Experimental Guesswork with Quantum Side Information Using Twisted Light
Abstract
:1. Introduction
2. Theory
3. Experiment
3.1. Experimental Setup
3.2. Experimental Determination of Guesswork
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Guesswork Calculation with a Standard Basis Measurement
Appendix A.1. d = 2
Appendix A.2. General Dimension d
Appendix B. Guesswork Calculation with the Optimal Projective Measurement
Appendix B.1. Guesswork Calculation for d = 3 with the Numerically Determined Measurement
0.4809 | 0.0120 | 0.0071 | |
0.0075 | 0.0024 | 0.4901 | |
0.0116 | 0.4857 | 0.0028 | |
0.2574 | 0.1170 | 0.1257 | |
0.1347 | 0.1482 | 0.2171 | |
0.1079 | 0.2348 | 0.1572 |
Appendix B.2. Guesswork Calculation for d = 4 with the Numerically Determined Measurement
Appendix C. Alphabet of Input State Beams Used
References
- Massey, J. Guessing and entropy. In Proceedings of the 1994 IEEE International Symposium on Information Theory, Trondheim, Norway, 27 June–1 July 1994; p. 204. [Google Scholar]
- Arikan, E. An inequality on guessing and its application to sequential decoding. IEEE Trans. Inf. Theory 1996, 42, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2006. [Google Scholar]
- Chen, W.; Cao, Y.; Wang, H.; Feng, Y. Minimum Guesswork Discrimination between Quantum States. Quantum Inf. Comput. 2015, 15, 737–758. [Google Scholar] [CrossRef]
- Hanson, E.P.; Katariya, V.; Datta, N.; Wilde, M.M. Guesswork with Quantum Side Information. IEEE Trans. Inf. Theory 2022, 68, 322–338. [Google Scholar] [CrossRef]
- Dall’Arno, M.; Buscemi, F.; Koshiba, T. Guesswork of a Quantum Ensemble. IEEE Trans. Inf. Theory 2022, 68, 3139–3143. [Google Scholar] [CrossRef]
- Dall’Arno, M.; Buscemi, F.; Koshiba, T. Classical computation of quantum guesswork. arXiv 2021, arXiv:2112.01666. [Google Scholar]
- Dall’Arno, M. Quantum guesswork. arXiv 2023, arXiv:2302.06783. [Google Scholar]
- Avirmed, B.; Niinomi, K.; Dall’Arno, M. Adversarial guesswork with quantum side information. arXiv 2023, arXiv:2306.12633. [Google Scholar]
- Bell, T.; Li, B.; Zhang, S. Structured light techniques and applications. In Wiley Encyclopedia of Electrical and Electronics Engineering; Wiley-Interscience: Hoboken, NJ, USA, 1999; pp. 1–24. [Google Scholar]
- Geng, J. Structured-light 3D surface imaging: A tutorial. Adv. Opt. Photonics 2011, 3, 128–160. [Google Scholar] [CrossRef]
- Lavery, M.P.; Speirits, F.C.; Barnett, S.M.; Padgett, M.J. Detection of a spinning object using light’s orbital angular momentum. Science 2013, 341, 537–540. [Google Scholar] [CrossRef] [Green Version]
- Malik, M.; Boyd, R. Quantum imaging technologies. La Rivista del Nuovo Cimento 2014, 37, 273–332. [Google Scholar]
- Chen, L.; Lei, J.; Romero, J. Quantum digital spiral imaging. Light Sci. Appl. 2014, 3, e153. [Google Scholar] [CrossRef] [Green Version]
- Mirhosseini, M.; Magaña-Loaiza, O.S.; O’Sullivan, M.N.; Rodenburg, B.; Malik, M.; Lavery, M.P.; Padgett, M.J.; Gauthier, D.J.; Boyd, R.W. High-dimensional quantum cryptography with twisted light. New J. Phys. 2015, 17, 033033. [Google Scholar] [CrossRef] [Green Version]
- Magaña-Loaiza, O.S.; Mirhosseini, M.; Cross, R.M.; Rafsanjani, S.M.H.; Boyd, R.W. Hanbury Brown and Twiss interferometry with twisted light. Sci. Adv. 2016, 2, e1501143. [Google Scholar] [CrossRef] [Green Version]
- Rubinsztein-Dunlop, H.; Forbes, A.; Berry, M.V.; Dennis, M.R.; Andrews, D.L.; Mansuripur, M.; Denz, C.; Alpmann, C.; Banzer, P.; Bauer, T.; et al. Roadmap on structured light. J. Opt. 2016, 19, 013001. [Google Scholar] [CrossRef]
- Yang, Z.; Magaña-Loaiza, O.S.; Mirhosseini, M.; Zhou, Y.; Gao, B.; Gao, L.; Rafsanjani, S.M.H.; Long, G.L.; Boyd, R.W. Digital spiral object identification using random light. Light Sci. Appl. 2017, 6, e17013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milione, G.; Wang, T.; Han, J.; Bai, L. Remotely sensing an object’s rotational orientation using the orbital angular momentum of light. Chin. Opt. Lett. 2017, 15, 030012. [Google Scholar] [CrossRef] [Green Version]
- Magaña-Loaiza, O.S.; León-Montiel, R.d.J.; Perez-Leija, A.; U’Ren, A.B.; You, C.; Busch, K.; Lita, A.E.; Nam, S.W.; Mirin, R.P.; Gerrits, T. Multiphoton quantum-state engineering using conditional measurements. npj Quantum Inf. 2019, 5, 80. [Google Scholar] [CrossRef] [Green Version]
- Jack, B.; Leach, J.; Romero, J.; Franke-Arnold, S.; Ritsch-Marte, M.; Barnett, S.; Padgett, M. Holographic ghost imaging and the violation of a Bell inequality. Phys. Rev. Lett. 2009, 103, 083602. [Google Scholar] [CrossRef] [Green Version]
- Siegman, A.E. Lasers; University Science Books: Melville, NY, USA, 1986. [Google Scholar]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.; Woerdman, J. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185. [Google Scholar] [CrossRef]
- Giovannini, D.; Romero, J.; Leach, J.; Dudley, A.; Forbes, A.; Padgett, M.J. Characterization of High-Dimensional Entangled Systems via Mutually Unbiased Measurements. Phys. Rev. Lett. 2013, 110, 143601. [Google Scholar] [CrossRef] [Green Version]
- D’Ambrosio, V.; Cardano, F.; Karimi, E.; Nagali, E.; Santamato, E.; Marrucci, L.; Sciarrino, F. Test of mutually unbiased bases for six-dimensional photonic quantum systems. Sci. Rep. 2013, 3, 2726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, M.; O’Sullivan, M.; Rodenburg, B.; Mirhosseini, M.; Leach, J.; Lavery, M.P.J.; Padgett, M.J.; Boyd, R.W. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Opt. Express 2012, 20, 13195–13200. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.H.; Brassard, G. Quantum Cryptography: Public Key Distribution and Coin Tossing. In Proceedings of the IEEE International Conference on Computers Systems and Signal Processing, Bangalore, India, 10–12 December 1984; pp. 175–179. [Google Scholar]
- Ando, T.; Ohtake, Y.; Matsumoto, N.; Inoue, T.; Fukuchi, N. Mode purities of Laguerre–Gaussian beams generated via complex-amplitude modulation using phase-only spatial light modulators. Opt. Lett. 2009, 34, 34–36. [Google Scholar] [CrossRef] [PubMed]
- Bhusal, N.; Lohani, S.; You, C.; Hong, M.; Fabre, J.; Zhao, P.; Knutson, E.M.; Glasser, R.T.; Magaña-Loaiza, O.S. Spatial Mode Correction of Single Photons Using Machine Learning. Adv. Quantum Technol. 2021, 4, 2000103. [Google Scholar] [CrossRef]
- Sarker, A.; Kermani, M.M.; Azarderakhsh, R. Fault Detection Architectures for Inverted Binary Ring-LWE Construction Benchmarked on FPGA. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 1403–1407. [Google Scholar] [CrossRef]
- Mozaffari-Kermani, M.; Azarderakhsh, R.; Aghaie, A. Reliable and Error Detection Architectures of Pomaranch for False-Alarm-Sensitive Cryptographic Applications. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2015, 23, 2804–2812. [Google Scholar] [CrossRef]
- Aghaie, A.; Mozaffari Kermani, M.; Azarderakhsh, R. Fault Diagnosis Schemes for Low-Energy Block Cipher Midori Benchmarked on FPGA. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2017, 25, 1528–1536. [Google Scholar] [CrossRef]
- Seo, H.; Azarderakhsh, R. Curve448 on 32-Bit ARM Cortex-M4. In Proceedings of the Information Security and Cryptology—ICISC 2020, Seoul, Republic of Korea, 2–4 December 2020; Hong, D., Ed.; Springer: Cham, Switzerland, 2021; pp. 125–139. [Google Scholar]
- Bisheh-Niasar, M.; Azarderakhsh, R.; Mozaffari-Kermani, M. Cryptographic Accelerators for Digital Signature Based on Ed25519. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2021, 29, 1297–1305. [Google Scholar] [CrossRef]
- Hedemann, S.R. Hyperspherical Parameterization of Unitary Matrices. arXiv 2013, arXiv:1303.5904. [Google Scholar]
Dimension | Theoretical Value | Experimental Value |
---|---|---|
Standard basis measurement | ||
d = 2 | 1.75 | |
d = 3 | 2 | |
d = 4 | 2.25 | |
Optimized projective measurement | ||
d = 2 | 1.709 | |
d = 3 | 1.9425 | |
d = 4 | 2.1429 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katariya, V.; Bhusal, N.; You, C. Experimental Guesswork with Quantum Side Information Using Twisted Light. Sensors 2023, 23, 6570. https://doi.org/10.3390/s23146570
Katariya V, Bhusal N, You C. Experimental Guesswork with Quantum Side Information Using Twisted Light. Sensors. 2023; 23(14):6570. https://doi.org/10.3390/s23146570
Chicago/Turabian StyleKatariya, Vishal, Narayan Bhusal, and Chenglong You. 2023. "Experimental Guesswork with Quantum Side Information Using Twisted Light" Sensors 23, no. 14: 6570. https://doi.org/10.3390/s23146570
APA StyleKatariya, V., Bhusal, N., & You, C. (2023). Experimental Guesswork with Quantum Side Information Using Twisted Light. Sensors, 23(14), 6570. https://doi.org/10.3390/s23146570