Determining the Elastic Constants of Isotropic Materials by Measuring the Phase Velocities of the A0 and S0 Modes of Lamb Waves
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Fundamentals of Lamb Wave Propagation
2.2. Determination of Elastic Constants Based on the Phase Velocities
2.3. Measurement of the A0 and S0 Modes’ Phase Velocities
3. Estimation of Elastic Constants Using Simulated Signals
3.1. Formation of Simulated Signals for Fundamental Modes
3.2. Parameter Selection of the Proposed Algorithm
3.3. Evaluation of Uncertainties in Simulation Results
4. Experimental Verification
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blitz, J. Electrical and Magnetic Methods of Non-Destructive Testing; Springer: Dordrecht, The Netherlands, 1997; p. 261. [Google Scholar]
- Hellier, C.J. Handbook of Nondestructive Evaluation, 2nd ed.; McGraw-Hill Companies: New York, NY, USA, 2013; p. 720. [Google Scholar]
- Staszewski, W.J.; Boller, C.; Tomlinson, G.R. Health Monitoring of Aerospace Structures: Smart Sensor Technologies and Signal Processing; John Wiley & Sons: Padstow, UK, 2004; p. 266. [Google Scholar]
- Green, R.E. Ultrasonic Investigation of Mechanical Properties, Vol.3 of Treatise on Materials Science and Technology; Academic Press: Cambridge, MA, USA, 1973; pp. 1–166. [Google Scholar]
- Rose, J.L. Ultrasonic Guided Waves in Solid Media; Pennsylvania State University: State College, PA, USA, 2014; pp. 1–512. [Google Scholar] [CrossRef]
- Hutchins, D.A.; Lundgren, K.; Palmer, S.B. A laser study of transient Lamb waves in thin materials. J. Acoust. Soc. Am. 1989, 85, 1441–1448. [Google Scholar] [CrossRef]
- Hayashi, Y.; Ogawa, S.; Cho, H.; Takemoto, M. Non-contact estimation of thickness and elastic properties of metallic foils by laser-generated Lamb waves. NDT E Int. 1999, 32, 21–27. [Google Scholar] [CrossRef]
- Zhang, R.; Wan, M.; Cao, W. Parameter measurement of thin elastic layers using low-frequency multi-mode ultrasonic lamb waves. IEEE Trans. Instrum. Meas. 2001, 50, 1397–1403. [Google Scholar] [CrossRef]
- Sait, S.; Abbas, Y.; Boubenider, F. Estimation of thin metal sheets thickness using piezoelectric generated ultrasound. Appl. Acoust. 2015, 99, 85–91. [Google Scholar] [CrossRef]
- Rogers, W.P. Elastic property measurement using Rayleigh-Lamb waves. Res. Nondestr. Eval. 1995, 6, 185–208. [Google Scholar] [CrossRef]
- Dean, J.L.; Trillo, C.; Doval, A.F.; Fernandez, J.L. Determination of thickness and elastic constants of aluminum plates from full-field wavelength measurements of single-mode narrowband Lamb waves. J. Acoust. Soc. Am. 2008, 124, 1477–1489. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Cunfu, H.; Guorong, S.; Bin, W.; Chung, C.H.; Lee, Y.C. Elastic properties inversion of an isotropic plate by hybrid particle swarm-based-simulated annealing optimization technique from leaky lamb wave measurements using acoustic microscopy. J. Nondestruct. Eval. 2014, 33, 651–662. [Google Scholar] [CrossRef]
- Sale, M.; Rizo, P.; Marzani, Z. Semi-analytical formulation for guided waves-based reconstruction of elastic moduli. Mech. Syst. Signal Process. 2011, 25, 2241–2256. [Google Scholar] [CrossRef]
- Ratassepp, M.; Rao, J.; Fan, Z. Quantitative imaging of Young’s modulus in plates using guided wave tomography. NDT E Int. 2018, 94, 22–30. [Google Scholar] [CrossRef]
- Zhu, L.; Duan, X.; Yu, Z. On the Identification of Elastic Moduli of In-Service Rail by Ultrasonic Guided Waves. Sensors 2020, 20, 1769. [Google Scholar] [CrossRef] [Green Version]
- Orta, A.H.; Kersemans, M.; Van Den Abeele, K. On the identification of orthotropic elastic stiffness using 3D guided wavefield Data. Sensors 2022, 22, 5314. [Google Scholar] [CrossRef] [PubMed]
- Ambrozinski, L.; Packo, P.; Pieczonka, L.; Stepinski, T.; Uhl, T.; Staszewski, W.J. Identification of material properties—Efficient modeling approach based on guided wave propagation and spatial multiple signal classification. Struct. Control Health Monitor. 2015, 22, 969–983. [Google Scholar] [CrossRef]
- Fernández, J.L.; Deán, J.L.; Trillo, C.; Doval, A.F. Elastic constants determination by direct measurement of the beat wavelength between A0 and S0 Lamb modes with pulsed TV holography. Opt. Lasers Eng. 2007, 45, 618–630. [Google Scholar] [CrossRef] [Green Version]
- Pabisek, E.; Waszczyszyn, Z. Identification of thin elastic isotropic plate parameters applying Guided Wave Measurement and Artificial Neural Networks. Mech. Syst. Signal Process. 2015, 64–65, 403–412. [Google Scholar] [CrossRef]
- Gao, X.; Tian, Y.; Jiao, J.; Li, C.; Gao, J. Non-destructive measurements of thickness and elastic constants of plate structures based on Lamb waves and particle swarm optimization. Measurement 2022, 204, 111981. [Google Scholar] [CrossRef]
- Chen, H.; Ling, F.; Zhu, W.; Sun, D.; Liu, X.; Li, Y.; Li, D.; Xu, K.; Liu, Z.; Ta, D. Waveform inversion for wavenumber extraction and waveguide characterization using ultrasonic Lamb waves. Measurement 2023, 207, 112360. [Google Scholar] [CrossRef]
- Bochud, N.; Laurent, J.; Bruno, F.; Royer, D.; Prada, C. Towards real-time assessment of anisotropic plate properties using elastic guided waves. J. Acoust. Soc. Am. 2018, 143, 1138. [Google Scholar] [CrossRef]
- Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef] [Green Version]
- Tumšys, O. Experimental method for simultaneous determination of the Lamb wave A0 modes group and phase velocities. Materials 2022, 15, 2976. [Google Scholar] [CrossRef]
- Draudviliene, L.; Ait Aider, H.; Tumsys, O.; Mazeika, L. The Lamb waves phase velocity dispersion evaluation using an hybrid measurement technique. Compos. Struct. 2018, 184, 1156–1164. [Google Scholar] [CrossRef]
- Alleyne, D.; Cawley, P. A two-dimensional Fourier transform method for the measurement of propagating multimode signals. J. Acoust. Soc. Am. 1991, 89, 1159–1168. [Google Scholar] [CrossRef]
- Rocha, B.; Silva, C.; Suleman, A. Structural Health Monitoring System Using Piezoelectric Networks with Tuned Lamb Waves. Shock. Vib. 2010, 17, 677–695. [Google Scholar] [CrossRef]
Δ1 | Δ2 | Δ3 | Δ4 | Δ5 | Δ6 | Δ7 | Δ8 | ||
---|---|---|---|---|---|---|---|---|---|
S0 mode | ◊ | ◊ | ◊ | ◊ | |||||
A0 mode | ◊ | ◊ | ◊ | ◊ | |||||
Young’s modulus, E | +20% | +20% | −20% | −20% | |||||
Poisson’s ratio, ν | +20% | +20% | −20% | −20% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tumšys, O.; Mažeika, L. Determining the Elastic Constants of Isotropic Materials by Measuring the Phase Velocities of the A0 and S0 Modes of Lamb Waves. Sensors 2023, 23, 6678. https://doi.org/10.3390/s23156678
Tumšys O, Mažeika L. Determining the Elastic Constants of Isotropic Materials by Measuring the Phase Velocities of the A0 and S0 Modes of Lamb Waves. Sensors. 2023; 23(15):6678. https://doi.org/10.3390/s23156678
Chicago/Turabian StyleTumšys, Olgirdas, and Liudas Mažeika. 2023. "Determining the Elastic Constants of Isotropic Materials by Measuring the Phase Velocities of the A0 and S0 Modes of Lamb Waves" Sensors 23, no. 15: 6678. https://doi.org/10.3390/s23156678
APA StyleTumšys, O., & Mažeika, L. (2023). Determining the Elastic Constants of Isotropic Materials by Measuring the Phase Velocities of the A0 and S0 Modes of Lamb Waves. Sensors, 23(15), 6678. https://doi.org/10.3390/s23156678