Portable Deep Learning-Driven Ion-Sensitive Field-Effect Transistor Scheme for Measurement of Carbaryl Pesticide
Abstract
:1. Introduction
2. Materials and Research Methodology
2.1. Materials and Methods
2.1.1. ISFET Sensor
2.1.2. Preparation of Experimental Solutions and Pesticide
2.1.3. pH Sensitivity Test
2.1.4. Measurement of Carbaryl Concentrations
2.2. Deep Learning Regression-Based Models with Signal Compensation
3. Experimental Setup and Data Analysis
3.1. Experimental Equipment Setup and Data Collection
3.2. Calculation of Enzyme Inhibition by Carbaryl
3.3. Preparation of Training and Testing Datasets
3.4. Onsite Application of the Multiple-Input Deep Learning Model
4. Results and Discussion
4.1. ISFET pH Sensitivity Result
4.2. Measurement of Concentrations of Carbaryl Diluted with PBS Buffer
4.3. Comparison of the Actual and Predicted Carbaryl Concentrations in PBS Buffer
4.4. Prediction of Vegetable Extract-Diluted Carbaryl Concentrations Using a Multiple-Input Deep Learning Model
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- King, A.M.; Aaron, C.K. Organophosphate and carbamate poisoning. Emerg. Med. Clin. 2015, 33, 133–151. [Google Scholar] [CrossRef]
- Fatunsin, O.T.; Oyeyiola, A.O.; Moshood, M.O.; Akanbi, L.M.; Fadahunsi, D.E. Dietary risk assessment of organophosphate and carbamate pesticide residues in commonly eaten food crops. Sci. Afr. 2020, 8, e00442. [Google Scholar] [CrossRef]
- Tomlin, C.D. The Pesticide Manual: A World Compendium, 15th ed.; British Crop Production Council: Alton, UK, 2009. [Google Scholar]
- Kumar, V.; Kumar, P. Pesticides in agriculture and environment: Impacts on human health. In Contaminants in Agriculture and Environment: Health Risks and Remediation; Agro Environ Media: Haridwar, India, 2019; Volume 1, pp. 76–95. [Google Scholar] [CrossRef]
- Mahajan, R.; Blair, A.; Coble, J.; Lynch, C.F.; Hoppin, J.A.; Sandler, D.P.; Alavanja, M.C. Carbaryl exposure and incident cancer in the Agricultural Health Study. Int. J. Cancer. 2007, 121, 1799–1805. [Google Scholar] [CrossRef] [PubMed]
- Mount, M.E.; Dayton, A.D.; Oehme, F.W. Carbaryl residues in tissues and cholinesterase activities in brain and blood of rats receiving carbaryl. Toxicol. Appl. Pharmacol. 1981, 58, 282–296. [Google Scholar] [CrossRef]
- Terziev, V.; Petkova-Georgieva, S. Human health problems and classification of the most toxic pesticides. Int. E-J. Adv. Soc. Sci. 2019, 5, 1349–1356. [Google Scholar]
- Kharitonov, A.B.; Zayats, M.; Lichtenstein, A.; Katz, E.; Willner, I. Enzyme monolayer-functionalized field-effect transistors for biosensor applications. Sens. Actuators B Chem. 2000, 70, 222–231. [Google Scholar] [CrossRef]
- Hai, A.; Ben-Haim, D.; Korbakov, N.; Cohen, A.; Shappir, J.; Oren, R.; Spira, M.E.; Yitzchaik, S. Acetylcholinesterase–ISFET based system for the detection of acetylcholine and acetylcholinesterase inhibitors. Biosens. Bioelectron. 2006, 22, 605–612. [Google Scholar] [CrossRef]
- Gambi, N.; Pasteris, A.; Fabbri, E. Acetylcholinesterase activity in the earthworm Eisenia ndrei at different conditions of carbaryl exposure. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2007, 145, 678–685. [Google Scholar] [CrossRef]
- Jeon, J.; Kretschmann, A.; Escher, B.I.; Hollender, J. Characterization of acetylcholinesterase inhibition and energy allocation in Daphnia magna exposed to carbaryl. Ecotoxicol. Environ. Saf. 2013, 98, 28–35. [Google Scholar] [CrossRef]
- Watanabe, E.; Kobara, Y.; Baba, K.; Eun, H. Aqueous acetonitrile extraction for pesticide residue analysis in agricultural products with HPLC− DAD. Food Chem. 2014, 154, 7–12. [Google Scholar] [CrossRef]
- Ma, J.; Hou, L.; Wu, G.; Wang, L.; Wang, X.; Chen, L. Multi-walled carbon nanotubes for magnetic solid-phase extraction of six heterocyclic pesticides in environmental water samples followed by HPLC-DAD determination. Materials 2020, 13, 5729. [Google Scholar] [CrossRef] [PubMed]
- Maštovská, K.; Lehotay, S.J.; Anastassiades, M. Combination of analyte protectants to overcome matrix effects in routine GC analysis of pesticide residues in food matrixes. Anal. Chem. 2005, 77, 8129–8137. [Google Scholar] [CrossRef] [PubMed]
- Varela-Martínez, D.A.; González-Curbelo, M.Á.; González-Sálamo, J.; Hernández-Borges, J. Analysis of multiclass pesticides in dried fruits using QuEChERS-gas chromatography tandem mass spectrometry. Food Chem. 2019, 297, 124961–124968. [Google Scholar] [CrossRef] [PubMed]
- Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. 1970, 1, 70–71. [Google Scholar] [CrossRef]
- Bergveld, P. Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. IEEE Trans. Biomed. Eng. 1972, 5, 342–351. [Google Scholar] [CrossRef]
- Liu, N.; Chen, R.; Wan, Q. Recent advances in electric-double-layer transistors for bio-chemical sensing applications. Sensors 2019, 19, 3425. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.; Lee, S.W.; Lee, K.Y.; Park, C.; Kim, D.; Lee, J.S.; Yi, H.; Kim, B. A reconfigurable and portable highly sensitive biosensor platform for ISFET and enzyme-based sensors. IEEE Sens. J. 2016, 16, 4443–4451. [Google Scholar] [CrossRef]
- Bagshaw, E.A.; Wadham, J.L.; Tranter, M.; Beaton, A.D.; Hawkings, J.R.; Lamarche-Gagnon, G.; Mowlem, M.C. Measuring pH in low ionic strength glacial meltwaters using ion selective field effect transistor (ISFET) technology. Limnol. Oceanogr. Methods 2021, 19, 222–233. [Google Scholar] [CrossRef]
- Zorrilla, L.A.V.; Calvo, J.G.L. Monitoring system for ISFET and glass electrode behavior comparison. In Proceedings of the 2017 IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Cusco, Peru, 15–18 August 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Cacho-Soblechero, M.; Lande, T.S.; Georgiou, P. An ion-to-frequency ISFET architecture for ultra-low power applications. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Chaudhary, R.; Sharma, A.; Sinha, S.; Yadav, J.; Sharma, R.; Mukhiya, R.; Khanna, V.K. Fabrication and characterisation of Al gate n-metal–oxide–semiconductor field-effect transistor, on-chip fabricated with silicon nitride ion-sensitive field-effect transistor. IET Comput. Digit. Tech. 2016, 10, 268–272. [Google Scholar] [CrossRef]
- Zimmerman, N.; Presto, A.A.; Kumar, S.P.; Gu, J.; Hauryliuk, A.; Robinson, E.S.; Robinson, A.L.; Subramanian, R. A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring. Atmos. Meas. Tech. 2018, 11, 291–313. [Google Scholar] [CrossRef] [Green Version]
- Mehta, A.; Ahuja, H.; Sahu, N.; Bhardwaj, R.; Srivastava, S.; Sinha, S. Machine learning techniques for performance enhancement of Si3N4-gate ISFET pH sensor. In Proceedings of the 2020 IEEE 17th India Council International Conference (INDICON), New Delhi, India, 11–13 December 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Khatri, P.; Gupta, K.K.; Gupta, R.K. Drift compensation of commercial water quality sensors using machine learning to extend the calibration lifetime. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 3091–3099. [Google Scholar] [CrossRef]
- Tiwari, N.; Gupta, P. Temperature compensation circuit for ISFET based pH sensor. In Proceedings of the 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 26–27 August 2021; pp. 766–771. [Google Scholar] [CrossRef]
- Hsu, W.E.; Chang, Y.H.; Lin, C.T. A machine-learning assisted sensor for chemo-physical dual sensing based on ion-sensitive field-effect transistor architecture. IEEE Sens. J. 2019, 19, 9983–9990. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep learning. In Healthcare Informatics Research; MIT Press: Cambridge, MA, USA, 2016; Volume 22, pp. 351–354. [Google Scholar] [CrossRef] [Green Version]
- Schackart, K.E.; Yoon, J.Y. Machine learning enhances the performance of bioreceptor-free biosensors. Sensors 2021, 21, 5519. [Google Scholar] [CrossRef] [PubMed]
- Raji, H.; Tayyab, M.; Sui, J.; Mahmoodi, S.R.; Javanmard, M. Biosensors and machine learning for enhanced detection, stratification, and classification of cells: A review. arXiv 2021, arXiv:2101.01866. [Google Scholar] [CrossRef]
- Koo, B.H.; Kim, H.J.; Kwon, J.Y.; Chae, C.B. Deep learning-based human implantable nano molecular communications. In Proceedings of the ICC 2020-2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Pullano, S.A.; Tasneem, N.T.; Mahbub, I.; Shamsir, S.; Greco, M.; Islam, S.K.; Fiorillo, A.S. Deep submicron EGFET based on transistor association technique for chemical sensing. Sensors 2019, 19, 1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimenez-Jorquera, C.; Orozco, J.; Baldi, A. ISFET based microsensors for environmental monitoring. Sensors 2009, 10, 61–83. [Google Scholar] [CrossRef] [Green Version]
- Ha, D.; Sun, Q.; Su, K.; Wan, H.; Li, H.; Xu, N.; Sun, F.; Zhuang, L.; Hu, N.; Wang, P. Recent achievements in electronic tongue and bioelectronic tongue as taste sensors. Sens. Actuators B Chem. 2015, 207, 1136–1146. [Google Scholar] [CrossRef]
- Hom, N.M.; Promptmas, C.; Wat-Aksorn, K. Detection of DNA hybridization using protein A modified ion sensitive field effect transistor. Anal. Lett. 2015, 48, 1128–1138. [Google Scholar] [CrossRef]
- Muangsuwan, W.; Promptmas, C.; Jeamsaksiri, W.; Bunjongpru, W.; Srisuwan, A.; Hruanun, C.; Poyai, A.; Wongchitrat, P.; Yasawong, M. Development of an immunoFET biosensor for the detection of biotinylated PCR product. Heliyon 2016, 2, e00188. [Google Scholar] [CrossRef] [Green Version]
- Sasipongpana, S.; Rayanasukha, Y.; Prichanont, S.; Thanachayanont, C.; Porntheeraphat, S.; Houngkamhang, N. Extended–gate field effect transistor (EGFET) for carbaryl pesticide detection based on enzyme inhibition assay. Mater. Today Proc. 2017, 4, 6458–6465. [Google Scholar] [CrossRef]
- Welty, C. Cabbage Worms. 2009, pp. 1–4. Available online: https://forsythcommunitygardening.com/Documents/Cabbage_Worms.pdf (accessed on 6 April 2022).
- Dixon, R. Radio Receiver Design; CRC Press: Boca Raton, FL, USA, 1998; Volume 104. [Google Scholar]
- Xuan, Z.; Narayanan, K. Analog joint source-channel coding for Gaussian sources over AWGN channels with deep learning. In Proceedings of the 2020 International Conference on Signal Processing and Communications (SPCOM), Bangalore, India, 19–24 July 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Alhazmi, M.H.; Alymani, M.; Alhazmi, H.; Almarhabi, A.; Samarkandi, A.; Yao, Y.D. 5G signal identification using deep learning. In Proceedings of the 2020 29th Wireless and Optical Communications Conference (WOCC), Newark, NJ, USA, 1–2 May 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Sahu, N.; Bhardwaj, R.; Shah, H.; Mukhiya, R.; Sharma, R.; Sinha, S. Towards development of an ISFET-based smart pH sensor: Enabling machine learning for drift compensation in IoT applications. IEEE Sens. J. 2021, 21, 19013–19024. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Sinha, S.; Sahu, N.; Majumder, S.; Narang, P.; Mukhiya, R. Modeling and simulation of temperature drift for ISFET-based pH sensor and its compensation through machine learning techniques. Int. J. Circuit Theory Appl. 2019, 47, 954–970. [Google Scholar] [CrossRef]
- Margarit-Taulé, J.M.; Martín-Ezquerra, M.; Escudé-Pujol, R.; Jiménez-Jorquera, C.; Liu, S.C. Cross-compensation of FET sensor drift and matrix effects in the industrial continuous monitoring of ion concentrations. Sens. Actuators B Chem. 2022, 353, 131123–131132. [Google Scholar] [CrossRef]
- Doretti, L.; Ferrara, D.; Lora, S.; Schiavon, F.; Veronese, F.M. Acetylcholine biosensor involving entrapment of acetylcholinesterase and poly (ethylene glycol)-modified choline oxidase in a poly (vinyl alcohol) cryogel membrane. Enzym. Microb. Technol. 2000, 27, 279–285. [Google Scholar] [CrossRef]
- Kok, F.N.; Bozoglu, F.; Hasirci, V. Immobilization of acetylcholinesterase and choline oxidase in/on pHEMA membrane for biosensor construction. J. Biomater. Sci. Polym. Ed. 2001, 12, 1161–1176. [Google Scholar] [CrossRef]
Equipment/Sensor | Specification |
---|---|
Keysight 34461A Truevolt Digital Multimeter | DCV accuracy 35 ppm Max reading rate 1000 rdgs |
Keysight 34461A Truevolt Digital Multimeter | Thermistor 2 wire (10 kΩ) |
ISFET sensor | ISFET pH sensor kit (Winsense) |
Carbaryl Concentrations in Ethanolic Extract of White Cabbage (M) * | Predicted Carbaryl Concentrations Using the ISFET Sensor with Multiple-Input Deep Learning Regression (M) | ||
---|---|---|---|
Vendor 1 | Vendor 2 | Vendor 3 | |
1 × 10−7 | 0.998 × 10−7 | 0.941 × 10−7 | 0.965 × 10−7 |
1 × 10−6 | 0.966 × 10−6 | 0.977 × 10−6 | 0.958 × 10−6 |
1 × 10−5 | 0.946 × 10−5 | 0.979 × 10- 5 | 0.997 × 10−5 |
1 × 10−4 | 0.955 × 10−4 | 0.957 × 10−4 | 0.968 × 10−4 |
1 × 10−3 | 0.995 × 10−3 | 0.998 × 10−3 | 0.998 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Houngkamhang, N.; Phasukkit, P. Portable Deep Learning-Driven Ion-Sensitive Field-Effect Transistor Scheme for Measurement of Carbaryl Pesticide. Sensors 2022, 22, 3543. https://doi.org/10.3390/s22093543
Houngkamhang N, Phasukkit P. Portable Deep Learning-Driven Ion-Sensitive Field-Effect Transistor Scheme for Measurement of Carbaryl Pesticide. Sensors. 2022; 22(9):3543. https://doi.org/10.3390/s22093543
Chicago/Turabian StyleHoungkamhang, Nongluck, and Pattarapong Phasukkit. 2022. "Portable Deep Learning-Driven Ion-Sensitive Field-Effect Transistor Scheme for Measurement of Carbaryl Pesticide" Sensors 22, no. 9: 3543. https://doi.org/10.3390/s22093543
APA StyleHoungkamhang, N., & Phasukkit, P. (2022). Portable Deep Learning-Driven Ion-Sensitive Field-Effect Transistor Scheme for Measurement of Carbaryl Pesticide. Sensors, 22(9), 3543. https://doi.org/10.3390/s22093543