Suppression of Common-Mode Resonance in Multiband Base Station Antennas
Abstract
:1. Introduction
2. The Effect of Common Mode on Low-Band Patterns
3. The Working Principle of CM Suppression Circuit
4. Implementation of CM Suppression Circuit on HB
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Osseiran, A.; Parkvall, S.; Persson, P.; Zaidi, A.; Magnusson, S.; Balachandran, K. 5G Wireless Access: An Overview; 1/28423-FGB1010937; Ericsson: Stockholm, Sweden, 2020. [Google Scholar]
- Huang, H.; Li, X.; Liu, Y. A dual-broadband base station antenna with ikebana-like arrangement scheme. Microw. Opt. Technol. Lett. 2020, 62, 708–713. [Google Scholar] [CrossRef]
- Farasat, M.; Thalakotuna, D.N.; Hu, Z.; Yang, Y. A review on 5G sub-6 GHz base station antenna design challenges. Electronics 2021, 10, 2000. [Google Scholar] [CrossRef]
- Beckman, C.; Lindmark, B. The evolution of base station antennas for mobile communications. In Proceedings of the 2007 International Conference on Electromagnetics in Advanced Applications, Turin, Italy, 17–21 September 2007; pp. 85–92. [Google Scholar]
- Thalakotuna, D.N.; Karmokar, D.K.; Hu, Z.; Esselle, K.P.; Matekovits, L. Improving Cross-Band Isolation in MultiBand Antennas. In Proceedings of the 2021 International Conference on Electromagnetics in Advanced Applications (ICEAA), Honolulu, HI, USA, 9–13 August 2021; p. 68. [Google Scholar]
- Sun, H.H.; Ding, C.; Zhu, H.; Jones, B.; Guo, Y.J. Suppression of Cross-Band Scattering in Multiband Antenna Arrays. IEEE Trans. Antennas Propag. 2019, 67, 2379–2389. [Google Scholar] [CrossRef]
- Sun, H.-H.; Zhu, H.; Ding, C.; Jones, B.; Guo, Y.J. Scattering suppression in a 4G and 5G base station antenna array using spiral chokes. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1818–1822. [Google Scholar] [CrossRef]
- Huang, H.; Liu, Y.; Gong, S. A Dual-Broadband, Dual-Polarized Base Station Antenna for 2G/3G/4G Applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1111–1114. [Google Scholar] [CrossRef]
- He, Y.; Pan, Z.; Cheng, X.; He, Y.; Qiao, J.; Tentzeris, M.M. A Novel Dual-Band, Dual-Polarized, Miniaturized and Low-Profile Base Station Antenna. IEEE Trans. Antennas Propag. 2015, 63, 5399–5408. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, Y.; Yang, S. Decoupling and Low-Profile Design of Dual-Band Dual-Polarized Base Station Antennas Using Frequency-Selective Surface. IEEE Trans. Antennas Propag. 2019, 67, 5272–5281. [Google Scholar] [CrossRef]
- Yang, S.J.; Zhang, X.Y. Frequency Selective Surface-Based Dual-Band Dual-Polarized High-Gain Antenna. IEEE Trans. Antennas Propag. 2021, 70, 1663–1671. [Google Scholar] [CrossRef]
- Sun, H.-H.; Jones, B.; Guo, Y.J.; Lee, Y.H. Dual-Band Base Station Antenna Array with Suppressed Cross-Band Mutual Scattering. In Proceedings of the 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), Singapore, 4–10 December 2021; pp. 1–2. [Google Scholar]
- Ding, C.; Sun, H.; Ziolkowski, R.W.; Guo, Y.J. Simplified Tightly-Coupled Cross-Dipole Arrangement for Base Station Applications. IEEE Access 2017, 5, 27491–27503. [Google Scholar] [CrossRef]
- Ding, C.; Jones, B.; Guo, Y.J.; Qin, P.Y. Wideband Matching of Full-Wavelength Dipole with Reflector for Base Station. IEEE Trans. Antennas Propag. 2017, 65, 5571–5576. [Google Scholar] [CrossRef]
- Farasat, M.; Thalakotuna, D.; Hu, Z.; Yang, Y. A Simple and Effective Approach for Scattering Suppression in Multiband Base Station Antennas. Electronics 2022, 11, 3423. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.Y.; Ye, L.; Pan, Y. Dual-Band Base Station Array Using Filtering Antenna Elements for Mutual Coupling Suppression. IEEE Trans. Antennas Propag. 2016, 64, 3423–3430. [Google Scholar] [CrossRef]
- Zhao, L.; Qian, K.W.; Wu, K.L. A Cascaded Coupled Resonator Decoupling Network for Mitigating Interference Between Two Radios in Adjacent Frequency Bands. IEEE Trans. Microw. Theory Tech. 2014, 62, 2680–2688. [Google Scholar] [CrossRef]
- Huang, H.; Liu, Y.; Gong, S. A Novel Dual-Broadband and Dual-Polarized Antenna for 2G/3G/LTE Base Stations. IEEE Trans. Antennas Propag. 2016, 64, 4113–4118. [Google Scholar] [CrossRef]
- Sun, H.-H.; Jones, B.; Guo, Y.J.; Lee, Y.H. Suppression of cross-band scattering in interleaved dual-band cellular base-station antenna arrays. IEEE Access 2020, 8, 222486–222495. [Google Scholar] [CrossRef]
Frequency (GHz) | Beamwidth (Deg.) | Squint (Deg.) |
---|---|---|
0.66 | 82.5 | −6 |
0.67 | 82.1 | −5 |
0.72 | 86.4 | 10 |
0.75 | 77.7 | 16 |
0.77 | 75 | 14 |
0.85 | 68.8 | 5 |
0.90 | 66.1 | 2 |
Parameters | Values HB (mm) | Description |
---|---|---|
W-SL | 6 | Width of SL |
L-SL | 43 | Length of SL |
W-TL | 1.3 | Width of TL |
L-TL | 15 | Length of TL |
W-TL1 | 1 | Width of TL1 |
L-TL1 | 5.5 | Length of TL1 |
W-TL2 | 0.2 | Width of TL2 |
L-TL2 | 20 | Length of TL2 |
W-OL | 2.8 | Width of OL |
L-OL | 6 | Length of OL |
g | 11 | Gap between SL |
References | Mutual Coupling Suppression Techniques | Frequency Band (GHz) | Isolation (dB) | HPBW (Measured) |
---|---|---|---|---|
[2] | Passive dipoles + baffles | 0.69–0.96 1.7–2.7 | >27 >22 | 72° ± 2° 65° ± 5° |
[10] | Frequency-selective surface | 0.69–0.96 3.5–4.9 | >28 >25 | 60° 75° |
[11] | Frequency-selective surface | 2.3–2.7 3.3–3.8 | >25 23.5 | 44°–48° 66°–69° |
[12] | Capacitance-loading technique/chokes | 0.70–0.96 1.7–2.2 | >20 | 75° + 5° 64° + 5° |
[16] | Filtering antenna elements | 1.71–1.88 1.9–2.17 | >30 | 65° ± 5° |
[17] | Decoupling network | 2.3–2.4 2.4–2.483 | >25 | 60° ± 5° 65° ± 5° |
[18] | Metal baffles | 0.77–0.98 1.65–2.9 | <23 17.5 | 64.5°–57.1° 84.4°–74.1° |
[19] | Capacitance-loaded HB element | 0.69–0.96 1.7–2.2 | >20 | 75° + 5° 64° + 5° |
Proposed Work | Common mode suppression circuit | 0.69–0.96 1.8–2.6 | >30 >25 | 65° + 5° 65° ± 5° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farasat, M.; Thalakotuna, D.; Yang, Y.; Hu, Z.; Esselle, K. Suppression of Common-Mode Resonance in Multiband Base Station Antennas. Sensors 2023, 23, 2905. https://doi.org/10.3390/s23062905
Farasat M, Thalakotuna D, Yang Y, Hu Z, Esselle K. Suppression of Common-Mode Resonance in Multiband Base Station Antennas. Sensors. 2023; 23(6):2905. https://doi.org/10.3390/s23062905
Chicago/Turabian StyleFarasat, Madiha, Dushmantha Thalakotuna, Yang Yang, Zhonghao Hu, and Karu Esselle. 2023. "Suppression of Common-Mode Resonance in Multiband Base Station Antennas" Sensors 23, no. 6: 2905. https://doi.org/10.3390/s23062905
APA StyleFarasat, M., Thalakotuna, D., Yang, Y., Hu, Z., & Esselle, K. (2023). Suppression of Common-Mode Resonance in Multiband Base Station Antennas. Sensors, 23(6), 2905. https://doi.org/10.3390/s23062905