A Deep Learning Method for Foot Progression Angle Detection in Plantar Pressure Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regular FPA Detection Procedure
2.1.1. Determine the Left and Right Foot Profiles Categories
2.1.2. Angle-Box
2.1.3. Point Benchmark Acquisition
2.1.4. Using Diagonal FPA Detection to Get the FPA
2.1.5. Measure the Distance
2.2. Statistical Analysis
3. Results
3.1. Training Results
3.2. FPA Comparison
3.3. Distance between Ground-Truth Point and Prediction Point
4. Discussion
4.1. YOLO Deep Learning Performance
4.2. YOLOv4 Showed Superior Results
4.3. Foot Profiles Prediction and Foot Axis Points Distance
4.4. Limitation in Diagonal FPA Acquisitions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramirez-Bautista, J.A.; Hernández-Zavala, A.; Chaparro-Cárdenas, S.L.; Huerta-Ruelas, J.A. Review on plantar data analysis for disease diagnosis. Biocybern. Biomed. Eng. 2018, 38, 342–361. [Google Scholar] [CrossRef]
- Rai, D.; Aggarwal, L. The study of plantar pressure distribution in normal and pathological foot. Pol. J. Med. Phys. Eng 2006, 12, 25–34. [Google Scholar]
- Wafai, L.; Zayegh, A.; Woulfe, J.; Aziz, S.M.; Begg, R. Identification of foot pathologies based on plantar pressure asymmetry. Sensors 2015, 15, 20392–20408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buldt, A.K.; Allan, J.J.; Landorf, K.B.; Menz, H.B. The relationship between foot posture and plantar pressure during walking in adults: A systematic review. Gait Posture 2018, 62, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Simic, M.; Wrigley, T.; Hinman, R.; Hunt, M.; Bennell, K. Altering foot progression angle in people with medial knee osteoarthritis: The effects of varying toe-in and toe-out angles are mediated by pain and malalignment. Osteoarthr. Cartil. 2013, 21, 1272–1280. [Google Scholar] [CrossRef] [Green Version]
- Lösel, S.; Burgess-Milliron, M.J.; Micheli, L.J.; Edington, C.J. A simplified technique for determining foot progression angle in children 4 to 16 years of age. J. Pediatr. Orthop. 1996, 16, 570–574. [Google Scholar] [CrossRef]
- Huang, Y.; Jirattigalachote, W.; Cutkosky, M.R.; Zhu, X.; Shull, P.B. Novel foot progression angle algorithm estimation via foot-worn, magneto-inertial sensing. IEEE Trans. Biomed. Eng. 2016, 63, 2278–2285. [Google Scholar] [CrossRef]
- Yan, S.-h.; Zhang, K.; Tan, G.-q.; Yang, J.; Liu, Z.-c. Effects of obesity on dynamic plantar pressure distribution in Chinese prepubescent children during walking. Gait Posture 2013, 37, 37–42. [Google Scholar] [CrossRef]
- Tokunaga, K.; Nakai, Y.; Matsumoto, R.; Kiyama, R.; Kawada, M.; Ohwatashi, A.; Fukudome, K.; Ohshige, T.; Maeda, T. Effect of foot progression angle and lateral wedge insole on a reduction in knee adduction moment. J. Appl. Biomech. 2016, 32, 454–461. [Google Scholar] [CrossRef]
- Lerch, T.D.; Eichelberger, P.; Baur, H.; Schmaranzer, F.; Liechti, E.F.; Schwab, J.M.; Siebenrock, K.A.; Tannast, M. Prevalence and diagnostic accuracy of in-toeing and out-toeing of the foot for patients with abnormal femoral torsion and femoroacetabular impingement: Implications for hip arthroscopy and femoral derotation osteotomy. Bone Jt. J. 2019, 101, 1218–1229. [Google Scholar] [CrossRef]
- Wu, D.; Lv, S.; Jiang, M.; Song, H. Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments. Comput. Electron. Agric. 2020, 178, 105742. [Google Scholar] [CrossRef]
- Müller, M.; Schwachmeyer, V.; Tohtz, S.; Taylor, W.R.; Duda, G.N.; Perka, C.; Heller, M.O. The direct lateral approach: Impact on gait patterns, foot progression angle and pain in comparison with a minimally invasive anterolateral approach. Arch. Orthop. Trauma Surg. 2012, 132, 725–731. [Google Scholar] [CrossRef]
- Ulrich, B.; Edd, S.; Bennour, S.; Jolles, B.; Favre, J. Ranges of modifications in step width and foot progression angle for everyday walking. Ann. Phys. Rehabil. Med. 2018, 61, e485. [Google Scholar] [CrossRef]
- Chen, D.K.; Haller, M.; Besier, T.F. Wearable lower limb haptic feedback device for retraining foot progression angle and step width. Gait Posture 2017, 55, 177–183. [Google Scholar] [CrossRef]
- Mouri, H.; Kim, W.-C.; Arai, Y.; Yoshida, T.; Oka, Y.; Ikoma, K.; Fujiwara, H.; Kubo, T. Effectiveness of medial-wedge insoles for children with intoeing gait who fall easily. Turk. J. Phys. Med. Rehabil. 2019, 65, 9. [Google Scholar] [CrossRef]
- Xia, H.; Xu, J.; Wang, J.; Hunt, M.A.; Shull, P.B. Validation of a smart shoe for estimating foot progression angle during walking gait. J. Biomech. 2017, 61, 193–198. [Google Scholar] [CrossRef]
- Young, J.; Simic, M.; Simic, M. A Novel foot Progression Angle Detection Method. In Computer Vision in Control Systems-4; Springer: Berlin/Heidelberg, Germany, 2018; pp. 299–317. [Google Scholar]
- Ranawat, A.S.; Gaudiani, M.A.; Slullitel, P.A.; Satalich, J.; Rebolledo, B.J. Foot progression angle walking test: A dynamic diagnostic assessment for femoroacetabular impingement and hip instability. Orthop. J. Sports Med. 2017, 5, 2325967116679641. [Google Scholar] [CrossRef]
- Kim, H.-j.; Park, I.; Lee, H.-j.; Lee, O. The reliability and validity of gait speed with different walking pace and distances against general health, physical function, and chronic disease in aged adults. J. Exerc. Nutr. Biochem. 2016, 20, 46. [Google Scholar] [CrossRef]
- Rutherford, D.; Hubley-Kozey, C.; Deluzio, K.; Stanish, W.; Dunbar, M. Foot progression angle and the knee adduction moment: A cross-sectional investigation in knee osteoarthritis. Osteoarthr. Cartil. 2008, 16, 883–889. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.-C.; Lin, H.-S.; Pan, H.-F.; Chang, W.-N.; Hsu, C.-J.; Renn, J.-H. Impact of foot progression angle on the distribution of plantar pressure in normal children. Clin. Biomech. 2014, 29, 196–200. [Google Scholar] [CrossRef]
- Tareco, J.M.; Miller, N.H.; MacWilliams, B.A.; Michelson, J.D. Defining flatfoot. Foot Ankle Int. 1999, 20, 456–460. [Google Scholar] [CrossRef]
- Kernozek, T.W.; Ricard, M.D. Foot placement angle and arch type: Effect on rearfoot motion. Arch. Phys. Med. Rehabil. 1990, 71, 988–991. [Google Scholar]
- Mousavi, S.H.; van Kouwenhove, L.; Rajabi, R.; Zwerver, J.; Hijmans, J.M. The effect of changing foot progression angle using real-time visual feedback on rearfoot eversion during running. PLoS ONE 2021, 16, e0246425. [Google Scholar] [CrossRef]
- Hertel, J.; Gay, M.R.; Denegar, C.R. Differences in postural control during single-leg stance among healthy individuals with different foot types. J. Athl. Train. 2002, 37, 129. [Google Scholar]
- Painceira-Villar, R.; García-Paz, V.; Becerro de Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; López-López, D.; Martiniano, J.; Pereiro-Buceta, H.; Martínez-Jiménez, E.M.; Calvo-Lobo, C. Impact of Asthma on Plantar Pressures in a Sample of Adult Patients: A Case-Control Study. J. Pers. Med. 2021, 11, 1157. [Google Scholar] [CrossRef]
- Charlton, J.M.; Xia, H.; Shull, P.B.; Hunt, M.A. Validity and reliability of a shoe-embedded sensor module for measuring foot progression angle during over-ground walking. J. Biomech. 2019, 89, 123–127. [Google Scholar] [CrossRef]
- Franklyn-Miller, A.; Bilzon, J.; Wilson, C.; McCrory, P. Can RSScan footscan® D3D™ software predict injury in a military population following plantar pressure assessment? A prospective cohort study. Foot 2014, 24, 6–10. [Google Scholar] [CrossRef]
- Hua, X.; Ono, Y.; Peng, L.; Cheng, Y.; Wang, H. Target detection within nonhomogeneous clutter via total bregman divergence-based matrix information geometry detectors. IEEE Trans. Signal. Process. 2021, 69, 4326–4340. [Google Scholar] [CrossRef]
- Li, H.; Wang, F.; Zeng, C.; Govoni, M.A. Signal Detection in Distributed MIMO Radar With Non-Orthogonal Waveforms and Sync Errors. IEEE Trans. Signal. Process. 2021, 69, 3671–3684. [Google Scholar] [CrossRef]
- Im Yi, T.; Lee, G.E.; Seo, I.S.; Huh, W.S.; Yoon, T.H.; Kim, B.R. Clinical characteristics of the causes of plantar heel pain. Ann. Rehabil. Med. 2011, 35, 507. [Google Scholar]
- Liu, W.; Xiao, Y.; Wang, X.; Deng, F. Plantar Pressure Detection System Based on Flexible Hydrogel Sensor Array and WT-RF. Sensors 2021, 21, 5964. [Google Scholar] [CrossRef] [PubMed]
- Hagan, M.; Teodorescu, H.-N. Sensors for foot plantar pressure signal acquisition. In Proceedings of the 2021 International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, 15–16 July 2021; pp. 1–4. [Google Scholar]
- Caderby, T.; Begue, J.; Dalleau, G.; Peyrot, N. Measuring Foot Progression Angle during Walking Using Force-Plate Data. Appl. Mech. 2022, 3, 174–181. [Google Scholar] [CrossRef]
- Nieuwenhuys, A.; Papageorgiou, E.; Desloovere, K.; Molenaers, G.; De Laet, T. Statistical parametric mapping to identify differences between consensus-based joint patterns during gait in children with cerebral palsy. PLoS ONE 2017, 12, e0169834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, H.; Charlton, J.M.; Shull, P.B.; Hunt, M.A. Portable, automated foot progression angle gait modification via a proof-of-concept haptic feedback-sensorized shoe. J. Biomech. 2020, 107, 109789. [Google Scholar] [CrossRef]
- Su, K.-H.; Kaewwichit, T.; Tseng, C.-H.; Chang, C.-C. Automatic footprint detection approach for the calculation of arch index and plantar pressure in a flat rubber pad. Multimed. Tools Appl. 2016, 75, 9757–9774. [Google Scholar] [CrossRef]
- Schelhaas, R.; Hajibozorgi, M.; Hortobágyi, T.; Hijmans, J.M.; Greve, C. Conservative interventions to improve foot progression angle and clinical measures in orthopedic and neurological patients–A systematic review and meta-analysis. J. Biomech. 2022, 130, 110831. [Google Scholar] [CrossRef]
- Chang, A.; Hurwitz, D.; Dunlop, D.; Song, J.; Cahue, S.; Hayes, K.; Sharma, L. The relationship between toe-out angle during gait and progression of medial tibiofemoral osteoarthritis. Ann. Rheum. Dis. 2007, 66, 1271–1275. [Google Scholar] [CrossRef]
- Yang, W.; Jiachun, Z. Real-time face detection based on YOLO. In Proceedings of the 2018 1st IEEE International Conference on Knowledge Innovation and Invention (ICKII), Jeju, Korea, 23–27 July 2018; pp. 221–224. [Google Scholar]
- Ardhianto, P.; Tsai, J.-Y.; Lin, C.-Y.; Liau, B.-Y.; Jan, Y.-K.; Akbari, V.B.H.; Lung, C.-W. A Review of the Challenges in Deep Learning for Skeletal and Smooth Muscle Ultrasound Images. Appl. Sci. 2021, 11, 4021. [Google Scholar] [CrossRef]
- Tsai, J.-Y.; Hung, I.Y.-J.; Guo, Y.L.; Jan, Y.-K.; Lin, C.-Y.; Shih, T.T.-F.; Chen, B.-B.; Lung, C.-W. Lumbar Disc Herniation Automatic Detection in Magnetic Resonance Imaging Based on Deep Learning. Front. Bioeng. Biotechnol. 2021, 9, 691. [Google Scholar] [CrossRef]
- Chen, H.-C.; Sunardi; Jan, Y.-K.; Liau, B.-Y.; Lin, C.-Y.; Tsai, J.-Y.; Li, C.-T.; Lung, C.-W. Using Deep Learning Methods to Predict Walking Intensity from Plantar Pressure Images. In Proceedings of the International Conference on Applied Human Factors and Ergonomics, Virtual Conference, 25–29 July 2021; pp. 270–277. [Google Scholar]
- Zhou, T.; Ruan, S.; Canu, S. A review: Deep learning for medical image segmentation using multi-modality fusion. Array 2019, 3, 100004. [Google Scholar] [CrossRef]
- Zhao, Z.-Q.; Zheng, P.; Xu, S.-T.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef] [Green Version]
- Shaodan, L.; Chen, F.; Zhide, C. A ship target location and mask generation algorithms base on mask rcnn. Int. J. Comput. Intell. Syst. 2019, 12, 1134–1143. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Wang, H.; Zhang, X.; Li, X.; Yang, H. An object detection system based on YOLO in traffic scene. In Proceedings of the 2017 6th International Conference on Computer Science and Network Technology (ICCSNT), Dalian, China, 21–22 October 2017; pp. 315–319. [Google Scholar]
- Kim, J.-A.; Sung, J.-Y.; Park, S.-H. Comparison of Faster-RCNN, YOLO, and SSD for real-time vehicle type recognition. In Proceedings of the 2020 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), Seoul, Korea, 1–3 November 2020; pp. 1–4. [Google Scholar]
- Zhuang, Z.; Liu, G.; Ding, W.; Raj, A.N.J.; Qiu, S.; Guo, J.; Yuan, Y. Cardiac VFM visualization and analysis based on YOLO deep learning model and modified 2D continuity equation. Comput. Med. Imaging Graph. 2020, 82, 101732. [Google Scholar] [CrossRef]
- Li, G.; Song, Z.; Fu, Q. A new method of image detection for small datasets under the framework of YOLO network. In Proceedings of the 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 12–14 October 2018; pp. 1031–1035. [Google Scholar]
- Ahmad, T.; Ma, Y.; Yahya, M.; Ahmad, B.; Nazir, S. Object detection through modified YOLO neural network. Sci. Program. 2020, 2020, 8403262. [Google Scholar] [CrossRef]
- Ünver, H.M.; Ayan, E. Skin lesion segmentation in dermoscopic images with combination of YOLO and grabcut algorithm. Diagnostics 2019, 9, 72. [Google Scholar] [CrossRef] [Green Version]
- Baccouche, A.; Garcia-Zapirain, B.; Olea, C.C.; Elmaghraby, A.S. Breast lesions detection and classification via yolo-based fusion models. Comput. Mater. Contin. 2021, 69, 1407–1425. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Mousavi, S.H.; van Kouwenhove, L.; Rajabi, R.; Zwerver, J.; Hijmans, J.M. The effect of changing mediolateral center of pressure on rearfoot eversion during treadmill running. Gait Posture 2021, 83, 201–209. [Google Scholar] [CrossRef]
- Zhou, H.; Li, L.; Liu, Z.; Zhao, K.; Chen, X.; Lu, M.; Yin, G.; Song, L.; Zhao, S.; Zheng, H. Deep learning algorithm to improve hypertrophic cardiomyopathy mutation prediction using cardiac cine images. Eur. Radiol. 2021, 31, 3931–3940. [Google Scholar] [CrossRef]
- He, Z.; Liu, T.; Yi, J. A wearable sensing and training system: Towards gait rehabilitation for elderly patients with knee osteoarthritis. IEEE Sens. J. 2019, 19, 5936–5945. [Google Scholar] [CrossRef]
- Fu, Q.; Chen, Y.; Li, Z.; Jing, Q.; Hu, C.; Liu, H.; Bao, J.; Hong, Y.; Shi, T.; Li, K. A deep learning algorithm for detection of oral cavity squamous cell carcinoma from photographic images: A retrospective study. EClinicalMedicine 2020, 27, 100558. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Kumar, C.; Punitha, R. YOLOv3 and YOLOv4: Multiple Object Detection for Surveillance Applications. In Proceedings of the 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 August 202; pp. 1316–1321.
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Andhy Panca Saputra, K. Waste Object Detection and Classification using Deep Learning Algorithm: YOLOv4 and YOLOv4-tiny. Turk. J. Comput. Math. Educ. (TURCOMAT) 2021, 12, 5583–5595. [Google Scholar]
- Zhou, F.; Zhao, H.; Nie, Z. Safety Helmet Detection Based on YOLOv5. In Proceedings of the 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA), Shenyang, China, 22–24 January 2021; pp. 6–11. [Google Scholar]
- Xiaoping, Z.; Jiahui, J.; Li, W.; Zhonghe, H.; Shida, L. People’s Fast Moving Detection Method in Buses Based on YOLOv5. Int. J. Sens. Sens. Netw. 2021, 9, 30. [Google Scholar] [CrossRef]
- Du, J. Understanding of object detection based on CNN family and YOLO. In Proceedings of the Journal of Physics: Conference Series, Hong Kong, China, 23–25 February 2018; p. 012029. [Google Scholar]
- Gandhi, J.; Jain, P.; Kurup, L. YOLO Based Recognition of Indian License Plates. In Advanced Computing Technologies and Applications; Springer Singapore: Singapore, 2020; pp. 411–421. [Google Scholar]
- Herschel, J.F.W. On a remarkable application of Cotes’s theorem. Philos. Trans. R. Soc. Lond. 1813, 103, 8–26. [Google Scholar] [CrossRef]
- Weisstein, E.W. Pythagorean Theorem. Available online: https://mathworld.wolfram.com/ (accessed on 13 March 2022).
- Nasirahmadi, A.; Sturm, B.; Edwards, S.; Jeppsson, K.-H.; Olsson, A.-C.; Müller, S.; Hensel, O. Deep learning and machine vision approaches for posture detection of individual pigs. Sensors 2019, 19, 3738. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Gu, X.; Xu, X.; Xu, D.; Zhang, T.; Liu, Z.; Dong, Q. Detection of concealed cracks from ground penetrating radar images based on deep learning algorithm. Constr. Build. Mater. 2021, 273, 121949. [Google Scholar] [CrossRef]
- Zhao-zhao, J.; Yu-fu, Z. Research on Application of Improved YOLO V3 Algorithm in Road Target Detection. In Proceedings of the Journal of Physics: Conference Series, Xi’an, China, 28–30 August 2020; p. 012060. [Google Scholar]
- Lan, W.; Dang, J.; Wang, Y.; Wang, S. Pedestrian detection based on YOLO network model. In Proceedings of the 2018 IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, China, 5–8 August 2018; pp. 1547–1551. [Google Scholar]
- Lee, Y.S.; Kim, M.G.; Byun, H.W.; Kim, S.B.; Kim, J.G. Reliability of the imaging software in the preoperative planning of the open-wedge high tibial osteotomy. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 846–851. [Google Scholar] [CrossRef] [PubMed]
- Galbusera, F.; Niemeyer, F.; Wilke, H.-J.; Bassani, T.; Casaroli, G.; Anania, C.; Costa, F.; Brayda-Bruno, M.; Sconfienza, L.M. Fully automated radiological analysis of spinal disorders and deformities: A deep learning approach. Eur. Spine J. 2019, 28, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, R.H.; Alshaye, M.B.; Alkanhal, M.M.; Alharbi, N.M.; Alzahrani, M.A.; Alrehaili, O.A. Deep Learning Based Algorithm For Automatic Scoliosis Angle Measurement. In Proceedings of the 2020 3rd International Conference on Computer Applications & Information Security (ICCAIS), Irbid, Jordan, 7–9 April 2020; pp. 1–5. [Google Scholar]
- Hernandez, V.; Dadkhah, D.; Babakeshizadeh, V.; Kulić, D. Lower body kinematics estimation from wearable sensors for walking and running: A deep learning approach. Gait Posture 2021, 83, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Yang, W.; Wei, S.; Cai, R.; Li, J.; Guo, S.; Li, Q.; Wang, J.; Li, X. Automated measurement of hip–knee–ankle angle on the unilateral lower limb X-rays using deep learning. Phys. Eng. Sci. Med. 2021, 44, 53–62. [Google Scholar] [CrossRef]
- Jiang, J.; Fu, X.; Qin, R.; Wang, X.; Ma, Z. High-Speed Lightweight Ship Detection Algorithm Based on YOLO-V4 for Three-Channels RGB SAR Image. Remote. Sens. 2021, 13, 1909. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU loss: Faster and better learning for bounding box regression. In Proceedings of the Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2020; pp. 12993–13000. [Google Scholar]
- Jeong, H.-J.; Park, K.-S.; Ha, Y.-G. Image preprocessing for efficient training of YOLO deep learning networks. In Proceedings of the 2018 IEEE International Conference on Big Data and Smart Computing (BigComp), Shanghai, China, 15 January 2018; pp. 635–637. [Google Scholar]
- Gao, M.; Cai, Q.; Zheng, B.; Shi, J.; Ni, Z.; Wang, J.; Lin, H. A Hybrid YOLO v4 and Particle Filter Based Robotic Arm Grabbing System in Nonlinear and Non-Gaussian Environment. Electronics 2021, 10, 1140. [Google Scholar] [CrossRef]
- Dagher, I.; Al-Bazzaz, H. Improving the component-based face recognition using enhanced viola–jones and weighted voting technique. Model. Simul. Eng. 2019, 2019, 8234124. [Google Scholar] [CrossRef] [Green Version]
- Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo Algorithm Developments. Procedia Comput. Sci. 2022, 199, 1066–1073. [Google Scholar] [CrossRef]
- Qiao, X.; Zhu, W.; Guo, D.; Jiang, T.; Chang, X.; Zhou, Y.; Zhu, D.; Cao, N. Design of Abnormal Behavior Detection System in the State Grid Business Office. In Proceedings of the International Conference on Artificial Intelligence and Security, Dublin, Ireland, 19–23 July 2021; pp. 510–520. [Google Scholar]
- Day, E.M.; Hahn, M.E. A comparison of metatarsophalangeal joint center locations on estimated joint moments during running. J. Biomech. 2019, 86, 64–70. [Google Scholar] [CrossRef]
- Hu, X.; Liu, Y.; Zhao, Z.; Liu, J.; Yang, X.; Sun, C.; Chen, S.; Li, B.; Zhou, C. Real-time detection of uneaten feed pellets in underwater images for aquaculture using an improved YOLO-V4 network. Comput. Electron. Agric. 2021, 185, 106135. [Google Scholar] [CrossRef]
- Yap, M.H.; Hachiuma, R.; Alavi, A.; Brüngel, R.; Cassidy, B.; Goyal, M.; Zhu, H.; Rückert, J.; Olshansky, M.; Huang, X. Deep learning in diabetic foot ulcers detection: A comprehensive evaluation. Comput. Biol. Med. 2021, 135, 104596. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, W. Face mask wearing detection algorithm based on improved YOLO-v4. Sensors 2021, 21, 3263. [Google Scholar] [CrossRef]
- Yu, T.; Yang, Y.; Li, B.; Sah, S.; Chen, K.; Yu, G. Importance of assistant intra-operative medial distraction technique for intraarticular calcaneus fractures. Acta Orthop. Belg. 2019, 85, 130–136. [Google Scholar]
- Abd-Elaziz, H.; Rahman, S.A.; Olama, K.; Thabet, N.; El-Din, S.N. Correlation between Foot Progression Angle and Balance in Cerebral Palsied Children. Trends Appl. Sci. Res. 2015, 10, 54. [Google Scholar] [CrossRef]
- Chen, R.-C. Automatic License Plate Recognition via sliding-window darknet-YOLO deep learning. Image Vis. Comput. 2019, 87, 47–56. [Google Scholar]
- Naraghi, R.; Slack-Smith, L.; Bryant, A. Plantar pressure measurements and geometric analysis of patients with and without Morton’s neuroma. Foot Ankle Int. 2018, 39, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Ling, X.; Liang, J.; Wang, D.; Yang, J. A Facial Expression Recognition System for Smart Learning Based on YOLO and Vision Transformer. In Proceedings of the 2021 7th International Conference on Computing and Artificial Intelligence, Tianjin, China, 23–26 April 2021; pp. 178–182. [Google Scholar]
Bounding | Parameter | YOLO Version | ||
---|---|---|---|---|
Box Type | v3 | v4 | v5x | |
Profile-box | ||||
mAP | 86.32% | 99.89% | 96.90% | |
Loss | 0.55 | 0.12 | 0.00 | |
Left foot (AP) | 92.93% | 100.00% | 95.80% | |
Right foot (AP) | 79.70% | 99.78% | 98.00% | |
Angle-box | ||||
mAP | 86.01% | 97.98% | 83.60% | |
Loss | 1.47 | 0.53 | 0.02 |
Parameter | Ground-Truth | Model | One-Way | Fisher LSD | ||||
---|---|---|---|---|---|---|---|---|
ANOVA | ||||||||
(Mean ± SE) | YOLOv3 (Mean ± SE) | YOLOv4 (Mean ± SE) | YOLOv5x (Mean ± SE) | p-Value | GT vs. YOLOv3 | GT vs. YOLOv4 | GT vs. YOLOv5x. | |
θ (degree) | 5.58 ± 0.10 | 6.07 ± 0.06 | 5.86 ± 0.09 | 6.75 ± 0.06 | <0.01 * | <0.01 * | 0.013 | <0.01 * |
Parameter | YOLO | One-Way | Fisher’s LSD | ||||
---|---|---|---|---|---|---|---|
ANOVA | Post Hoc | ||||||
v3 (Mean ± SE) | v4 (Mean ± SE) | v5x (Mean ± SE) | p-Value | YOLOv3 vs. YOLOv4 | YOLOv3 vs. YOLOv5x | YOLOv4 vs. YOLOv5x | |
(pixel) | 13.41 ± 0.52 | 9.23 ± 0.39 | 18.25 ± 0.62 | <0.01 * | <0.01 * | <0.01 * | <0.01 * |
(pixel) | 9.74 ± 0.38 | 7.34 ± 0.36 | 12.80 ± 0.43 | <0.01 * | <0.01 * | <0.01 * | <0.01 * |
Distance | Paired t-Test | ||
---|---|---|---|
Model | (Mean ± SE) | (Mean ± SE) | p-Value |
YOLOv3 | 13.41 ± 0.52 | 9.74 ± 0.38 | <0.01 * |
YOLOv4 | 9.23 ± 0.39 | 7.34 ± 0.36 | <0.01 * |
YOLOv5x | 18.25 ± 0.62 | 12.80 ± 0.43 | <0.01 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ardhianto, P.; Subiakto, R.B.R.; Lin, C.-Y.; Jan, Y.-K.; Liau, B.-Y.; Tsai, J.-Y.; Akbari, V.B.H.; Lung, C.-W. A Deep Learning Method for Foot Progression Angle Detection in Plantar Pressure Images. Sensors 2022, 22, 2786. https://doi.org/10.3390/s22072786
Ardhianto P, Subiakto RBR, Lin C-Y, Jan Y-K, Liau B-Y, Tsai J-Y, Akbari VBH, Lung C-W. A Deep Learning Method for Foot Progression Angle Detection in Plantar Pressure Images. Sensors. 2022; 22(7):2786. https://doi.org/10.3390/s22072786
Chicago/Turabian StyleArdhianto, Peter, Raden Bagus Reinaldy Subiakto, Chih-Yang Lin, Yih-Kuen Jan, Ben-Yi Liau, Jen-Yung Tsai, Veit Babak Hamun Akbari, and Chi-Wen Lung. 2022. "A Deep Learning Method for Foot Progression Angle Detection in Plantar Pressure Images" Sensors 22, no. 7: 2786. https://doi.org/10.3390/s22072786
APA StyleArdhianto, P., Subiakto, R. B. R., Lin, C. -Y., Jan, Y. -K., Liau, B. -Y., Tsai, J. -Y., Akbari, V. B. H., & Lung, C. -W. (2022). A Deep Learning Method for Foot Progression Angle Detection in Plantar Pressure Images. Sensors, 22(7), 2786. https://doi.org/10.3390/s22072786