Dense Space-Division Multiplexing Exploiting Multi-Ring Perfect Vortex
Abstract
:1. Introduction
2. Concept and Principle
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef]
- Jin, Z.; Janoschka, D.; Deng, J.; Ge, L.; Dreher, P.; Frank, B.; Hu, G.; Ni, J.; Yang, Y.; Li, J.; et al. Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. eLight 2021, 1, 5. [Google Scholar] [CrossRef]
- Fu, S.; Zhai, Y.; Zhang, J.; Liu, X.; Song, R.; Zhou, H.; Gao, C. Universal orbital angular momentum spectrum analyzer for beams. PhotoniX 2020, 1, 19. [Google Scholar] [CrossRef]
- Lin, Z.; Hu, J.; Chen, Y.; Brès, C.-S.; Yu, S. Single-shot Kramers-Kronig complex orbital angular momentum spectrum retrieval. Adv. Photonics 2023, 5, 036006. [Google Scholar] [CrossRef]
- Wan, C.; Chong, A.; Zhan, Q. Optical spatiotemporal vortices. eLight 2023, 3, 11. [Google Scholar] [CrossRef]
- Wang, X.; Nie, Z.; Liang, Y.; Wang, J.; Li, T.; Jia, B. Recent advances on optical vortex generation. Nanophotonics 2018, 7, 1533–1556. [Google Scholar] [CrossRef]
- Liu, X.; Yan, W.; Nie, Z.; Liang, Y.; Wang, Y.; Jiang, Z.; Song, Y.; Zhang, X. Longitudinal magnetization superoscillation enabled by high-order azimuthally polarized Laguerre-Gaussian vortex modes. Opt. Express 2021, 29, 26137–26149. [Google Scholar] [CrossRef]
- Piccardo, M.; Oliveira, M.D.; Policht, V.R.; Russo, M.; Ardini, B.; Corti, M.; Valentini, G.; Vieira, J.; Manzoni, C.; Cerullo, G.; et al. Broadband control of topological-spectral correlations in space-time beams. Nat. Photonics 2023, 17, 822–828. [Google Scholar] [CrossRef]
- Padgett, M.; Bowman, R. Tweezers with a twist. Nat. Photonics 2011, 5, 343–348. [Google Scholar] [CrossRef]
- Willig, K.I.; Rizzoli, S.O.; Westphal, V.; Jahn, R.; Hell, S.W. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 2006, 440, 935–939. [Google Scholar] [CrossRef]
- Erhard, M.; Fickler, R.; Krenn, M.; Zeilinger, A. Twisted photons: New quantum perspectives in high dimensions. Light Sci. Appl. 2018, 7, 17146. [Google Scholar] [CrossRef] [PubMed]
- Lavery, M.P.J.; Barnett, S.M.; Speirits, F.C.; Padgett, M.J. Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body. Optica 2014, 1, 1–4. [Google Scholar] [CrossRef]
- Ni, J.; Liu, S.; Wu, D.; Lao, Z.; Wang, Z.; Huang, K.; Ji, S.; Li, J.; Huang, Z.; Xiong, Q.; et al. Gigantic vortical differential scattering as a monochromatic probe for multiscale chiral structures. Proc. Natl. Acad. Sci. USA 2021, 118, e2020055118. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Li, Y.; Deng, D.; Liu, Y.; Hou, L.T.; Han, Y.H. Chiro-optical fields with asymmetric orbital angular momentum and polarization. Opt. Express 2022, 30, 7467–7476. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, J.-Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 2012, 6, 488–496. [Google Scholar] [CrossRef]
- Wang, J. Advances in communications using optical vortices. Photon. Res. 2016, 4, B14–B28. [Google Scholar] [CrossRef]
- Richardson, D.J.; Fini, J.M.; Nelson, L.E. Space-division multiplexing in optical fibres. Nat. Photonics 2013, 7, 354–362. [Google Scholar] [CrossRef]
- Deng, D.; Li, Y.; Zhao, H.; Han, Y.; Ye, J.; Qu, S. High-capacity spatial-division multiplexing with orbital angular momentum based on multi-ring fiber. J. Opt. 2019, 21, 055601. [Google Scholar] [CrossRef]
- Ye, J.; Li, Y.; Han, Y.; Deng, D.; Guo, Z.; Gao, J.; Sun, Q.; Liu, Y.; Qu, S. Excitation and separation of vortex modes in twisted air-core fiber. Opt. Express 2016, 24, 8310–8316. [Google Scholar] [CrossRef]
- Fu, S.; Gao, C. Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams. Photon. Res. 2016, 4, B1–B4. [Google Scholar] [CrossRef]
- Padgett, M.J.; Miatto, F.M.; Lavery, M.P.J.; Zeilinger, A.; Boyd, R.W. Divergence of an orbital-angular-momentum-carrying beam upon propagation. New J. Phys. 2015, 17, 023011. [Google Scholar] [CrossRef]
- Li, L.; Zhang, R.; Liao, P.; Cao, Y.; Song, H.; Zhao, Y.; Du, J.; Zhao, Z.; Liu, C.; Pang, K.; et al. Mitigation for turbulence effects in a 40-Gbit/s orbital-angular-momentum-multiplexed free-space optical link between a ground station and a retro-reflecting UAV using MIMO equalization. Opt. Lett. 2019, 44, 5181–5184. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, X.; Jia, H.; Pan, Z.; Gong, C.; Zhou, H.; Guo, Z. High-efficiency anti-interference OAM-FSO communication system based on Phase compression and improved CNN. Opt. Commun. 2022, 537, 129120. [Google Scholar] [CrossRef]
- Deng, D.; Li, Y.; Zhao, H.; Liu, Y.; Qu, S. Orbital angular momentum demultiplexing with synthetic partial aperture receivers. Opt. Lett. 2019, 44, 2689–2692. [Google Scholar] [CrossRef]
- Li, S.; Wang, J. Experimental demonstration of optical interconnects exploiting orbital angular momentum array. Opt. Express 2017, 25, 21537–21547. [Google Scholar] [CrossRef]
- Yu, S. Potentials and challenges of using orbital angular momentum communications in optical interconnects. Opt. Express 2015, 23, 3075–3087. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Shang, Z.; Hai, L.; Huang, L.; Lv, Y.; Gao, C. Orbital angular momentum comb generation from azimuthal binary phases. Adv. Photonics Nexus 2022, 1, 016003. [Google Scholar] [CrossRef]
- Willner, A.E.; Zhao, Z.; Liu, C.; Zhang, R.; Song, H.; Pang, K.; Manukyan, K.; Song, H.; Su, X.; Xie, G.; et al. Perspectives on advances in high-capacity, free-space communications using multiplexing of orbital-angular-momentum beams. APL Photonics 2021, 6, 030901. [Google Scholar] [CrossRef]
- Yang, D.; Lin, J.; Chen, C.; Li, C.; Hao, J.; Lv, B.; Zhou, K.; Wang, Y.; Jin, P. Multiwavelength high-order optical vortex detection and demultiplexing coding using a metasurface. Adv. Photonics Nexus 2022, 1, 016005. [Google Scholar] [CrossRef]
- Xie, G.; Ren, Y.; Yan, Y.; Huang, H.; Ahmed, N.; Li, L.; Zhao, Z.; Bao, C.; Tur, M.; Ashrafi, S.; et al. Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre-Gaussian beams with different radial indices. Opt. Lett. 2016, 41, 3447–3450. [Google Scholar] [CrossRef]
- Wang, A.; Zhu, L.; Liu, J.; Wang, J. Experimental demonstration of dense fractional orbital angular momentum (OAM) multiplexing with a channel spacing of 0.2 assisted by MIMO equalization. In Proceedings of the Asia Communications and Photonics Conference 2016, Wuhan, China, 2–5 November 2016; Optica Publishing Group: Washington, DC, USA, 2016; p. AF1D.1. [Google Scholar]
- Zhu, L.; Wang, J. Demonstration of obstruction-free data-carrying N-fold Bessel modes multicasting from a single Gaussian mode. Opt. Lett. 2015, 40, 5463–5466. [Google Scholar] [CrossRef] [PubMed]
- Vicente, O.C.; Caloz, C. Bessel beams: A unified and extended perspective. Optica 2021, 8, 451–457. [Google Scholar] [CrossRef]
- Du, J.; Wang, J. High-dimensional structured light coding/decoding for free-space optical communications free of obstructions. Opt. Lett. 2015, 40, 4827–4830. [Google Scholar] [CrossRef] [PubMed]
- Vaity, P.; Rusch, L. Perfect vortex beam: Fourier transformation of a Bessel beam. Opt. Lett. 2015, 40, 597–600. [Google Scholar] [CrossRef] [PubMed]
- Banawan, M.; Mishra, S.K.; Messaddeq, Y.; LaRochelle, S.; Rusch, L.A. Perfect vortex modes for nondestructive characterization of mode dependent loss in ring core fibers. J. Lightwave Technol. 2022, 40, 6548–6559. [Google Scholar] [CrossRef]
- Zhu, F.; Huang, S.; Shao, W.; Zhang, J.; Chen, M.; Zhang, W.; Zeng, J. Free-space optical communication link using perfect vortex beams carrying orbital angular momentum (OAM). Opt. Commun. 2017, 396, 50–57. [Google Scholar] [CrossRef]
- Wang, S.; Cheng, M.; Yang, X.; Xu, J.; Yang, Y. Self-focusing effect analysis of a perfect optical vortex beam in atmospheric turbulence. Opt. Express 2023, 31, 20861–20871. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, H.; Xia, J.; He, A.; Li, H.; Du, Z.; Chen, T.; Li, Z.; Lü, Y. Propagation characteristics of the perfect vortex beam in anisotropic oceanic turbulence. Appl. Opt. 2020, 59, 9956–9962. [Google Scholar] [CrossRef]
- Yang, H.; Yan, Q.; Zhang, Y.; Hu, L. Received probability of perfect optical vortex in absorbent and weak turbulent seawater links. Appl. Opt. 2021, 60, 10772–10779. [Google Scholar] [CrossRef]
- Yang, C.; Lan, Y.; Jiang, X.; Long, H.; Hou, J.; Chen, S. Beam-holding property analysis of the perfect optical vortex beam transmitting in atmospheric turbulence. Opt. Commun. 2020, 472, 125879. [Google Scholar] [CrossRef]
- Shao, W.; Huang, S.; Liu, X.; Chen, M. Free-space optical communication with perfect optical vortex beams multiplexing. Opt. Commun. 2018, 427, 545–550. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, X.; Zou, L.; Zhao, S. Two-dimensional multiplexing scheme both with ring radius and topological charge of perfect optical vortex beam. J. Mod. Opt. 2017, 66, 87–92. [Google Scholar] [CrossRef]
- Wang, W.; Wang, P.; Pang, W.; Pan, Y.; Nie, Y.; Guo, L. Evolution properties and spatial-mode UWOC performances of the perfect vortex beam subject to oceanic turbulence. IEEE Trans. Commun. 2021, 69, 7647–7658. [Google Scholar] [CrossRef]
- Wang, G.; Weng, X.; Kang, X.; Li, Z.; Chen, K.; Gao, X.; Zhuang, S. Free-space creation of a perfect vortex beam with fractional topological charge. Opt. Express 2023, 31, 5757–5766. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Liu, D.; Fu, S.; Wang, Y.; Qin, Y. Reconfigurable generation of double-ring perfect vortex beam. Opt. Express 2021, 29, 17353–17364. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, Q.; Dai, X.; Lim, C.; Nirmalathas, A. Investigation on orbital angular momentum mode-based beam shaping for indoor optical wireless communications. J. Light. Technol. 2022, 40, 7738–7745. [Google Scholar] [CrossRef]
- Szatkowski, M.; Masajada, J.; Augustyniak, I.; Nowacka, K. Generation of composite vortex beams by independent Spatial Light Modulator pixel addressing. Opt. Commun. 2020, 463, 125341. [Google Scholar] [CrossRef]
- Yang, D.; Li, C.; Yao, Z.; Huang, X.; Li, Y.; Jin, P.; Lin, J. Multiparameter controllable chiral optical patterns. Phys. Rev. Appl. 2020, 14, 014066. [Google Scholar] [CrossRef]
- Porfirev, A.P.; Kirilenko, M.S.; Khonina, S.N.; Skidanov, R.V.; Soifer, V.A. Study of propagation of vortex beams in aerosol optical medium. Appl. Opt. 2017, 56, E8–E15. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Deng, D.; Yang, Z.; Li, Y. Dense Space-Division Multiplexing Exploiting Multi-Ring Perfect Vortex. Sensors 2023, 23, 9533. https://doi.org/10.3390/s23239533
Liu X, Deng D, Yang Z, Li Y. Dense Space-Division Multiplexing Exploiting Multi-Ring Perfect Vortex. Sensors. 2023; 23(23):9533. https://doi.org/10.3390/s23239533
Chicago/Turabian StyleLiu, Xing, Duo Deng, Zhenjun Yang, and Yan Li. 2023. "Dense Space-Division Multiplexing Exploiting Multi-Ring Perfect Vortex" Sensors 23, no. 23: 9533. https://doi.org/10.3390/s23239533
APA StyleLiu, X., Deng, D., Yang, Z., & Li, Y. (2023). Dense Space-Division Multiplexing Exploiting Multi-Ring Perfect Vortex. Sensors, 23(23), 9533. https://doi.org/10.3390/s23239533