A Shorted Stub Loaded UWB Flexible Antenna for Small IoT Devices
Abstract
:1. Introduction
2. Methodology of the Proposed Antenna and Methodology
2.1. UWB Antenna
2.2. Antenna Design Methodology
2.3. Optimization and Design Procedure
3. Performance Parameters of the Antenna
3.1. Reflection Coefficient
3.2. Conformal Analysis
3.3. Far-Field Analysis
3.3.1. Measurement Setup
3.3.2. Radiation Pattern
3.3.3. Radiation Pattern under Conformability
3.3.4. Gain of UWB Antenna
3.4. Group Delay
3.5. Comparison with State-of-the-Art
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fontana, R.J. Recent system applications of short-pulse ultra-wideband (UWB) technology. IEEE Trans. Microw. Theory Techn. 2004, 52, 2087–2104. [Google Scholar] [CrossRef]
- Matin, M.A. Ultra-Wideband Current Status and Future Trends; Intech Open: London, UK, 2012. [Google Scholar]
- Galvan-Tejada, G.M.; Peyrot-Solis, M.A.; Aguilar, H.J. Ultra-Wideband Antennas: Design, Methodologies, and Performance; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- FCC. FCC 1st Report and Order on Ultra-Wideband Technology; FCC: Washington, DC, USA, 2002.
- Wei, Q.H.; Ruan, C.L.; Xue, Q. A planar folded ultrawideband antenna with gap-loading. IEEE Trans. Antennas Propag. 2007, 55, 216–220. [Google Scholar]
- Hussain, N.; Awan, W.A.; Naqvi, S.I.; Ghaffar, A.; Zaidi, A.; Naqvi, S.A.; Iftikhar, A.; Li, X.J. A compact flexible frequency reconfigurable antenna for heterogeneous applications. IEEE Access. 2020, 8, 173298–173307. [Google Scholar] [CrossRef]
- Hussain, N.; Ghaffar, A.; Naqvi, S.I.; Iftikhar, A.; Anagnostou, D.E.; Tran, H.H. A conformal frequency reconfigurable antenna with multiband and wideband characteristics. Sensors 2022, 22, 2601. [Google Scholar] [CrossRef]
- Awan, W.A.; Hussain, N.; Le, T.T. Ultra-thin flexible fractal antenna for 2.45 GHz application with wideband harmonic rejection. AEU Int. J. Electron. Commun. 2019, 110, e152851. [Google Scholar] [CrossRef]
- Saeed, S.M.; Balanis, C.A.; Birtcher, C.R.; Durgun, A.C.; Shaman, H.N. Wearable flexible reconfigurable antenna integrated with artificial magnetic conductor. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2396–2399. [Google Scholar] [CrossRef]
- Ghaffar, A.; Li, X.J.; Awan, W.A.; Naqvi, A.H.; Hussain, N.; Alibakhshikenari, M.; Limiti, E. A flexible and pattern reconfigurable antenna with small dimensions and simple layout for wireless communication systems operating over 1.65–2.51 GHz. Electronics 2021, 10, 601. [Google Scholar] [CrossRef]
- Hamouda, Z.; Wojkiewicz, J.L.; Pud, A.A.; Koné, L.; Bergheul, S.; Lasri, T. Magnetodielectric nanocomposite polymer-based dual-band flexible antenna for wearable applications. IEEE Trans. Antennas Propag. 2018, 66, 3271–3277. [Google Scholar] [CrossRef]
- Rizwan, M.; Khan, M.W.A.; Sydänheimo, L.; Virkki, J.; Ukkonen, L. Flexible and stretchable brush-painted wearable antenna on a three-dimensional (3-D) printed substrate. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 3108–3112. [Google Scholar] [CrossRef]
- Simorangkir, R.B.V.B.; Yang, Y.; Esselle, K.P.; Zeb, B.A. A method to realize robust flexible electronically tunable antennas using polymer-embedded conductive fabric. IEEE Trans. Antennas Propag. 2017, 66, 50–58. [Google Scholar] [CrossRef]
- Tang, Z.; Wu, X.; Zhan, J.; Hu, S.; Xi, Z.; Liu, Y. Compact UWB-MIMO antenna with high isolation and triple band-notched characteristics. IEEE Access 2019, 7, 19856–19865. [Google Scholar] [CrossRef]
- Simorangkir, R.B.V.B.; Kiourti, A.; Esselle, K.P. UWB wearable antenna with a full ground plane based on PDMS-embedded conductive fabric. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 493–496. [Google Scholar] [CrossRef]
- Saha, T.K.; Goodbody, C.; Karacolak, T.; Sekhar, P.K. A compact monopole antenna for ultra-wideband applications. Microw. Opt. Technol. Lett. 2019, 61, 182–186. [Google Scholar] [CrossRef] [Green Version]
- Zahran, S.R.; Abdalla, M.A.; Gaafar, A. Time domain analysis for foldable thin UWB monopole antenna. AEU Int. J. Electron. Commun. 2018, 83, 253–262. [Google Scholar] [CrossRef]
- Li, W.; Hei, Y.; Grubb, P.M.; Shi, X.; Chen, R.T. Compact inkjet-printed flexible MIMO antenna for UWB applications. IEEE Access 2018, 6, 50290–50298. [Google Scholar] [CrossRef]
- Zahran, S.R.; Gaafar, A.; Abdalla, M.A. A flexible UWB low profile antenna for wearable applications. In IEEE International Symposium on Antennas and Propagation (APSURSI); IEEE: Piscataway, NJ, USA, 2016; pp. 1931–1932. [Google Scholar]
- Saha, T.K.; Knaus, T.N.; Khosla, A.; Sekhar, P.K. A CPW-fed flexible UWB antenna for IoT applications. Microsys. Technol. 2018, 28, 5–11. [Google Scholar] [CrossRef]
- Wang, Z.; Qin, L.; Chen, Q.; Yang, W.; Qu, H. Flexible UWB antenna fabricated on polyimide substrate by surface modification and in situ self-metallization technique. Microelectron. Eng. 2019, 6, 12–16. [Google Scholar] [CrossRef]
- Hamouda, Z.; Wojkiewicz, J.L.; Pud, A.A.; Kone, L.; Bergheul, S.; Lasri, T. Flexible UWB organic antenna for wearable technologies application. IET Microw. Antennas Propag. 2018, 12, 160–166. [Google Scholar] [CrossRef]
- Ray, K.P.; Tiwari, S. Ultra-wideband printed hexagonal monopole antennas. IET Microw. Antennas Propag. 2010, 4, 437–445. [Google Scholar]
- Kundu, S. Balloon-shaped CPW fed printed UWB antenna with dual frequency notch to eliminate WiMAX and WLAN interferences. Microw. Opt. Technol. Lett. 2018, 60, 1744–1750. [Google Scholar] [CrossRef]
- Du, C.; Li, X.; Zhong, S. Compact liquid crystal polymer based tri-band flexible antenna for WLAN/WiMAX/5G applications. IEEE Access 2019. [Google Scholar] [CrossRef]
- Govindan, T.; Palaniswamy, S.K.; Kanagasabai, M.; Rao, T.R.; Alsath, M.; Kumar, S.; Marey, M.; Aggarwal, A. On the design and performance analysis of wristband MIMO/diversity antenna for smart wearable communication applications. Sci. Rep. 2021, 11, 21917. [Google Scholar] [CrossRef] [PubMed]
- Hussain, N.; Jeong, M.J.; Park, J.; Kim, N. A broadband circularly polarized fabry-perot resonant antenna using a single-layered PRS for 5G MIMO applications. IEEE Access 2019, 7, 42897–42907. [Google Scholar] [CrossRef]
- Sufian, M.A.; Hussain, N.; Abbas, A.; Lee, J.; Park, S.G.; Kim, N. Mutual coupling reduction of a circularly polarized MIMO antenna using parasitic elements and DGS for V2X communications. IEEE Access 2022, 10, 56388–56400. [Google Scholar] [CrossRef]
- Abbas, A.; Hussain, N.; Sufian, M.A.; Jung, J.; Park, S.M.; Kim, N. Isolation and gain improvement of a rectangular notch UWB-MIMO antenna. Sensors 2022, 22, 1460. [Google Scholar] [CrossRef]
- May, C. Transmission lines. In Passive Circuit Analysis with LTspice®; Springer: Cham, Switzerland, 2020; pp. 417–444. [Google Scholar]
- Awan, W.A.; Zaidi, A.; Hussain, M.; Hussain, N.; Syed, I. The design of a wideband antenna with notching characteristics for small devices using a genetic algorithm. Mathematics 2021, 9, 2113. [Google Scholar] [CrossRef]
- Dwivedi, R.P.; Khan, M.Z.; Kommuri, U.K. UWB circular cross slot AMC design for radiation improvement of UWB antenna. AEU-Int. J. Electron. Commun. 2020, 117, 153092. [Google Scholar] [CrossRef]
Ref. no. | Size (mm3) | Bandwidth (GHz) | Gain (dB) | Structural Complexity | Flexibility |
---|---|---|---|---|---|
[13] | 59.8 × 59.8 × 3.4 | 2–3 | >2.5 | High | No |
[14] | 39 × 39 × 1.6 | 2–13 | >0.5 | High | No |
[15] | 80 × 67 × 3.4 | 3.68–10.1 | >0.9 | High | Yes |
[16] | 28.1 × 17.1 × 1.4 | 5–14 | >2 | Moderate | No |
[17] | 40 × 22 × 0.1 | 2.5–11 | >2 | Moderate | Yes |
[18] | 33 × 22 × 0.125 | 4–10 | >1 | High | Yes |
[19] | 38 × 22 × 0.1 | 4–11 | >0.3 | Moderate | Yes |
[20] | 33.1 × 32.7 × 0.254 | 4–15 | >2.5 | Low | Yes |
[21] | 34 × 32.6 × 0.05 | 2–10 | >2.8 | Low | Yes |
[22] | 48 × 34.9 × 0.05 | 2–8 | >−2.1 | Low | Yes |
Proposed Work | 20 × 15 × 0.254 | 2.73–9.68 | >2.5 | Low | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, E.M.; Awan, W.A.; Alzaidi, M.S.; Alzahrani, A.; Elkamchouchi, D.H.; Falcone, F.; Ghoneim, S.S.M. A Shorted Stub Loaded UWB Flexible Antenna for Small IoT Devices. Sensors 2023, 23, 748. https://doi.org/10.3390/s23020748
Ali EM, Awan WA, Alzaidi MS, Alzahrani A, Elkamchouchi DH, Falcone F, Ghoneim SSM. A Shorted Stub Loaded UWB Flexible Antenna for Small IoT Devices. Sensors. 2023; 23(2):748. https://doi.org/10.3390/s23020748
Chicago/Turabian StyleAli, Esraa Mousa, Wahaj Abbas Awan, Mohammed S. Alzaidi, Abdullah Alzahrani, Dalia H. Elkamchouchi, Francisco Falcone, and Sherif S. M. Ghoneim. 2023. "A Shorted Stub Loaded UWB Flexible Antenna for Small IoT Devices" Sensors 23, no. 2: 748. https://doi.org/10.3390/s23020748
APA StyleAli, E. M., Awan, W. A., Alzaidi, M. S., Alzahrani, A., Elkamchouchi, D. H., Falcone, F., & Ghoneim, S. S. M. (2023). A Shorted Stub Loaded UWB Flexible Antenna for Small IoT Devices. Sensors, 23(2), 748. https://doi.org/10.3390/s23020748