Detection of Failures in Metal Oxide Surge Arresters Using Frequency Response Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Leakage Current
2.2. Maximum Continuous Operating Voltage (MCOV)
2.3. Reference Voltage
2.4. Surge Arrester V×I Curve
- Below the peak MCOV: region of normal operation, with only a small capacitive leakage current;
- Just above the peak : region where the resistive leakage current dominates (with currents in the range of 0.05 mA–1 mA). The operation at this region must only be temporary, as the arrester is dissipating enough energy to trigger a thermal avalanche;
- Surge: region where the arrester will start to conduct elevated currents caused by a surge of either switching or lightning.
2.5. Thermal Runaway
2.6. Frequency Response Analysis
3. Results and Discussion
3.1. Analysis of Failure
3.2. Analysis of Slow Degradation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | Analog-to-Digital Converter |
DAC | Digital-to-Analog Converter |
DFT | Discrete Fourier Transform |
FRA | Frequency Response Analysis |
FPGA | Field Programmable Gate Array |
MCOV | Maximum Continuous Operating Voltage |
MLP | MultiLayer Perceptron |
MOSA | Metal Oxide Surge Arrester |
ZnO | Zinc Oxide |
RMS | Root Mean Square |
SiC | Silicon Carbide |
References
- He, J.; Lin, J.; Liu, W.; Wang, H.; Liao, Y.; Li, S. Structure-Dominated Failure of Surge Arresters by Successive Impulses. IEEE Trans. Power Deliv. 2017, 32, 1907–1914. [Google Scholar] [CrossRef]
- Jiang, A.; Fu, Z.; Sun, W.; Chen, J.; Wang, G.; Li, R. Experimental and analytical studies of the effects of multiple lightning impulse currents on metal-oxide arrester blocks. In Proceedings of the 2014 International Conference on Lightning Protection (ICLP), Shanghai, China, 11–18 October 2014; pp. 681–687. [Google Scholar] [CrossRef]
- Mardira, K.; Saha, T.; Sutton, R. Investigation of diagnostic techniques for metal oxide surge arresters. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 50–59. [Google Scholar] [CrossRef]
- Khodsuz, M.; Mirzaie, M.; Seyyedbarzegar, S. Metal oxide surge arrester condition monitoring based on analysis of leakage current components. Int. J. Electr. Power Energy Syst. 2015, 66, 188–193. [Google Scholar] [CrossRef]
- Reddy, G.N.; Reddy, B.S. A Review on the Condition Monitoring of HVDC Polymeric housed Surge Arresters. In Proceedings of the 2021 IEEE 5th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), Kozhikode, India, 3–5 December 2021; pp. 286–291. [Google Scholar] [CrossRef]
- Chrzan, K.L. Influence of moisture and partial discharges on the degradation of high-voltage surge arresters. Eur. Trans. Electr. Power 2004, 14, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Gumede, M.; D’Almaine, G.F. Surge arrester faults and their causes at eThekwini electricity. Int. J. Electr. Energy 2014, 2, 39–44. [Google Scholar] [CrossRef]
- Stojanovic, Z.N.; Stojkovic, Z.M. Evaluation of MOSA condition using leakage current method. Int. J. Electr. Power Energy Syst. 2013, 52, 87–95. [Google Scholar] [CrossRef]
- Lira, G.R.S.; Costa, E.G. MOSA Monitoring Technique Based on Analysis of Total Leakage Current. IEEE Trans. Power Deliv. 2013, 28, 1057–1062. [Google Scholar] [CrossRef]
- Voncina, V.; Pihler, J.; Milanovic, M. Extracting the Resistive Current Component from a Surge Arrester’s Leakage Current without Voltage Reference. Sensors 2021, 21, 1257. [Google Scholar] [CrossRef] [PubMed]
- Khodsuz, M.; Mirzaie, M. Evaluation of ultraviolet ageing, pollution and varistor degradation effects on harmonic contents of surge arrester leakage current. IET Sci. Meas. Technol. 2015, 9, 979–986. [Google Scholar] [CrossRef]
- Alfredo Osornio-Rios, R.; Antonino-Daviu, J.A.; De Jesus Romero-Troncoso, R. Recent Industrial Applications of Infrared Thermography: A Review. IEEE Trans. Ind. Inform. 2019, 15, 615–625. [Google Scholar] [CrossRef]
- Das, A.K.; Dey, D.; Chatterjee, B.; Dalai, S. A Transfer Learning Approach to Sense the Degree of Surface Pollution for Metal Oxide Surge Arrester Employing Infrared Thermal Imaging. IEEE Sens. J. 2021, 21, 16961–16968. [Google Scholar] [CrossRef]
- Laurentys Almeida, C.A.; Braga, A.P.; Nascimento, S.; Paiva, V.; Martins, H.J.A.; Torres, R.; Caminhas, W.M. Intelligent Thermographic Diagnostic Applied to Surge Arresters: A New Approach. IEEE Trans. Power Deliv. 2009, 24, 751–757. [Google Scholar] [CrossRef]
- Novizon; Abdul-Malek, Z. Electrical and temperature correlation to monitor fault condition of ZnO surge arrester. In Proceedings of the 2016 3rd International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), Semarang, Indonesia, 19–20 October 2016; pp. 182–186. [Google Scholar] [CrossRef]
- Huang, S.J.; Hsieh, C.H. A method to enhance the predictive maintenance of ZnO arresters in energy systems. Int. J. Electr. Power Energy Syst. 2014, 62, 183–188. [Google Scholar] [CrossRef]
- Ranjbar, B.; Darvishi, A.; Dashti, R.; Shaker, H.R. A Survey of Diagnostic and Condition Monitoring of Metal Oxide Surge Arrester in the Power Distribution Network. Energies 2022, 15, 8091. [Google Scholar] [CrossRef]
- Tatizawa, H.; Bacega, W.; Kanashiro, A.; Burani, G. Evaluation at field of aged 345kV class ZnO surge arresters. In Proceedings of the IEEE PES T&D 2010, New Orleans, LA, USA, 19–22 April 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Yahya, A.P.; Azkia, A.; Andrian, R.C. Partial Discharge Assessment with Ultrasound and TEV (Transient Earth Voltage) in Medium Voltage Substation for Power Distribution Systems Reliability of 18th Asian Games 2018. In Proceedings of the CIRED 2019, Madrid, Spain, 3–6 June 2019. [Google Scholar]
- Ariffin, M.F. Challenges in developing surge arrester failure detection methodologies in TNB distribution network. In Proceedings of the CIRED 2009—20th International Conference and Exhibition on Electricity Distribution—Part 1, Prague, Czech Republic, 8–11 June 2009; pp. 1–4. [Google Scholar]
- Wong, K. Electromagnetic emission based monitoring technique for polymer ZnO surge arresters. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 181–190. [Google Scholar] [CrossRef]
- Koga, Y.; Yoneda, Y.; Sato, T.; Yokoyama, S.; Matsumoto, S. Degradation characteristics on MOV of surge arrester used for 6.6 kV power distribution line. In Proceedings of the 2016 33rd International Conference on Lightning Protection (ICLP), Estoril, Portugal, 25–30 September 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Metwally, I.A.; Eladawy, M.; Feilat, E.A. Online condition monitoring of surge arresters based on third-harmonic analysis of leakage current. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 2274–2281. [Google Scholar] [CrossRef]
- Coffeen, L.; McBride, J. High voltage AC resistive current measurements using a computer based digital watts technique. IEEE Trans. Power Deliv. 1991, 6, 550–556. [Google Scholar] [CrossRef]
- Dobric, G.; Stojkovic, Z.; Stojanovic, Z. Experimental verification of monitoring techniques for metal-oxide surge arrester. IET Gener. Transm. Distrib. 2020, 14, 1021–1030. [Google Scholar] [CrossRef]
- Guedes da Costa, E.; Guedes da Lima, A.; Naidu, S. An electrothermal model for complete metal oxide surge arresters. In Proceedings of the 1999 Eleventh International Symposium on High Voltage Engineering, London, UK, 23–27 August 1999; Volume 2, pp. 242–245. [Google Scholar] [CrossRef]
- Seyyedbarzegar, S.M.; Mirzaie, M. Heat transfer analysis of metal oxide surge arrester under power frequency applied voltage. Energy 2015, 93, 141–153. [Google Scholar] [CrossRef]
- El-Rasheed, A. Surge and Lightning Arresters, Electrical Tester Online. April 2022. Available online: http://megger.com/electrical-tester/april-2022/surge-and-lightning-arresters (accessed on 13 May 2023).
- He, J.; Cheng, C.; Hu, J. Electrical degradation of double-Schottky barrier in ZnO varistors. AIP Adv. 2016, 6, 030701. [Google Scholar] [CrossRef] [Green Version]
- Sakshaug, E. A brief history of AC surge arresters. IEEE Power Eng. Rev. 1991, 11, 11–13. [Google Scholar] [CrossRef]
- Woodworth, J. Arrester Reference Voltage, ArresterFacts 027. 2011. Available online: http://www.arresterworks.com/arresterfacts/pdf_files/ArresterFacts_027_Arrester_Reference_Voltage.pdf (accessed on 26 April 2023).
- C62.11-2020; IEEE Standard for Metal-Oxide Surge Arresters for AC Power Circuits (>1 kV) Revision of IEEE Std C62.11-2012. IEEE: New York, NY, USA, 2020; pp. 1–120. [CrossRef]
- Sant’Ana, W.C.; Lambert-Torres, G.; Bonaldi, E.L.; Gama, B.R.; Zacarias, T.G.; Areias, I.A.d.S.; Arantes, D.d.A.; Assuncao, F.d.O.; Campos, M.M.; Steiner, F.M. Online Frequency Response Analysis of Electric Machinery through an Active Coupling System Based on Power Electronics. Sensors 2021, 21, 8057. [Google Scholar] [CrossRef] [PubMed]
- Blanquez, F.R.; Platero, C.A.; Rebollo, E.; Blanquez, F. Evaluation of the applicability of FRA for inter-turn fault detection in stator windings. In Proceedings of the 2013 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED), Valencia, Spain, 27–30 August 2013; pp. 177–182. [Google Scholar] [CrossRef]
- Platero, C.A.; Blazquez, F.; Frias, P.; Ramirez, D. Influence of Rotor Position in FRA Response for Detection of Insulation Failures in Salient-Pole Synchronous Machines. IEEE Trans. Energy Convers. 2011, 26, 671–676. [Google Scholar] [CrossRef]
- Sant’Ana, W.C.; Lambert-Torres, G.; Borges da Silva, L.E.; Bonaldi, E.L.; De Lacerda de Oliveira, L.E.; Salomon, C.P.; Borges da Silva, J.G. Influence of rotor position on the repeatability of frequency response analysis measurements on rotating machines and a statistical approach for more meaningful diagnostics. Electr. Power Syst. Res. 2016, 133, 71–78. [Google Scholar] [CrossRef]
- Al-Ameri, S.M.; Almutairi, A.; Kamarudin, M.S.; Yousof, M.F.M.; Abu-Siada, A.; Mosaad, M.I.; Alyami, S. Application of Frequency Response Analysis Technique to Detect Transformer Tap Changer Faults. Appl. Sci. 2021, 11, 3128. [Google Scholar] [CrossRef]
- Guerrero, J.M.; Castilla, A.E.; Sanchez-Fernandez, J.A.; Platero, C.A. Fluid Degradation Measurement Based on a Dual Coil Frequency Response Analysis. Sensors 2020, 20, 4155. [Google Scholar] [CrossRef] [PubMed]
- Sant’Ana, W.C.; Salomon, C.P.; Lambert-Torres, G.; Borges da Silva, L.E.; Bonaldi, E.L.; De Lacerda de Oliveira, L.E.; Borges da Silva, J.G. On the use of hypothesis tests as statistical indexes for frequency response analysis of electric machinery. Electr. Power Syst. Res. 2017, 147, 245–253. [Google Scholar] [CrossRef]
- Gama, B.R.; Sant’Ana, W.C.; Lambert-Torres, G.; Salomon, C.P.; Bonaldi, E.L.; Borges-Da-Silva, L.E.; Carvalho, R.B.B.; Steiner, F.M. FPGA Prototyping Using the STEMlab Board With Application on Frequency Response Analysis of Electric Machinery. IEEE Access 2021, 9, 26822–26838. [Google Scholar] [CrossRef]
- Asiminoael, L.; Blaabjerg, F.; Hansen, S. Detection is key—Harmonic detection methods for active power filter applications. IEEE Ind. Appl. Mag. 2007, 13, 22–33. [Google Scholar] [CrossRef]
- Kraetge, A.; Kruger, M.; Fong, P. Frequency response analysis—Status of the worldwide standardization activities. In Proceedings of the 2008 International Conference on Condition Monitoring and Diagnosis, Beijing, China, 21–24 April 2008; pp. 651–654. [Google Scholar] [CrossRef]
- OMICRON Lab. Bode 100 User Manual. 2017. Available online: https://www.omicron-lab.com/fileadmin/assets/Bode_100/Manuals/Bode-100-User-Manual-ENU10060503.pdf (accessed on 7 June 2023).
- Sant’ana, W.C.; Mollica, D.; Lambert-Torres, G.; Guimaraes, B.P.; Pinheiro, G.G.; Bonaldi, E.L.; Pereira, R.R.; Borges-Da-Silva, L.E.; Gonzatti, R.B.; Santana-Filho, J. 13.8 kV Operation of a Peak-Shaving Energy Storage Equipment With Voltage Harmonics Compensation Feature. IEEE Access 2020, 8, 182117–182132. [Google Scholar] [CrossRef]
- Sant’Ana, W.C.; Salomon, C.P.; Lambert-Torres, G.; Silva, L.E.B.; Bonaldi, E.L.; Oliveira, L.E.L.; Silva, J.G.B. Early detection of insulation failures on electric generators through online Frequency Response Analysis. Electr. Power Syst. Res. 2016, 140, 337–343. [Google Scholar] [CrossRef]
Sample | Megohmmeter Voltage | Insulation Resistance | |
---|---|---|---|
Before Failure | After Failure | ||
PR-4 | 2.5 kV | 51.0 G | <1 k |
5 kV | 9.3 G | <1 k | |
PR-5 | 2.5 kV | 52.1 G | <1 k |
5 kV | 10.2 G | <1 k |
Sample | LCR m @ 100 Hz | |
---|---|---|
Before Failure | After Failure | |
PR-4 | 15.98 M | 817.8 |
PR-5 | 16.92 M | 248.6 |
Cycles | Megohmeter (1 kV) | LCR @ 100 Hz |
---|---|---|
unstressed (baseline) | 19.2 G | 15.6 M |
1st cycle | 87.1 M | 15.72 M |
2nd cycle | 42.5 M | 14.96 M |
3rd cycle | 27.7 M | 14.56 M |
Cycles | Megohmeter (1 kV) | LCR @ 100 Hz |
---|---|---|
unstressed (baseline) | 135 G | 15.93 M |
1st cycle | 91.1 M | 15.8 M |
2nd cycle | 53.5 M | 15.4 M |
3rd cycle | 33.1 M | 14.67 M |
Cycles | Megohmeter (1 kV) | LCR @ 100 Hz |
---|---|---|
unstressed (baseline) | 7.9 G | 15.93 M |
1st cycle | 124 M | 15.8 M |
2nd cycle | 64.1 M | 15.4 M |
3rd cycle | 32.8 M | 14.79 M |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zacarias, T.G.; Martins, R.; Xavier, C.E.; Castioni, J.C.O.; Sant’Ana, W.C.; Lambert-Torres, G.; Gama, B.R.; Areias, I.A.d.S.; Bonaldi, E.L.; Assuncao, F.D.O. Detection of Failures in Metal Oxide Surge Arresters Using Frequency Response Analysis. Sensors 2023, 23, 5633. https://doi.org/10.3390/s23125633
Zacarias TG, Martins R, Xavier CE, Castioni JCO, Sant’Ana WC, Lambert-Torres G, Gama BR, Areias IAdS, Bonaldi EL, Assuncao FDO. Detection of Failures in Metal Oxide Surge Arresters Using Frequency Response Analysis. Sensors. 2023; 23(12):5633. https://doi.org/10.3390/s23125633
Chicago/Turabian StyleZacarias, Tiago Goncalves, Rafael Martins, Carlos Eduardo Xavier, Julio Cezar Oliveira Castioni, Wilson Cesar Sant’Ana, Germano Lambert-Torres, Bruno Reno Gama, Isac Antonio dos Santos Areias, Erik Leandro Bonaldi, and Frederico De Oliveira Assuncao. 2023. "Detection of Failures in Metal Oxide Surge Arresters Using Frequency Response Analysis" Sensors 23, no. 12: 5633. https://doi.org/10.3390/s23125633
APA StyleZacarias, T. G., Martins, R., Xavier, C. E., Castioni, J. C. O., Sant’Ana, W. C., Lambert-Torres, G., Gama, B. R., Areias, I. A. d. S., Bonaldi, E. L., & Assuncao, F. D. O. (2023). Detection of Failures in Metal Oxide Surge Arresters Using Frequency Response Analysis. Sensors, 23(12), 5633. https://doi.org/10.3390/s23125633