Research on Rapid and Low-Cost Spectral Device for the Estimation of the Quality Attributes of Tea Tree Leaves
Abstract
:1. Introduction
2. Materials
2.1. Hardware System Design
2.1.1. Sample Chamber Unit
2.1.2. Spectral Acquisition Unit
2.1.3. Power Supply Unit
2.1.4. Cooling Unit
2.1.5. Control and Display Unit
2.2. Software Design
2.3. Debugging and Testing
3. Methods
3.1. Spectral Acquisition of Tea Tree Leaves
3.2. Chemical Experiments for Ingredient Content Determination
3.3. Modeling Method
3.3.1. Ridge Regression
3.3.2. Random Forest
3.3.3. Model Training
3.3.4. Evaluation Index
4. Results
4.1. Results of Measured Ingredients Content
4.2. Spectrum Analysis
4.3. Prediction Model of Tea Tree Leaf Ingredients Content
4.4. Verification Analysis for Device
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rebello, R.; Burgess, P.J.; Girkin, N.T. Identifying Sustainable Nitrogen Management Practices for Tea Plantations. Nitrogen 2022, 3, 43–57. [Google Scholar] [CrossRef]
- FAO. Current Market Situation and Medium Term Outlook for Tea to 2027; FAO: Rome, Italy, 2018. [Google Scholar]
- Yang, Z.; Tu, Y.; Xia, H.; Jie, G.; Chen, X.; He, P. Suppression of free-radicals and protection against H2O2-induced oxidative damage in HPF-1 cell by oxidized phenolic compounds present in black tea. Food Chem. 2007, 105, 1349–1356. [Google Scholar] [CrossRef]
- Bhattacharya, U.; Halder, B.; Mukhopadhyay, S.; Giri, A.K. Role of oxidation-triggered activation of JNK and p38 MAPK in black tea polyphenols induced apoptotic death of A375 cells. Cancer Sci. 2009, 100, 1971–1978. [Google Scholar] [CrossRef]
- Odegaard, O.; Pereira, M.A.; Koh, W.; Arakawa, K.; Lee, H.; Yu, M.C. Coffee, tea, and incident type 2 diabetes: The Singapore Chinese Health Study. Am. J. Clin. Nutr. 2008, 88, 979–985. [Google Scholar] [CrossRef] [Green Version]
- Jinchuan, Y.; Xuemei, B. Simultaneous Determination of catechins and caffeine content in tea by 359 HPLC. Guizhou Agric. Sci. 2020, 48, 99–102. [Google Scholar]
- Yılmaz, C.; Özdemir, F.; Gökmen, V. Investigation of free amino acids, bioactive and neuroactive compounds in different types of tea and effect of black tea processing. LWT 2020, 117, 108655. [Google Scholar] [CrossRef]
- Rébufa, C.; Pany, I.; Bombarda, I. NIR spectroscopy for the quality control of Moringa oleifera (Lam.) leaf powders: Prediction of minerals, protein and moisture contents. Food Chem. 2018, 261, 311–321. [Google Scholar] [CrossRef]
- Ren, G.; Gan, N.; Song, Y.; Ning, J.; Zhang, Z. Evaluating Congou black tea quality using a lab-made computer vision system coupled with morphological features and chemometrics. Microchem. J. 2021, 160, 105600. [Google Scholar] [CrossRef]
- Liang, G.; Dong, C.; Hu, B.; Zhu, H.; Yuan, H.; Jiang, Y.; Hao, G. Prediction of moisture content for congou black tea withering leaves using image features and nonlinear method. Sci. Rep. 2018, 8, 7854. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, M.B.; Roy, R.B.; Tudua, B.; Bandyopadhyay, R. Bhattacharyya, N. Black tea classification employing feature fusion of E-Nose and E-Tongue responses. J. Food Eng. 2019, 244, 55–63. [Google Scholar] [CrossRef]
- Huang, Y.; Dong, W.; Alireza, S.; Wang, X.; Luo, W.; Zhan, B.; Liu, X.; Li, R.; Zhang, H.; Li, X. Development of simple identification models for four main catechins and caffeine in fresh green tea leaf based on visible and near-infrared spectroscopy. Comput. Electron. Agric. 2020, 173, 105388. [Google Scholar] [CrossRef]
- Hazarika, A.K.; Chanda, S.; Sabhapondit, S.; Sanyal, S.; Tamuly, P.; Tasrin, S.; Sing, D.; Tudu, B.; Bandyopadhyay, R. Quality assessment of fresh tea leaves by estimating total polyphenols using near infrared spectroscopy. J. Food Sci. Technol. 2018, 55, 4867–4876. [Google Scholar] [CrossRef]
- Luo, W.; Tian, P.; Fan, G.-Z.; Dong, W.-T.; Zhang, H.-L.; Liu, X.-M. Non-destructive determination of four tea polyphenols in fresh tea using visible and near-infrared spectroscopy. Infrared Phys. Technol. 2022, 123, 104037. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, J.; Ma, C.; Qiu, G.; Ren, J.; Zeng, F.; Lü, E. An effective prediction approach for moisture content of tea leaves based on discrete wavelet transforms and bootstrap soft shrinkage algorithm. Appl. Sci. 2020, 10, 4839. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, X.; Hu, Y.-G.; Wu, X.-H.; Zhang, X.-D.; Wang, P. Visualizing distribution of moisture content in tea leaves using optimization algorithms and NIR hyperspectral imaging. Comput. Electron. Agric. 2019, 160, 153–159. [Google Scholar] [CrossRef]
- Wei, Y.-Z.; Wu, F.-Y.; Xu, J.; Sha, J.-J.; Zhao, Z.-F.; He, Y.; Li, X.-L. Visual detection of the moisture content of tea leaves with hyperspectral imaging technology. J. Food Eng. 2019, 248, 89–96. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Zhang, R.-T.; Yang, C.-S.; Hu, B.; Luo, X.; Li, Y.; Dong, C.-W. Research on moisture content detection method during green tea processing based on machine vision and near-infrared spectroscopy technology. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 271, 120921. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-J.; Li, L.-Q.; Shen, S.-S.; Liu, Y.; Ning, J.-M.; Zhang, Z.-Z. Rapid detection of quality index of postharvest fresh tea leaves using hyperspectral imaging. J. Sci. Food Agric. 2020, 100, 3803–3811. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Jin, G.; Li, L.-Q.; Liu, Y.; Yusef, K.K.; Ning, J.-M.; Zhang, Z.-Z. NIR hyperspectral imaging coupled with chemometrics for nondestructive assessment of phosphorus and potassium contents in tea leaves. Infrared Phys. Technol. 2020, 108, 103365. [Google Scholar] [CrossRef]
- Li, L.-Q.; Wang, Y.-J.; Jin, S.-S.; Li, M.-H.; Chen, Q.-S.; Ning, J.-M.; Zhang, Z.-Z. Evaluation of black tea by using smartphone imaging coupled with micro-near-infrared spectrometer. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 246, 118991. [Google Scholar] [CrossRef] [PubMed]
- Li, L.-Q.; Jin, S.-S.; Wang, Y.-J.; Liu, Y.; Shen, S.-S.; Li, M.-H.; Ma, Z.-Y.; Ning, J.-M.; Zhang, Z.-Z. Potential of smartphone-coupled micro NIR spectroscopy for quality control of green tea. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 247, 119096. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Li, T.-H.; Li, L.-Q.; Ning, J.-M.; Zhang, Z.-Z. Micro-NIR spectrometer for quality assessment of tea: Comparison of local and global models. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 237, 118403. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Zhang, X.; Wu, R.; Zhang, X.; Xie, T.; Zhang, Z. Digital depiction of the quality of Dianhong black tea based on pocket-sized near infrared spectroscopy. Infrared Phys. Technol. 2022, 127, 104418. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Applications to nonorthogonal problems. Technome-Trics 1970, 12, 69–82. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, M.; Liu, Y.; Wu, J.; Wang, X.; Ouyang, Q.; Chen, X. Application of FT -NIR spectroscopy for simultaneous estimation of taste quality and taste-related compounds content of black tea. J. Food Sci. Technol. 2018, 55, 4363–4368. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-S.; Hwang, Y.-S.; Lee, J.; Choung, M.G. The characterization of caffeine and nine individual catechins in the leaves of green tea (Camellia sinensis L.) by near-infrared reflectance spectroscopy. Food Chem. 2014, 158, 351–357. [Google Scholar] [CrossRef]
- Mutanga, O.; Skidmore, A.K. Hyperspectral Band Depth Analysis for a better estimation of grass biomass (cenchrus ciliaris) measured under controlled laboratory conditions. Int. J. Appl. Earth Obs. Geoinf. 2004, 5, 87–96. [Google Scholar] [CrossRef]
- Saeys, W.; Ve1azco-Roa, M.A.; Thennadil, S.N.; Ramon, H.; Nicolaï, B.M. Optical properties of apple skin and flesh in the wavelength range from 350 to 2200 nm. Appl. Opt. 2008, 47, 908–919. [Google Scholar] [CrossRef] [Green Version]
- Curran, P.J. Remote Sensing of Foliar Chemistry. Remote Sens. Environ. 1989, 30, 271–278. [Google Scholar] [CrossRef]
- Habibullah, M.; Mohebian, M.R.; Soolanayakanahally, R.; Bahar, A.N.; Vail, S.; Wahid, K.A.; Dinh, A. Low-cost multispectral sensor array for determining leaf nitrogen status. Nitrogen 2020, 1, 67–80. [Google Scholar] [CrossRef]
- Maleki, M.; Massah, J.; Dehghan, M. Application of a spectral sensor for the assessment of nitrogen content in lettuce plants. AJCS 2012, 6, 188–193. [Google Scholar]
- Sekerli, Y.E.; Keskin, M.; Soysal, Y. Low-cost prototype optical sensor to evaluate water, macro and micro elements of turfgrass clippings. Sens. Actuators A Phys. 2021, 323, 112615. [Google Scholar] [CrossRef]
- Noguera, M.; Millan, B.; Andújar, J.M. New, low-cost, hand-held multispectral device for in-field fruit-ripening assessment. Agriculture 2023, 13, 4. [Google Scholar] [CrossRef]
- Duncan, L.; Miller, B.; Shaw, C.; Graebner, R.; Moretti, M.L.; Walter, C.; Selker, J.; Udell, C. Weed warden: A low-cost weed detection device implemented with spectral triad sensor for agricultural applications. HardwareX 2022, 11, e00303. [Google Scholar] [CrossRef]
- Li, X.; Xie, C.; He, Y.; Qiu, Z.; Zhang, Y. Characterizing the moisture content of tea with diffuse reflectance spectroscopy using wavelet transform and multivariate analysis. Sensors 2012, 12, 9847–9861. [Google Scholar] [CrossRef]
- Li, X.; He, Y. Chlorophyll Assessment and Sensitive wave-length exploration for tea (camellia sinensis) based on reflectance spectral characteristics. Hortscience 2008, 43, 1586–1591. [Google Scholar] [CrossRef] [Green Version]
- Xiong, C.; Liu, C.; Pan, W.; Ma, F.; Xiong, C.; Qi, L.; Chen, F.; Lu, X.; Yang, J.; Zheng, L. Non-destructive determination of total polyphenols content and classification of storage periods of iron buddha tea using multispectral imaging system. Food Chem. 2015, 176, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xie, H.-L.; Chen, L.; Huang, J.-H. An improved weighted partial least squares method coupled with near infrared spectroscopy for rapid determination of multiple components and anti-oxidant activity of Pu-Erh tea. Molecules 2018, 23, 10585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pe1uelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance indices associated with physiological changes in nitrogen-and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Kong, J.; Yang, C.; Wang, J.; Wang, X.; Zuo, M.; Jin, X.; Lin, S. Deep-stacking network approach by multisource data mining for hazardous risk identification in iot-based intelligent food management systems. Comput. Intell. Neurosci. 2021, 2021, 1194565. [Google Scholar] [CrossRef]
- Kong, J.; Wang, H.; Wang, X.; Jin, X.; Fang, X.; Lin, S. Multi-stream hybrid architecture based on cross-level fusion strategy for fine-grained crop species recognition in precision agriculture. Comput. Electron. Agric 2021, 185, 106134. [Google Scholar] [CrossRef]
- Kong, J.L.; Wang, H.X.; Yang, C.C.; Jin, X.B.; Zuo, M.; Zhang, X. A spatial feature-enhanced attention neural network with high-order pooling representation for application in pests and diseases recognition. Agriculture 2022, 2022, 1592804. [Google Scholar] [CrossRef]
- Jin, X.; Zhang, J.; Kong, J.; Su, T.; Bai, Y. A reversible automatic selection normalization (RASN) deep network for predicting in the smart agriculture system. Agronomy 2022, 12, 591. [Google Scholar] [CrossRef]
- Kong, J.; Yang, C.; Lin, J.; Ma, K.; Zhu, Q. A Graph-related high-order neural network architecture via feature aggregation enhancement for identify application of diseases and pests. Comput. Intell. Neurosci. 2022, 2022, 4391491. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.B.; Gong, W.T.; Kong, J.L.; Bai, Y.T.; Su, T.L. A variational Bayesian deep network with data self-screening layer for massive time-series data forecasting. Entropy 2022, 24, 335. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.B.; Gong, W.T.; Kong, J.L.; Bai, Y.T.; Su, T.L. PFVAE: A planar flow-based variational auto-encoder forecasting model for time series data. Mathematics 2022, 10, 610. [Google Scholar] [CrossRef]
- Zheng, Y.-Y.; Kong, J.-L.; Jin, X.-B.; Wang, X.-Y.; Zuo, M. CropDeep: The crop vision dataset for deep-learning-based classification and detection in precision agriculture. Sensors 2019, 19, 1058. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Dark current | 2 nA |
Shunt resistor | 100 MΩ |
Spectral range | 700–1000 nm |
Response time | 6.0 ns |
Test Items | Measurement Value |
---|---|
Integration time | 1–1024 ms |
Sampling speed (storing to RAM) | 0.5 ms/time |
Data transmission speed | 1.3 ms/time |
Paraments (Number of Data = 264) | Minimum Value | Maximum Value | Mean Value | Standard Deviation |
---|---|---|---|---|
Moisture content | 1.37 | 14.2 | 5.06 | 2.56 |
Free amino acid content | 6.59 | 13.2 | 10.21 | 1.35 |
Tea polyphenol content | 1.6 | 3.04 | 2.24 | 0.3 |
Sugar content | 2.05 | 6.66 | 3.58 | 0.96 |
Nitrogen content | 2.22 | 4.91 | 3.96 | 0.66 |
Chlorophyll content | 0.14 | 0.39 | 0.29 | 0.1 |
Chlorophyll | Nitrogen and Free Amino Acid | Tea Polyphenol and Water | |
---|---|---|---|
Wavelengths | 700 nm | Near 1000 nm | 700–1000 nm |
Paraments | Models | Train Set | Test Set | ||
---|---|---|---|---|---|
R2c | RMSEc | R2t | RMSEt | ||
Moisture content | RR | 0.40 | 1.91 | 0.37 | 1.95 |
RFR | 0.41 | 1.54 | 0.40 | 1.65 | |
Free amino acid content | RR | 0.47 | 1.40 | 0.52 | 1.41 |
RFR | 0.66 | 0.23 | 0.65 | 0.33 | |
Tea polyphenol content | RR | 0.22 | 4.57 | 0.32 | 5.58 |
RFR | 0.24 | 1.12 | 0.46 | 1.67 | |
Sugar content | RR | 0.49 | 3.09 | 0.52 | 2.59 |
RFR | 0.34 | 0.12 | 0.70 | 0.13 | |
Nitrogen content | RR | 0.48 | 1.63 | 0.56 | 1.24 |
RFR | 0.92 | 1.49 | 0.50 | 1.51 | |
Chlorophyll content | RR | 0.78 | 0.97 | 0.78 | 0.94 |
RFR | 0.90 | 0.08 | 0.82 | 0.09 |
Paraments | Mean Absolute Error (MAE) | Root Mean Square Error (RMSE) | Determination Coefficient (R2 Score) |
---|---|---|---|
Moisture content | 1.35 | 1.61 | 0.35 |
Free amino acid content | 0.12 | 0.16 | 0.79 |
Tea polyphenol content | 1.10 | 1.35 | 0.28 |
Sugar content | 0.12 | 0.14 | 0.33 |
Nitrogen content | 0.83 | 1.15 | 0.91 |
Chlorophyll content | 0.01 | 0.02 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Li, X.; Wang, W.; Wang, F.; Liu, Q.; Yan, L. Research on Rapid and Low-Cost Spectral Device for the Estimation of the Quality Attributes of Tea Tree Leaves. Sensors 2023, 23, 571. https://doi.org/10.3390/s23020571
Wang J, Li X, Wang W, Wang F, Liu Q, Yan L. Research on Rapid and Low-Cost Spectral Device for the Estimation of the Quality Attributes of Tea Tree Leaves. Sensors. 2023; 23(2):571. https://doi.org/10.3390/s23020571
Chicago/Turabian StyleWang, Jinghua, Xiang Li, Wancheng Wang, Fan Wang, Quancheng Liu, and Lei Yan. 2023. "Research on Rapid and Low-Cost Spectral Device for the Estimation of the Quality Attributes of Tea Tree Leaves" Sensors 23, no. 2: 571. https://doi.org/10.3390/s23020571
APA StyleWang, J., Li, X., Wang, W., Wang, F., Liu, Q., & Yan, L. (2023). Research on Rapid and Low-Cost Spectral Device for the Estimation of the Quality Attributes of Tea Tree Leaves. Sensors, 23(2), 571. https://doi.org/10.3390/s23020571