High-Throughput Effect-Directed Monitoring Platform for Specific Toxicity Quantification of Unknown Waters: Lead-Caused Cell Damage as a Model Using a DNA Hybrid Chain-Reaction-Induced AuNPs@aptamer Self-Assembly Assay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Apparatus
2.3. Functionalization of AuNPs with DNA
2.4. Preparation of Gold Nanoparticle-Aptamer Polymers (GAPs)
2.5. Gel Electrophoresis
2.6. Fluorescence Measurements
2.7. Cell Culture
2.8. Sampling Preparation and Treatment
3. Results and Discussion
3.1. Rationale for the Evaluation System
3.2. Characterization of GAPs
3.3. The Performance of GAPs Sensor
3.4. Optimization of the Method
3.5. Method Verification and Real Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Escher, B.I.; Stapleton, H.M.; Schymanski, E.L. Tracking complex mixtures of chemicals in our changing environment. Science 2020, 367, 388–392. [Google Scholar] [CrossRef]
- Kumar, N.; Zhao, H.N.; Awoyemi, O.; Kolodziej, E.P.; Crago, J. Toxicity Testing of Effluent-Dominated Stream Using Predictive Molecular-Level Toxicity Signatures Based on High-Resolution Mass Spectrometry: A Case Study of the Lubbock Canyon Lake System. Environ. Sci. Technol. 2021, 55, 3070–3080. [Google Scholar] [CrossRef] [PubMed]
- Rotter, S.; Gunold, R.; Mothes, S.; Paschke, A.; Brack, W.; Altenburger, R.; Schmitt-Jansen, M. Pollution-Induced Community Tolerance To Diagnose Hazardous Chemicals in Multiple Contaminated Aquatic Systems. Environ. Sci. Technol. 2015, 49, 10048–10056. [Google Scholar] [CrossRef]
- Sobus, J.R.; Wambaugh, J.F.; Isaacs, K.K.; Williams, A.J.; McEachran, A.D.; Richard, A.M.; Grulke, C.M.; Ulrich, E.M.; Rager, J.E.; Strynar, M.J.; et al. Integrating tools for non-targeted analysis research and chemical safety evaluations at the US EPA. J. Expo. Sci. Environ. Epidemiol. 2018, 28, 411–426. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Wang, H.; Zhuo, Y.; Song, D.; Li, C.; Zhu, A.; Long, F. Reusable smartphone-facilitated mobile fluorescence biosensor for rapid and sensitive on-site quantitative detection of trace pollutants. Biosens. Bioelectron. 2022, 199, 113863. [Google Scholar] [CrossRef]
- Brack, W.; Ait-Aissa, S.; Burgess, R.M.; Busch, W.; Creusot, N.; Di Paolo, C.; Escher, B.I.; Mark Hewitt, L.; Hilscherova, K.; Hollender, J.; et al. Effect-directed analysis supporting monitoring of aquatic environments--An in-depth overview. Sci. Total Environ. 2016, 544, 1073–1118. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Cuthbertson, A.A.; Richardson, S.D. Effect-Directed Analysis (EDA): A Promising Tool for Nontarget Identification of Unknown Disinfection Byproducts in Drinking Water. Environ. Sci. Technol. 2020, 54, 1290–1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Zhang, J.; You, J. Diagnosis of complex mixture toxicity in sediments: Application of toxicity identification evaluation (TIE) and effect-directed analysis (EDA). Environ. Pollut. 2018, 237, 944–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mijangos, L.; Krauss, M.; de Miguel, L.; Ziarrusta, H.; Olivares, M.; Zuloaga, O.; Izagirre, U.; Schulze, T.; Brack, W.; Prieto, A.; et al. Application of the Sea Urchin Embryo Test in Toxicity Evaluation and Effect-Directed Analysis of Wastewater Treatment Plant Effluents. Environ. Sci. Technol. 2020, 54, 8890–8899. [Google Scholar] [CrossRef]
- Guo, J.; Shi, W.; Chen, Q.; Deng, D.; Zhang, X.; Wei, S.; Yu, N.; Giesy, J.P.; Yu, H. Extended Virtual Screening Strategies To Link Antiandrogenic Activities and Detected Organic Contaminants in Soils. Environ. Sci. Technol. 2017, 51, 12528–12536. [Google Scholar] [CrossRef]
- de Baat, M.L.; Wieringa, N.; Droge, S.T.J.; van Hall, B.G.; van der Meer, F.; Kraak, M.H.S. Smarter Sediment Screening: Effect-Based Quality Assessment, Chemical Profiling, and Risk Identification. Environ. Sci. Technol. 2019, 53, 14479–14488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akki, S.U.; Werth, C.J. Critical Review: DNA Aptasensors, Are They Ready for Monitoring Organic Pollutants in Natural and Treated Water Sources? Environ. Sci. Technol. 2018, 52, 8989–9007. [Google Scholar] [CrossRef] [PubMed]
- Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Gu, J.; Stacey, H.D.; Ang, J.C.; Capretta, A.; Filipe, C.D.M.; Mossman, K.L.; Balion, C.; Salena, B.J.; et al. Diverse high-affinity DNA aptamers for wild-type and B.1.1.7 SARS-CoV-2 spike proteins from a pre-structured DNA library. Nucleic Acids Res 2021, 49, 7267–7279. [Google Scholar] [CrossRef]
- Park, J.; Yang, K.A.; Choi, Y.; Choe, J.K. Novel ssDNA aptamer-based fluorescence sensor for perfluorooctanoic acid detection in water. Environ. Int. 2022, 158, 107000. [Google Scholar] [CrossRef]
- Peng, J.; Yang, J.; Chen, B.; Zeng, S.; Zheng, D.; Chen, Y.; Gao, W. Design of ultrathin nanosheet subunits ZnIn(2)S(4) hollow nanocages with enhanced photoelectric conversion for ultrasensitive photoelectrochemical sensing. Biosens. Bioelectron. 2021, 175, 112873. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Zhou, S.; Zhu, L.; Lv, X.; Zhang, J.; Zhang, L.; Zhu, P.; Yu, J. DNAzyme-Triggered Visual and Ratiometric Electrochemiluminescence Dual-Readout Assay for Pb(II) Based on an Assembled Paper Device. Anal. Chem. 2020, 92, 3874–3881. [Google Scholar] [CrossRef]
- Wu, Y.; Belmonte, I.; Sykes, K.S.; Xiao, Y.; White, R.J. Perspective on the Future Role of Aptamers in Analytical Chemistry. Anal. Chem. 2019, 91, 15335–15344. [Google Scholar] [CrossRef]
- Kudłak, B.; Wieczerzak, M. Aptamer based tools for environmental and therapeutic monitoring: A review of developments, applications, future perspectives. Crit. Rev. Environ. Sci. Technol. 2020, 50, 816–867. [Google Scholar] [CrossRef]
- Li, N.; Xiang, M.H.; Liu, J.W.; Tang, H.; Jiang, J.H. DNA Polymer Nanoparticles Programmed via Supersandwich Hybridization for Imaging and Therapy of Cancer Cells. Anal. Chem. 2018, 90, 12951–12958. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, Y.X.; Feng, X.N.; Cheng, M.; Tang, A.N.; Kong, D.M. pH-Controlled Intracellular in Situ Reversible Assembly of a Photothermal Agent for Smart Chemo-Photothermal Synergetic Therapy and ATP Imaging. ACS Appl. Mater. Interfaces 2019, 11, 39624–39632. [Google Scholar] [CrossRef]
- Rosi, N.L.; Giljohann, D.A.; Thaxton, C.S.; Lytton-Jean, A.K.; Han, M.S.; Mirkin, C.A. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006, 312, 1027–1030. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liu, J. Freezing Directed Construction of Bio/Nano Interfaces: Reagentless Conjugation, Denser Spherical Nucleic Acids, and Better Nanoflares. J. Am. Chem. Soc. 2017, 139, 9471–9474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seferos, D.S.; Prigodich, A.E.; Giljohann, D.A.; Patel, P.C.; Mirkin, C.A. Polyvalent DNA nanoparticle conjugates stabilize nucleic acids. Nano Lett. 2009, 9, 308–311. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Seferos, D.S.; Giljohann, D.A.; Patel, P.C.; Mirkin, C.A. Aptamer nano-flares for molecular detection in living cells. Nano Lett. 2009, 9, 3258–3261. [Google Scholar] [CrossRef] [Green Version]
- Meyer, J.N.; Leung, M.C.; Rooney, J.P.; Sendoel, A.; Hengartner, M.O.; Kisby, G.E.; Bess, A.S. Mitochondria as a target of environmental toxicants. Toxicol. Sci. 2013, 134, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Gao, W.; Liu, Z.; Hao, W.; Li, X.; Sun, Y.; Tong, L.; Tang, B. Visualizing miR-155 To Monitor Breast Tumorigenesis and Response to Chemotherapeutic Drugs by a Self-Assembled Photoacoustic Nanoprobe. Anal. Chem. 2018, 90, 9125–9131. [Google Scholar] [CrossRef]
- Li, Z.; He, X.; Luo, X.; Wang, L.; Ma, N. DNA-Programmed Quantum Dot Polymerization for Ultrasensitive Molecular Imaging of Cancer Cells. Anal. Chem. 2016, 88, 9355–9358. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.; Xu, L.; Wang, Y.; Li, R.; Sun, P.; Lin, Z.; Yang, H. Jungle on the Electrode: A Target-Induced Enzyme-Free and Label-Free Biosensor. Anal. Chem. 2019, 91, 13712–13719. [Google Scholar] [CrossRef]
- Li, B.R.; Tang, H.; Yu, R.Q.; Jiang, J.H. Single-Nanoparticle ICPMS DNA Assay Based on Hybridization-Chain-Reaction-Mediated Spherical Nucleic Acid Assembly. Anal. Chem. 2020, 92, 2379–2382. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Li, Q.; Zhang, P.; Liu, X.; Li, A.; Yang, J.; Liu, D. Assembly of DNA Probes into Superstructures for Dramatically Enhancing Enzymatic Stability and Signal-to-Background Ratio. ACS Sens. 2018, 3, 2702–2708. [Google Scholar] [CrossRef] [PubMed]
Samples | Background (µM) | Added (µM) | Found (µM) | Recovery (%) | CV a (%) |
---|---|---|---|---|---|
S1 | ND b | 5 | 4.13 | 82.60 | 2.57 |
S2 | ND | 10 | 11.42 | 114.20 | 4.65 |
S3 | ND | 25 | 24.83 | 99.32 | 3.76 |
S4 | ND | 50 | 52.31 | 104.62 | 3.21 |
S5 | ND | 100 | 103.26 | 103.26 | 3.42 |
Samples | ATP (mM) | Equivalent Pb2+ (µM) | CV a (%) |
---|---|---|---|
S1 | 1.07 | 8.41 | 2.57 |
S2 | 1.24 | 1.84 | 4.65 |
S3 | 1.13 | 5.53 | 3.76 |
S4 | 1.32 | 0.36 | 3.21 |
S5 | 1.17 | 4.03 | 2.74 |
S6 | 0.92 | 18.57 | 4.15 |
S7 | 1.21 | 2.72 | 3.68 |
S8 | 1.08 | 8.19 | 4.26 |
S9 | 1.23 | 2.15 | 4.62 |
S10 | 0.96 | 15.38 | 3.85 |
S11 | 0.83 | 28.88 | 4.93 |
S12 | 0.98 | 14.22 | 2.86 |
S13 | 1.03 | 10.87 | 3.61 |
S14 | 1.13 | 5.53 | 4.82 |
S15 | 1.19 | 3.02 | 4.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, J.; Yuan, K.; Tao, Y.; Wang, Y.; Yang, X.; Cui, J.; Wei, D.; Zhang, Z. High-Throughput Effect-Directed Monitoring Platform for Specific Toxicity Quantification of Unknown Waters: Lead-Caused Cell Damage as a Model Using a DNA Hybrid Chain-Reaction-Induced AuNPs@aptamer Self-Assembly Assay. Sensors 2023, 23, 6877. https://doi.org/10.3390/s23156877
Xiao J, Yuan K, Tao Y, Wang Y, Yang X, Cui J, Wei D, Zhang Z. High-Throughput Effect-Directed Monitoring Platform for Specific Toxicity Quantification of Unknown Waters: Lead-Caused Cell Damage as a Model Using a DNA Hybrid Chain-Reaction-Induced AuNPs@aptamer Self-Assembly Assay. Sensors. 2023; 23(15):6877. https://doi.org/10.3390/s23156877
Chicago/Turabian StyleXiao, Jiaxuan, Kuijing Yuan, Yu Tao, Yuhan Wang, Xiaofeng Yang, Jian Cui, Dali Wei, and Zhen Zhang. 2023. "High-Throughput Effect-Directed Monitoring Platform for Specific Toxicity Quantification of Unknown Waters: Lead-Caused Cell Damage as a Model Using a DNA Hybrid Chain-Reaction-Induced AuNPs@aptamer Self-Assembly Assay" Sensors 23, no. 15: 6877. https://doi.org/10.3390/s23156877
APA StyleXiao, J., Yuan, K., Tao, Y., Wang, Y., Yang, X., Cui, J., Wei, D., & Zhang, Z. (2023). High-Throughput Effect-Directed Monitoring Platform for Specific Toxicity Quantification of Unknown Waters: Lead-Caused Cell Damage as a Model Using a DNA Hybrid Chain-Reaction-Induced AuNPs@aptamer Self-Assembly Assay. Sensors, 23(15), 6877. https://doi.org/10.3390/s23156877