park, J.; Jeong, M.; Hussain, N.; Rhee, S.; Park, S.; Kim, N. A low-profile high-gain filtering antenna for fifth generation systems based on nonuniform metasurface. Microw. Opt. Technol. Lett. 2019, 61, 2513–2519. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, Z.; Fang, X.; Zhang, H.; Jin, M.; Lu, J.; Luo, Q.; Gao, S. A waveguide slot filtering antenna with an embedded metamaterial structure. IEEE Trans. Antennas Propag. 2019, 67, 2953–2960. [Google Scholar] [CrossRef]
- Mao, C.X.; Gao, S.; Wang, Y.; Cheng, Z. Filtering antenna with two-octave harmonic suppression. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1361–1364. [Google Scholar] [CrossRef]
- Naeem, U.; Iqbal, A.; Shafique, M.F.; Bila, S. Efficient design methodology for a complex DRA-SIW filter-antenna subsystem. Int. J. Antennas Propag. 2017, 2017, 6401810. [Google Scholar] [CrossRef]
- Elias, B.B.Q.; Soh, P.J.; Al-Hadi, A.A.; Akkaraekthalin, P.; Vandenbosch, G.A.E. Bandwidth Optimization of a Textile PIFA with DGS Using Characteristic Mode Analysis. Sensors 2021, 21, 2516. [Google Scholar] [CrossRef]
- Jabire, A.H.; Ghaffar, A.; Li, X.J.; Abdu, A.; Saminu, S.; Alibakhshikenari, M.; Falcone, F.; Limiti, E. Metamaterial Based Design of Compact UWB/MIMO Monopoles Antenna with Characteristic Mode Analysis. Appl. Sci. 2021, 11, 1542. [Google Scholar] [CrossRef]
- Liang, P.; Wu, Q. Duality Principle of Characteristic Modes for the Analysis and Design of Aperture Antennas. IEEE Trans. Antennas Propag. 2018, 66, 2807–2817. [Google Scholar] [CrossRef]
- Lin, J.; Chu, Q. Increasing Bandwidth of Slot Antennas with Combined Characteristic Modes. IEEE Trans. Antennas Propag. 2018, 66, 3148–3153. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, C.-F. Characteristic Mode Design of Wide Band Circularly Polarized Patch Antenna Consisting of H-Shaped Unit Cells. IEEE Access 2018, 6, 25292–25299. [Google Scholar] [CrossRef]
- Deng, C.; Feng, Z.; Hum, S.V. MIMO mobile handset antenna merging characteristic modes for increased bandwidth. IEEE Trans. Antennas Propag. 2016, 64, 2660–2667. [Google Scholar] [CrossRef]
- Gao, G.; Zhang, R.-F.; Geng, W.-F.; Meng, H.-J.; Hu, B. Characteristic Mode Analysis of a Nonuniform Metasurface Antenna for Wearable Applications. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1355–1359. [Google Scholar] [CrossRef]
- Altair. CADFEKO Suite 7.0. Available online: https://help.altair.com/2021/feko/index.htm (accessed on 1 March 2021).
Reference | Configuration | Size (λ03) | BW | Gain (dBi) |
---|---|---|---|---|
[1] | Stacked slot patch with shoring pins | 1.13 ∗ 0.42 ∗ 0.06 | 23.5% | 4.7~7.5 |
[2] | Single patch with etched slots | 0.7 ∗ 0.59 ∗ 0.03 | 7.1% | 4.6~6.6 |
[6] | Single slot patch with n-order filter | 0.25 ∗ 0.3 ∗ 0.02 | 18.9% | 0.7~2.3 |
[10] | Metasurface with designed slots | 0.77 ∗ 0.77 ∗ 0.04 | 17.6% | 7~9 |
Prop. | Single combined slot patch | 1.1 ∗ 1.1 ∗ 0.01 | 30.6% | 3.9~5.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, C.; Wen, B.; Wu, W.; Ren, P. Wideband Filtering Slot Antenna Design with Stable Gain Using Characteristic Mode Analysis. Sensors 2022, 22, 2780. https://doi.org/10.3390/s22072780
Ni C, Wen B, Wu W, Ren P. Wideband Filtering Slot Antenna Design with Stable Gain Using Characteristic Mode Analysis. Sensors. 2022; 22(7):2780. https://doi.org/10.3390/s22072780
Chicago/Turabian StyleNi, Chao, Biyang Wen, Weijun Wu, and Ping Ren. 2022. "Wideband Filtering Slot Antenna Design with Stable Gain Using Characteristic Mode Analysis" Sensors 22, no. 7: 2780. https://doi.org/10.3390/s22072780
APA StyleNi, C., Wen, B., Wu, W., & Ren, P. (2022). Wideband Filtering Slot Antenna Design with Stable Gain Using Characteristic Mode Analysis. Sensors, 22(7), 2780. https://doi.org/10.3390/s22072780