Research Progress on Router Devices for the OAM Optical Communication
Abstract
:1. Introduction
2. OAM Channel Multicasting
3. OAM Channel Switching
4. OAM Channel Filtering
5. OAM Channel Hopping
6. OAM Channel Adding/Extracting
Year | Methods | Equipment | Strengths/ Weaknesses | Transmission Result | Ref. |
---|---|---|---|---|---|
2013 | Reconfigurable multiplexers | SLM | Operate channels flexibly/Only one channel at a time | The power loss of this scheme is less than 2 dB and the channel error rate is only 2.0 × 10−3. | [152] |
2019 | Geometric transformation | SLM | Realize the addition and extraction/Required multiple SLMs | The energy purity of the measured OAM is about 95%. | [153] |
2019 | OAM analyzer | Interferometer, Dove prisms | Separate the odd and even OAM beams/- | The crosstalk values are below −10 dB and can sort the odd and even OAM beams | [154] |
2021 | OAM add-drop multiplexer | diffractive deep neural network | Diffraction efficiency and mode purity are very high/ - | Signal-to-noise ratio penalties of ~1 dB at a BER of 3.8 × 10−3 | [155] |
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Botta, A.; De Donato, W.; Persico, V.; Pescape, A. Integration of cloud computing and internet of things: A survey. Future Gener. Comput. Syst. 2016, 56, 684. [Google Scholar] [CrossRef]
- Díaz, M.; Martín, C.; Rubio, B. State-of-the-art, challenges, and open issues in the integration of Internet of things and cloud computing. J. Netw. Comput. Appl. 2016, 67, 99. [Google Scholar] [CrossRef]
- Ijaz, M.; Li, G.; Lin, L.; Cheikhrouhou, O.; Hamam, H.; Noor, A. Integration and applications of fog computing and cloud computing based on the internet of things for provision of healthcare services at home. Electronics 2021, 10, 1077. [Google Scholar] [CrossRef]
- Dhingra, S.; Madda, R.B.; Patan, R.; Jiao, P.; Barri, K.; Alavi, A.H. Internet of things-based fog and cloud computing technology for smart traffic monitoring. Internet Things 2021, 14, 100175. [Google Scholar] [CrossRef]
- Paricherla, M.; Babu, S.; Phasinam, K.; Pallathadka, H.; Zamani, A.S.; Narayan, V.; Shukla, S.K.; Mohammed, H.S. Towards Development of Machine Learning Framework for Enhancing Security in Internet of Things. Secur. Commun. Netw. 2022, 2022, 4477507. [Google Scholar] [CrossRef]
- Winzer, P. Modulation and multiplexing in optical communications. In Proceedings of the Conference on Lasers & Electro-Optics, Baltimore, MD, USA, 2–4 June 2009. [Google Scholar]
- Zhou, X.; Yu, J. Multi-level, multi-dimensional coding for high-speed and high-spectral-efficiency optical transmission. J. Light. Technol. 2009, 27, 3641. [Google Scholar] [CrossRef]
- Richter, T.; Palushani, E.; Schmidt-Langhorst, C.; Ludwig, R.; Molle, L.; Nolle, M.; Schubert, C. Transmission of single-channel 16-QAM data signals at terabaud symbol rates. J. Light. Technol. 2012, 30, 504. [Google Scholar] [CrossRef]
- Gnauck, A.; Winzer, P.; Chandrasekhar, S.; Liu, X.; Zhu, B.; Peckham, D.W. Spectrally efficient long-haul WDM transmission using 224-Gb/s polarization-multiplexed 16-QAM. J. Light. Technol. 2011, 29, 373. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, J.; Huang, M.; Shao, Y.; Wang, T.; Nelson, L.; Magill, P.; Birk, M.; Borel, P.I.; Peckham, D.w.; et al. 64-Tb/s, 8 b/s/Hz, PDM-36QAM transmission over 320 km using both pre- and post-transmission digital signal processing. J. Light. Technol. 2011, 29, 571. [Google Scholar] [CrossRef]
- Winzer, P. Making spatial multiplexing a reality. Nat. Photonics 2014, 8, 345. [Google Scholar] [CrossRef]
- Guo, Z.; Gong, C.; Liu, H.; Li, J.; Wang, Z.; Yang, Y.; Gong, Y. Research advances of orbital angular momentum based optical communication technology. Opto-Electron. Eng. 2020, 47, 190593. (In Chinese) [Google Scholar]
- Guo, Z.; Pan, Z.; Gong, C.; Wang, Z.; Guo, K.; Zhou, H. Research on router devices of OAM optical communication. J. Commun. 2020, 41, 185. (In Chinese) [Google Scholar]
- Li, L.; Liu, B.; Li, Z.; Guo, K.; Guo, Z. Acoustic vortex filter based on tunable metasurfaces. Appl. Phys. Lett. 2024, 124, 011702. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, Y.; Zheng, Q. Research progress of vortex electromagnetic wave antenna technology. J. Radars 2019, 8, 631. (In Chinese) [Google Scholar]
- Wang, Z.; Dedo, M.I.; Guo, K.; Zhou, K.; Shen, F.; Sun, Y.; Liu, S.; Guo, Z. Efficient Recognition of the Propagated Orbital Angular Momentum Modes in Turbulences With the Convolutional Neural Network. IEEE Photonics J. 2019, 11, 1. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, Y.; Wang, Y. Research advances in vortex radar imaging technology. J. Radars 2021, 10, 665. [Google Scholar]
- Allen, L.; Beijersbergen, M.; Spreeuwr, J.; Woerdman, J.P. Orbital angular momentum of light and transformation of Laguerre Gaussian laser modes. Phys. Rev. A 1992, 45, 8185. [Google Scholar] [CrossRef]
- Doster, T.; Watnik, A.T. Laguerre–gauss and bessel–gauss beams propagation through turbulence: Analysis of channel efficiency. Appl. Opt. 2016, 55, 10239–10246. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Pang, F.; Zhang, Y.; Huang, S.; Li, Y.; Wen, J.; Chen, Z.; Wang, M.; Wang, T. Generation of the first-order OAM modes in single-ring fibers by offset splicing technology. IEEE Photon. Technol. Lett. 2016, 28, 1581. [Google Scholar] [CrossRef]
- Chen, M.; Mazilu, M.; Arita, Y.; Wright, M.E.; Dholakia, K. Optical trapping with a perfect vortex beam. In Proceedings of the Optical Trapping and Optical Micromanipulation XI, San Diego, CA, USA, 17–21 August 2014; Volume 9164, pp. 69–73. Available online: https://spie.org/Publications/Proceedings/Volume/9164#_=_ (accessed on 15 October 2023).
- Lian, Y.; Qi, X.; Wang, Y.; Bai, Z.; Wang, Y.; Lu, Z. OAM beam generation in space and its applications: A review. Opt. Lasers Eng. 2022, 151, 106923. [Google Scholar] [CrossRef]
- Xiang, Z.; Shen, Z.; Shen, Y. Quasi-perfect vortices generated by Pancharatnam-Berry phase metasurfaces for optical spanners and OAM communication. Sci. Rep. 2022, 12, 1053. [Google Scholar] [CrossRef]
- Yin, Z.; Zheng, Q.; Wang, K.; Guo, K.; Shen, F.; Zhou, H.; Sun, Y.; Zhou, Q.; Gao, J.; Luo, L.; et al. Tunable dual-band terahertz metalens based on stacked graphene metasurfaces. Opt. Commun. 2018, 429, 41. [Google Scholar] [CrossRef]
- Yin, Z.; Zheng, Q.; Guo, K.; Guo, Z. Tunable beam steering, focusing and generating of orbital angular momentum vortex beams using high-order patch array. Appl. Sci. 2019, 9, 2949. [Google Scholar] [CrossRef]
- Wang, L.; Chen, H.; Guo, K.; Shen, F.; Guo, Z. An inner-and outer-fed dual-arm archimedean spiral antenna for generating multiple orbital angular momentum modes. Electronics 2019, 8, 251. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Y.; Cui, X.; Zhang, J.; Xu, P.; Ji, X. Generation of dual-polarization orbital angular momentum vortex beams with reflection-type metasurface. Opt. Commun. 2024, 553, 130107. [Google Scholar] [CrossRef]
- Memon, S.; Li, X.; Memon, K.A.; Huang, Y.; Uqaili, J.A.; Ishfaq, M. The development trends and research fronts in orbital angular momentum technology: A bibliometric analysis. China Commun. 2023, 20, 289. [Google Scholar] [CrossRef]
- Guo, K.; Zheng, Q.; Yin, Z.; Guo, Z. Generation of mode-reconfigurable and frequency-adjustable OAM beams using dynamic reflective metasurface. IEEE Access 2020, 8, 7552. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Guo, K.; Guo, Z. Detecting targets’ longitudinal and angular accelerations based on vortex electromagnetic waves. Measurement 2022, 187, 110278. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Guo, Z. OAM radar based fast super-resolution imaging. Measurement 2022, 189, 110600. [Google Scholar] [CrossRef]
- Guo, K.; Lei, S.; Lei, Y.; Zhou, H.; Guo, Z. Research on detecting targets’ accelerations based on vortex electromagnetic wave in non-line-of-sight scenario. IEEE Sens. J. 2023, 23, 4078–4084. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, Z. Adaptive Demodulation Technique for Efficiently Detecting Orbital Angular Momentum (OAM) Modes Based on the Improved Convolutional Neural Network. IEEE Access 2019, 7, 163633. [Google Scholar] [CrossRef]
- Ruffato, G. OAM-inspired new optics: The angular metalens. Light Sci. Appl. 2021, 10, 96. [Google Scholar] [CrossRef]
- Zhou, H.; Pan, Z.; Dedo, M.; Guo, Z. High-efficiency and high-precision identification of transmitting orbital angular momentum modes in atmospheric turbulence based on an improved convolutional neural network. J. Opt. 2021, 23, 065701. [Google Scholar] [CrossRef]
- Gong, C.; Pan, Z.; Dedo, M.; Sun, J.; Wang, L.; Guo, Z. Improving the demultiplexing performances of the multiple Bessel Gaussian beams (mBGBs). Results Phys. 2021, 30, 104829. [Google Scholar] [CrossRef]
- Dedo, M.; Wang, Z.; Guo, K.; Guo, Z. OAM mode recognition based on joint scheme of combining the Gerchberg–Saxton (GS) algorithm and convolutional neural network (CNN). Opt. Commun. 2020, 456, 124696. [Google Scholar] [CrossRef]
- Lou, Y.; Lv, Y.; Wang, J.; Liu, S.; Jing, J. Orbital Angular Momentum Multiplexed Deterministic All-Optical Quantum Erasure-Correcting Code. Phys. Rev. Lett. 2024, 132, 040601. [Google Scholar] [CrossRef]
- Dedo, M.; Wang, Z.; Guo, K.; Sun, Y.; Shen, F.; Zhou, H.; Gao, J.; Sun, R.; Ding, Z.; Gou, Z. Retrieving performances of vortex beams with GS algorithm after transmitting in different types of turbulences. Appl. Sci. 2019, 9, 2269. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, Z.; Dedo, M.; Guo, K. The orbital angular momentum encoding system with radial indices of Laguerre–Gaussian beam. IEEE Photon. J. 2018, 10, 1. [Google Scholar] [CrossRef]
- Lei, Y.; Yang, Y.; Wang, Y.; Guo, K.; Gong, Y.; Guo, Z. Throughput performance of wireless multiple-input multiple-output systems using OAM antennas. IEEE Wirel. Commun. Lett. 2020, 10, 261. [Google Scholar] [CrossRef]
- Yang, Y.; Gong, Y.; Guo, K.; Sehn, F.; Sun, J.; Guo, Z. Broad-Band Multiple OAMs’ Generation with Eight-arm Archimedean Spiral Antenna (ASA). IEEE Access 2020, 8, 53232. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, G.; Shen, F.; Sun, J.; Guo, K.; Guo, Z.; Zhou, K.; Jiang, H.; Wu, Z.; Zeng, B.; et al. Generating and Detecting Broad-Band Underwater Multiple OAMs Based on Water-immersed Antenna Array. IEEE Access 2020, 8, 149586. [Google Scholar] [CrossRef]
- Shen, F.; Mu, J.; Guo, K.; Wang, S.; Guo, Z. Generation of continuously variable-mode vortex electromagnetic waves with three-dimensional helical antenna. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1091. [Google Scholar] [CrossRef]
- Shen, F.; Yin, C.; Guo, K.; Wang, S.; Gong, Y.; Guo, Z. Low-Cost Dual-Band Multi-Polarization Aperture-Shared Antenna with Single-Layer Substrate. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1337. [Google Scholar] [CrossRef]
- Shen, F.; Mu, J.; Guo, K.; Guo, Z. Generating circularly polarized vortex electromagnetic waves by the conical conformal patch antenna. IEEE Trans. Antennas Propag. 2019, 67, 5763. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, K.; Shen, F.; Gong, Y.; Guo, Z. Generating Multiple OAM Based on a Nested Dual-Arm Spiral Antenna. IEEE Access 2019, 7, 138541. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.; Wang, S.; Zhou, Q.; Shen, F.; Jiang, H.; Wu, Z.; Zeng, B.; Guo, Z.; Gong, Y. Designing Water-Immersed Rectangular Horn Antenna for Generating Underwater OAM Wave. Electronics 2019, 8, 1224. [Google Scholar] [CrossRef]
- Hui, X.; Zheng, S.; Chen, Y.; Hu, Y.; Jin, X.; Chi, H.; Zhang, X. Multiplexed Millimeter Wave Communication with Dual Orbital Angular Momentum (OAM) Mode Antennas. Sci. Rep. 2015, 5, 10148. [Google Scholar] [CrossRef]
- Yan, Y.; Xie, G.; Lavery, M.; Huang, H.; Ahmed, N.; Bao, C.; Ren, Y.; Cao, Y.; Li, L.; Zhao, Z.; et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat. Commun. 2014, 5, 4876. [Google Scholar] [CrossRef]
- Zhou, H.; Li, J.; Guo, K.; Guo, Z. Generation of acoustic vortex beams with designed Fermat’s spiral diffraction grating (FSDG). J. Acoust. Soc. Am. 2019, 146, 4237. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, H.; Zhou, H.; Wang, S.; Shen, F.; Gong, Y.; Gao, J.; Liu, S.; Guo, K. High-order acoustic vortex field generation based on the metasurface. Phys. Rev. E. 2019, 100, 053315. [Google Scholar] [CrossRef]
- Gong, C.; Li, J.; Guo, K.; Zhou, H.; Guo, Z. Measuring the orbital angular momentum of acoustic vortices based on the Fraunhofer’s diffraction. Chin. Phys. B 2020, 29, 104301. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, H.; Li, J.; Zhou, H.; Guo, K.; Jun, G. Research progress of applications of acoustic-vortex information. Acta Phys. Sin. 2020, 69, 244301. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, H.; Li, J.; Gong, C.; Guo, K.; Guo, Z. Measuring the orbital angular momentum of acoustic vortices by apertures. J. Acoust. Soc. Am. 2020, 148, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lei, Y.; Guo, K.; Guo, Z. Generating reconfigurable acoustic orbital angular momentum with double-layer acoustic metasurface. J. Appl. Phys. 2023, 133, 074901. [Google Scholar] [CrossRef]
- Pu, S.; Guo, G.; Guo, X.; Zhou, C.; Li, Y.; Ma, Q.; Tu, J.; Zhang, D. Auto-focusing acoustic-vortex tweezers for obstacle-circumventing manipulation. J. Appl. Phys. 2021, 130, 234903. [Google Scholar] [CrossRef]
- Shi, C.; Dubois, M.; Wang, Y.; Zhang, X. High-speed acoustic communication by multiplexing orbital angular momentum. Proc. Natl. Acad. Sci. USA 2017, 114, 7250. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Shen, C.; Zhu, X.; Li, J.; Liu, Y.; Cummer, S.; Xu, Z. Sound vortex diffraction via topological charge in phase gradient metagratings. Sci. Adv. 2020, 6, 9876. [Google Scholar] [CrossRef]
- Zhang, B.W.; Hong, Z.Y.; Drinkwater, B.W. Transfer of Orbital Angular Momentum to Freely Levitated High-Density Objects in Airborne Acoustic Vortices. Phys. Rev. Appl. 2022, 18, 024029. [Google Scholar] [CrossRef]
- Ran, L.; Guo, Z.; Qu, S. Rotation of optically trapped microscopic particles by vortex femtosecond laser. Chin. Phys. B 2012, 21, 104206. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Z.; Qu, S. Living cell manipulation in microfluidic device by femtosecond optical tweezers. Opt. Lasers Eng. 2014, 55, 150. [Google Scholar] [CrossRef]
- Karuna, S.M.; Bosanta, R.B. Optical force calculation in the ray-optics regime for beams with arbitrary complex amplitude profiles. Opt. Lett. 2022, 47, 4151. [Google Scholar]
- Cui, X.-z.; Yin, X.-l.; Chang, H.; Guo, Y.-l.; Zheng, Z.-j.; Sun, Z.-w.; Liu, G.-y.; Wang, Y.-j. Analysis of an adaptive orbital angular momentum shift keying decoder based on machine learning under oceanic turbulence channels. Opt. Commun. 2018, 429, 138. [Google Scholar] [CrossRef]
- Krenn, M.; Fickler, R.; Fink, M.; Handsteiner, J.; Malik, M.; Scheidl, T.; Ursin, R.; Zeilinger, A. Communication with spatially modulated light through turbulent air across vienna. New J. Phys. 2014, 16, 113028. [Google Scholar] [CrossRef]
- Du, J.; Wang, J. High-dimensional structured light coding/decoding for free-space optical communications free of obstructions. Opt. Lett. 2015, 40, 4827. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Zeng, X.N.; Han, Y. Perfect optical vortex array for optical communication based on orbital angular momentum shift keying. J. Opt. 2018, 20, 125604. [Google Scholar] [CrossRef]
- Tian, Q.; Li, Z.; Hu, K.; Zhu, L.; Pan, X.; Zhang, Q.; Wang, Y.; Tian, F.; Yin, X.; Xin, X. Turbo-coded 16-ary OAM shift keying FSO communication system combining the CNN-based adaptive demodulator. Opt. Express 2018, 26, 27849. [Google Scholar] [CrossRef] [PubMed]
- Kai, C.; Huang, P.; Shen, F.; Zhou, H.; Guo, Z. Orbital angular momentum shift keying based optical communication system. IEEE Photon J. 2017, 9, 1–10. [Google Scholar] [CrossRef]
- Fu, S.; Zhai, Y.; Zhou, H.; Zhang, J.; Wang, T.; Liu, X.; Gao, C. Experimental demonstration of free-space multi-state orbital angular momentum shift keying. Opt. Express 2019, 27, 33111. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Fan, M.; Pu, Y.; Li, H.; Wang, S. 1024-ary composite OAM shift keying for free-space optical communication system decoded by a two-step neural network. Opt. Lett. 2023, 48, 2692. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Xie, G.; Yan, Y.; Ahmed, N.; Ren, Y.; Yue, Y.; Rogawski, D.; Willner, M.J.; Erkmen, B.I.; Birnbaum, K.M.; et al. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Opt. Lett. 2014, 39, 197. [Google Scholar] [CrossRef]
- Li, S.; Wang, J. A compact trench-assisted multi-orbital-angular- momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes). Sci. Rep. 2014, 4, 3853. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Lyu, X.; Zhu, L.; Wang, D.; Li, S.; Wang, A.; Zhao, Y.; Long, Y.; Du, J.; et al. Ultra-high 435-bit/s/Hz spectral efficiency using N-dimentional multiplexing and modulation link with pol-muxed 52 orbital angular momentum (OAM) modes carrying Nyquist 32-QAM signals. In Proceedings of the European Conference on Optical Communication, Valencia, Spain, 27 September–1 October 2015; IEEE Press: Piscataway, NJ, USA, 2015. [Google Scholar]
- Zahidy, M.; Liu, Y.; Cozzolino, D.; Ding, Y.; Morioka, T.; Oxenløwe, L.K.; Bacco, D. Photonic integrated chip enabling orbital angular momentum multiplexing for quantum communication. Nanophotonics 2022, 11, 821. [Google Scholar] [CrossRef]
- Gatto, A.; Tacca, M.; Martelli, P.; Boffi, P.; Martinelli, M. Free-space orbital angular momentum division multiplexing with Bessel beams. J. Opt. 2011, 13, 064018. [Google Scholar] [CrossRef]
- Lei, T.; Zhang, M.; Li, Y.; Jia, P.; Liu, G.N.; Xu, X.; Li, Z.; Min, C.; Lin, J.; Yu, C.; et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci. Appl. 2015, 4, e257. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Chen, S.; Zheng, S.; Zhu, L.; Wang, A.; Zhou, N.; Li, S.; Shen, L.; Du, C.; et al. Demonstration of orbital angular momentum (OAM) fiber amplifier in data-carrying OAM-division multiplexing and wavelength-division multiplexing (WDM) system. In Proceedings of the 2017 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 19–23 March 2017. [Google Scholar]
- Jian, Y.; Chow, C. Design and analysis of a compact micro-ring resonator signal emitter to reduce the uniformity-induced phase distortion and crosstalk in orbital angular momentum (OAM) division multiplexing. Opt. Express 2023, 31, 810. [Google Scholar] [CrossRef]
- Lei, Y.; Li, L.; Zhou, H.; Guo, K.; Guo, Z. Transmission characteristics of vortex frozen waves in different obstacle channels. Opt. Express 2023, 31, 4701. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Jia, H.; Pan, Z.; Gong, C.; Zhou, H.; Guo, Z. High-efficiency anti-interference OAM-FSO communication system based on Phase compression and improved CNN. Opt. Commun. 2023, 537, 129120. [Google Scholar] [CrossRef]
- Bin, W.; Michael, T.; Zhe, Z.; Esashi, Y.; Jenkins, N.W.; Murnane, M.M.; Kapteyn, H.C.; Liao, C. T.Coherent Fourier scatterometry using orbital angular momentum beams for defect detection. Opt. Express 2021, 29, 3342. [Google Scholar]
- Long, Z.; Mingliang, D.; Bing, L.; Guo, X.; Wang, A. Turbulence-resistant high-capacity free-space optical communications using OAM mode group multiplexing. Opt. Express 2023, 31, 14454. [Google Scholar]
- Li, J.; Yang, Q.; Dai, X.; Lim, C.; Nirmalathas, A. Investigation on repetition-coding and space-time-block-coding for indoor optical wireless communications employing beam shaping based on orbital angular momentum modes. Opt. Express 2022, 30, 20278. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Ren, H.; Gu, M. Orbital angular momentum holography for high-security encryption. Nat. Photonics 2020, 14, 102. [Google Scholar] [CrossRef]
- Tomkos, I.; Azodolmolky, S.; Sole-Pareta, J.; Careglio, D.; Palkopoulou, E. A tutorial on the flexible optical networking paradigm: State of the art, trends, and research challenges. Proc. IEEE Inst. Electr. Electron. Eng. 2014, 102, 1317. [Google Scholar] [CrossRef]
- Mamadou, D.; Shen, F.; Dedo, M.; Zhou, Q.; Guo, K.; Guo, Z. High-efficiency sorting and measurement of orbital angular momentum modes based on the March-Zehnder interferometer and complex phase gratings. Meas. Sci. Technol. 2019, 30, 075201. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Zhong, Z.; Xu, P.; Chen, H.; Yu, S. Orbital angular momentum (OAM) modes routing in a ring fiber based directional coupler. Opt. Commun. 2015, 350, 160. [Google Scholar] [CrossRef]
- Lavery, M.; Dudley, A.; Forbes, A.; Courtial, J.; Padgett, M.J. Robust interferometer for the routing of light beams carrying orbital angular momentum. New J. Phys. 2011, 13, 093014. [Google Scholar] [CrossRef]
- Garcia-Escartin, J.; Chamorro-Posada, P. Quantum computer networks with the orbital angular momentum of light. Phys. Rev. A 2012, 86, 032334. [Google Scholar] [CrossRef]
- Merabet, B.; Liu, B.; Li, Z.; Tian, J.; Guo, K.; Shah, S.A.S.; Guo, Z. Vision transformers motivating superior OAM mode recognition in optical communications. Opt. Express 2023, 31, 38958. [Google Scholar] [CrossRef] [PubMed]
- Willner, A. OAM light for communications. Opt. Photonics News 2021, 32, 34. [Google Scholar] [CrossRef]
- Dai, K.; Gao, C.; Zhong, L.; Na, Q.; Wang, Q. Measuring OAM states of light beams with gradually-changing-period gratings. Opt. Lett. 2015, 40, 562. [Google Scholar] [CrossRef]
- Ruffato, G.; Rossi, R.; Massari, M.; Mafakheri, E.; Capaldo, P.; Romanato, F. Design, fabrication and characterization of computer generated holograms for anti-counterfeiting applications using OAM beams as light decoders. Sci. Rep. 2017, 7, 18011. [Google Scholar] [CrossRef]
- Garcia-Molina, H.; Spauster, A.M. Ordered and reliable multicast communication. ACM Trans. Comput. Syst. 1991, 9, 242. [Google Scholar] [CrossRef]
- Moyer, M.; Rao, J. A survey of security issues in multicast communications. IEEE Netw. 1999, 13, 12. [Google Scholar] [CrossRef]
- Kim, J.; Joung, J.; Lee, J.W. Resource allocation for multiple device-to-device cluster multicast communications underlay cellular networks. IEEE Commun. Lett. 2018, 22, 412. [Google Scholar] [CrossRef]
- Xiong, J.; Ma, D.; Zhao, H.; Gu, F. Secure multicast communications in cognitive satellite-terrestrial networks. IEEE Commun. Lett. 2019, 23, 632. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, J.; Liu, G.; Ma, Z. Optimal power allocations for relay-assisted NOMA-based 5G V2X broadcast/multicast communications. In Proceedings of the IEEE/CIC International Conference on Communications, Beijing, China, 16–18 August 2018; IEEE Press: Piscataway, NJ, USA, 2018. [Google Scholar]
- Yang, W.; Chen, Y.; Huang, Z.; Zhang, H.; Gu, H.; Yu, C. A Survey of Multicast Communication in Optical Network-on-Chip (ONoC). In Proceedings of the Parallel Architectures, Algorithms and Programming: 10th International Symposium, PAAP 2019, Guangzhou, China, 12–14 December 2019; Springer: Singapore, 2020. [Google Scholar]
- Du, J.; Wang, J. Design of on-chip N-fold orbital angular momentum multicasting using V-shaped antenna array. Sci. Rep. 2015, 5, 1. [Google Scholar] [CrossRef]
- Cai, A.; Li, Y.; Chen, J.; Shen, J. Coordinating Multiple Light-Trails in Multicast Elastic Optical Networks With Adaptive Modulation. IEEE Photonics J. 2023, 15, 1. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Li, S.; Zhao, Y.; Du, J.; Zhu, L. Orbital angular momentum and beyond in free-space optical communications. Nanophotonics 2021, 11, 645. [Google Scholar] [CrossRef]
- Yan, Y.; Yue, Y.; Huang, H.; Ren, Y.; Ahmed, N.; Willner, A.; Dolinar, S. Spatial-mode multicasting of a single 100-Gbit/s orbital angular momentum (OAM) mode onto multiple OAM modes. In Proceedings of the European Conference and Exhibition on Optical Communication, Amsterdam, The Netherlands, 16–20 September 2012; Optica Publishing Group: Washington, DC, USA, 2012. [Google Scholar]
- Yan, Y.; Yue, Y.; Huang, H.; Ren, Y.; Ahmed, N.; Tur, M.; Dolinar, S.; Willner, A. Multicasting in a spatial division multiplexing system based on optical orbital angular momentum. Opt. Lett. 2013, 38, 3930. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, J. Adaptive power-controllable orbital angular momentum (OAM) multicasting. Sci. Rep. 2015, 5, 9677. [Google Scholar] [CrossRef] [PubMed]
- Almaiman, A.; Song, H.; Minoofar, A.; Song, H.; Zhang, R.; Su, X.; Zou, Z.; Pang, K.; Liu, C.; Liao, P.; et al. Demonstration of QPSK data correlation and equalization using a tunable optical tapped delay line based on orbital angular momentum mode delays. Opt. Commun. 2022, 503, 127438. [Google Scholar] [CrossRef]
- Shang, Z.; Fu, S.; Hai, L.; Zhang, Z.; Li, L.; Gao, C. Multiplexed vortex state array toward high-dimensional data multicasting. Opt. Express 2022, 30, 34053. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.; Li, B.; Luan, H.; Gu, M.; Fang, X. Orbital Angular Momentum Neural Communications for 1-to-40 Multicasting with 16-Ary Shift Keying. ACS Photonics 2023, 10, 2799. [Google Scholar] [CrossRef]
- Li, S.; Wang, J. Compensation of a distorted N-fold orbital angular momentum multicasting link using adaptive optics. Opt. Lett. 2016, 41, 1482–1485. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wu, C.; Zhang, Z.; Zhao, S.; Zhong, B.; Li, S.; Li, H.; Jin, L. High-purity multi-mode vortex beam generation with full complex-amplitude-controllable metasurface. IEEE Trans. Antennas Propag. 2022, 71, 774–782. [Google Scholar] [CrossRef]
- Almaiman, A.; Song, H.; Minoofar, A.; Song, H.; Zhang, R.; Su, X.; Zou, K.; Pang, K.; Liu, C.; Liao, P.; et al. Experimental Demonstration of a Data Correlation and Data Equalization using a Tunable Optical Tapped-Delay-Line Using the Spatial Domain and Modal-Dependent Delays. In Proceedings of the CLEO: Science and Innovations 2020, Washington, DC, USA, 10–15 May 2020. ISBN 978-1-943580-76-7; From the session Emerging Platforms in Integrated Photonics (STu3O). [Google Scholar]
- Xue, X.; Calabretta, N. Nanosecond optical switching and control system for data center networks. Nat. Commun. 2022, 13, 2257. [Google Scholar] [CrossRef] [PubMed]
- Sasikala, V.; Chitra, K. All optical switching and associated technologies: A review. J. Opt. 2018, 47, 307. [Google Scholar] [CrossRef]
- Song, X.; Ma, J.; Bai, Y.; Yao, Y.; Zheng, Z.; Gao, X.; Huang, S. Optical-controlled fast switching of radio frequency orbital angular momentum beams with different mode and radiation direction. J. Light. Technol. 2021, 40, 640. [Google Scholar] [CrossRef]
- Meng, W.; Hua, Y.; Cheng, K.; Li, B.; Liu, T.; Chen, Q.; Luan, H.; Gu, M.; Fang, X. 100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution. Opto-Electron. Sci. 2022, 1, 220004-10. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, S.; Lai, Z.; Li, Y.; Ao, Z.; Li, J.; Tu, J.; Wu, Y.; Liu, W.; Li, Z. Broadband, Low-Crosstalk, and Massive-Channels OAM Modes De/Multiplexing Based on Optical Diffraction Neural Network. Laser Photonics Rev. 2023, 17, 2200536. [Google Scholar] [CrossRef]
- Wu, G.; Wu, X.; Gao, S.; Tu, J.; Zhou, J.; Sui, Q.; Liu, W.; Li, Z. Multi-channel higher-order OAM generation and switching based on a mode selective interferometer. Opt. Express 2022, 30, 25093. [Google Scholar] [CrossRef] [PubMed]
- Lemon, M.; Robertson, E.; Free, J.; Dai, K.; Miller, J.K.; Vanderschaaf, L.; Cox, M.; Watkins, R.J.; Johnson, E.G. Sensing and coupling of optical channels in dynamic atmospheric turbulence using OAM beamlets for improved power and data transmission. Opt. Express 2022, 30, 47598. [Google Scholar] [CrossRef]
- Yue, Y.; Ahmed, N.; Huang, H.; Yan, Y.; Ren, Y.; Rogawski, D.; Willner, A.E. Reconfigurable orbital-angular-momentum-based switching among multiple 100-Gbit/s data channels. In Proceedings of the Optical Fiber Communication Conference, Anaheim, Calif, 17–21 March 2013; Optica Publishing Group: Washington, DC, USA, 2013. [Google Scholar]
- Wang, J.; Yang, J.Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 2012, 6, 488. [Google Scholar] [CrossRef]
- Ahmed, N.; Huang, H.; Ren, Y.; Yan, Y.; Xie, G.; Willner, A.E. Reconfigurable 2 × 2 orbital angular momentum based optical switching of 50-Gbaud QPSK 884 channels. Opt. Express 2014, 22, 756. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, J. Demonstration of reconfigurable joint orbital angular momentum mode and space switching. Sci. Rep. 2016, 6, 60. [Google Scholar] [CrossRef] [PubMed]
- Lei, T.; Gao, S.; Li, Z.; Yuan, Y.; Li, Y.; Zhang, M.; Liu, G.N.; Xu, X.; Tian, J.; Yuan, X. Fast-switchable OAM-based high capacity density optical router. IEEE Photon. J. 2017, 9, 1. [Google Scholar] [CrossRef]
- Zhang, N.; Scaffardi, M.; Malik, N.M.; Toccafondo, V.; Klitis, C.; Lavery, M.P.J.; Meloni, G.; Fresi, F.; Lazzeri, E.; Marini, D.; et al. 4 OAM × 4 WDM Optical Switching Based on an Innovative Integrated Tunable OAM Multiplexer. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; pp. 1–3. [Google Scholar]
- Chen, S.; Ke, X. Demonstration of Orbital-Angular-Momentum-Based Optical Switching Using Dual-Area Mirrors. Opt. Photonics J. 2021, 11, 351. [Google Scholar] [CrossRef]
- Scaffardi, M.; Malik, M.N.; Zhang, N.; Rydlichowski, P.; Toccafondo, V.; Klitis, C.; Lavery, M.P.J.; Zhu, J.; Cai, X.; Yu, S.; et al. 10 OAM × 16 Wavelengths Two-Layer Switch Based on an Integrated Mode Multiplexer for 19.2 Tb/s Data Traffic. J. Light. Technol. 2021, 39, 3217. [Google Scholar] [CrossRef]
- Srinivasu, S.; Wanare, H. Graded-azimuthal-index fiber as a control element for radial-index and orbital-angular-momentum modes of Laguerre-Gaussian beams. Phys. Rev. A 2023, 107, 013517. [Google Scholar] [CrossRef]
- Nadi, M.; Sedighy, S.; Cheldavi, A. Multimode OAM Beam Generation through 1-Bit Programmable Metasurface Antenna for High throughput Data Communications. 2023. Available online: https://www.researchsquare.com/article/rs-3022677/v1 (accessed on 15 October 2023).
- Chen, Y.; Zheng, S.; Xiong, X.; Zhu, S.; Xiong, X.; Zhu, Z.; Pan, B.; Ren, C.; Hui, X.; Jin, X.; et al. Experimental Demonstration of OAM Spatial Field Digital Modulation Communication System. IEEE Commun. Lett. 2022, 26, 2470. [Google Scholar] [CrossRef]
- Reddy, A.N.K.; Anand, V.; Podlipnov, V.V.; Khonina, S.N.; Juodkazis, S. Simultaneous Detection of Modal Composition and Wavelength of OAM Fields Using a Hexagonal Vortex Filter. In Proceedings of the 2022 Photonics & Electromagnetics Research Symposium (PIERS), Hangzhou, China, 25–27 April 2022; pp. 981–984. [Google Scholar]
- Zhang, J.; Wu, X.; Lau, A.P.T.; Li, Z.; Lu, C. Dynamic analysis of PAM-4 IM/DD OAM-based MGDM transmission enabled by mode-group filter approach. Opt. Lett. 2023, 48, 3259. [Google Scholar] [CrossRef]
- Zou, K.; Pang, K.; Song, H.; Fan, J.; Zhao, Z.; Song, H.; Zhang, R.; Zhou, H.; Minoofar, A.; Liu, C.; et al. High-capacity free-space optical communications using wavelength-and mode-division-multiplexing in the mid-infrared region. Nat. Commun. 2022, 13, 7662. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Ren, Y.; Xie, G.; Yan, Y.; Yue, Y.; Ahmed, N.; Lavery, M.P.J.; Padgett, M.J.; Dolinar, S.; Tur, M.; et al. Tunable orbital angular momentum mode filter based on optical geometric transformation. Opt. Lett. 2014, 39, 1689. [Google Scholar] [CrossRef]
- Gao, S.; Lei, T.; Li, Y.; Yuan, Y.; Xie, Z.; Li, Z.; Yuan, X. OAM-labeled free-space optical flow routing. Opt. Express 2016, 24, 21642. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhao, S. Orbital angular momentum filter based on multiple-beam interference. Opt. Commun. 2019, 430, 98. [Google Scholar] [CrossRef]
- Rao, X.; Yang, L.; Su, J.; Ban, Q.; Deng, X.; Wang, W. Spin-entangled orbital angular momentum filter of photons based on a chiral long-period fiber grating. Opt. Lett. 2022, 47, 5758. [Google Scholar] [CrossRef]
- Wu, G.; Gao, S.; Tu, J.; Shen, L.; Feng, Y.; Sui, Q.; Liu, W.; Li, Z. Mode manipulation in a ring–core fiber for OAM monitoring and conversion. Nanophotonics 2022, 11, 4889. [Google Scholar] [CrossRef]
- Shukla, A.; Gupta, S. Joint WDM and OAM Mode Group Multiplexed Transmission Over Conventional Multimode Fiber. IEEE Photon. J. 2023. Available online: https://ieeexplore.ieee.org/abstract/document/10114950 (accessed on 15 October 2023).
- Li, Z.; Chai, J.; Lu, Y.; Zhang, J.; Jiang, Z.F.; Liu, W. Mode decomposition of a few-mode fiber with OAM eigenmodes. In Proceedings of the 2nd International Conference on Laser, Optics and Optoelectronic Technology, Qingdao, China, 20–22 May 2022. [Google Scholar]
- Liang, L.; Cheng, W.; Zhang, H.; Li, Z.; Li, Y. Orbital-angular-momentum based mode-hopping: A novel anti-jamming technique. In Proceedings of the 2017 IEEE/CIC International Conference on Communications, Qingdao, China, 22–24 October 2017; IEEE Press: Piscataway, NJ, USA, 2017. [Google Scholar]
- Zhao, Y.; Ge, Y.; Yang, Z.; Ju, G.; Ma, L.; Lu, Y.; Guan, Y.L. OAM-based Reconfigurable Doppler Shifts Enable PAPR Reduction for Multi-carrier Doppler Diversity. In Proceedings of the 2022 Asia-Pacific Microwave Conference (APMC), Yokohama, Japan, 29 November–2 December 2022; pp. 485–487. [Google Scholar]
- Zhu, L.; Yao, H.; Wang, J.; Zhang, Q.; Hanzo, L. Channel modeling for orbital angular momentum based underwater wireless optical systems. IEEE Trans. Veh. Technol. 2022, 71, 5880–5895. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhong, J.; Liu, X. Sparse Code Multiple Access Communication Networks Based on Multi-Level Quality-of-Service Frequency-hopping for Heterogeneous Multi-tier Multi-cell. J. Electron. Inf. Techn. 2022, 44, 2977–2985. [Google Scholar]
- Willner, A.; Ren, Y.; Xie, G.; Zhao, Z.; Cao, Y.; Li, L.; Ahmed, N.; Wang, Z.; Yan, Y.; Liao, P.; et al. Experimental demonstration of 20 Gbit/s data encoding and 2 ns channel hopping using orbital angular momentum modes. Opt. Lett. 2015, 40, 5810. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Cheng, W.; Zhang, W.; Zhang, H. Mode hopping for anti-jamming in radio vortex wireless communications. IEEE Trans. Veh. Technol. 2018, 67, 7018–7032. [Google Scholar] [CrossRef]
- Liang, L.; Cheng, W.; Zhang, W.; Zhang, H. Index-modulation embedded mode hopping for antijamming. IEEE Syst. J. 2022, 16, 3905. [Google Scholar] [CrossRef]
- Zhu, L.; Yao, H.; Chang, H.; Tian, Q.; Zhang, Q.; Xin, X.; Yu, F.R. Adaptive Optics for Orbital Angular Momentum-Based Internet of Underwater Things Applications. IEEE Internet Things J. 2022, 9, 24281. [Google Scholar] [CrossRef]
- Liu, S.; Chen, P.; Ge, S.; Zhu, L.; Zhang, Y.H.; Lu, Y.Q. 3D Engineering of Orbital Angular Momentum Beams via Liquid-Crystal Geometric Phase. Laser Photonics Rev. 2022, 16, 2200118. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, Y.; Chen, Y.; Xie, W. Parameter Extraction of Accelerated Motion Targets Based on Vortex Electromagnetic Wave Radar. IEEE Geosci. Remote Sens. Lett. 2023. Available online: https://ieeexplore.ieee.org/abstract/document/10128984 (accessed on 15 October 2023).
- Yang, L.; Huang, S.; Zhu, G. Jointly Detecting Atmospheric Turbulence and Recognizing OAM Modes Via a Residual Network. Wirel. Pers. Commun. 2023, 131, 187–196. [Google Scholar] [CrossRef]
- Huang, H.; Yue, Y.; Yan, Y.; Ahmed, N.; Ren, Y.; Tur, M.; Willner, A.E. Liquid-crystal-on-silicon-based optical add/drop multiplexer for orbital-angular-momentum-multiplexed optical links. Opt. Lett. 2013, 38, 5142. [Google Scholar] [CrossRef]
- Feng, Z. Research on High-Efficiency Measurement of OAM Beam Based on Geometric Optical Transformation and Its Application Technology; Hefei University of Technology: Hefei, China, 2019. [Google Scholar]
- Feng, Z.; Wang, X.; Dedo, M.I.; Guo, K.; Shen, F.; Kai, C.; Guo, Z. High-density Orbital Angular Momentum mode analyzer based on the mode converters combining with the modified Mach–Zehnder interferometer. Opt. Commun. 2019, 435, 441. [Google Scholar] [CrossRef]
- Xiong, W.; Huang, Z.; Wang, P.; Wang, X.; He, Y.; Wang, C.; Liu, J.; Ye, H.; Fan, D.; Chen, S. Optical diffractive deep neural network-based orbital angular momentum mode add–drop multiplexer. Opt. Express 2021, 29, 36936–36952. [Google Scholar] [CrossRef]
OAM-RD | Schematic Diagram | Function | Reference |
---|---|---|---|
Multicasting | Extended communication link | [95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112] | |
Switching | Exchanging data | [113,114,115,116,117,118,119,120,121,122,123,124,125,126,127] | |
Filtering | Extracting specific channel | [128,129,130,131,132,133,134,135,136,137,138,139,140] | |
Hopping | Anti-interference | [141,142,143,144,145,146,147,148,149] | |
Adding/ Extracting | Improved the scalability of channels | [150,151,152,153,154,155] |
Year | Method | Input | Output | Equipment | Strengths/ Weaknesses | Transmission Result | Ref. |
---|---|---|---|---|---|---|---|
2013 | Sliced phase patterns | Single OAM | Multiple same-mode-spacing OAMs | SLM | Low loss efficiency/ Low integration | Channel crosstalk < −20 dB | [105] |
2015 | Adaptive correction | Gaussian beam | Multiple collinear superposition OAM | SLM | Output power adjustable/ Limited mode selection | Maximum power deviation is ~0.3 dB | [106] |
2022 | Optical tapped-delay-lines | Gaussian beam | Multiple adjustable OAM | SLM | Reduced error vector magnitude (EVM) | Error-vector magnitude is ~12.9% | [107] |
2022 | Multiplexed vortex state array | Multiplex OAM | Multiple multiplexed OAM | SLM | High channel utilization/- | The mean square error is 1.06 × 10−3 | [108] |
2023 | 16-ary shift keying | Multiplex OAM | Multiple multiplexed OAM | SLM | -/Ultra-high precision, 1-to-40 multicasting | The mean square error is 0.02, BER of 0 | [109] |
Year | Methods | Equipment | Strengths/ Weaknesses | Transmission Result | Ref. |
---|---|---|---|---|---|
2013 | Reconfigurable optical networking functions | SLM | Multi-pair data channel exchange/Cumbersome structure | The average conversion efficiency is −3.6 dB | [120] |
2013 | Mode overlay | SLM | Simple structure/ Only switch the single OAM | When the BER is 1 × 10−9, the power loss is less than 2.4 dB | [121] |
2013 | Reconfigurable 2 × 2 switch | SLM | - | Signal-to-noise ratio less than 2.5 dB | [122] |
2016 | Space switching | SLM | Adjustable output position/ Complex system and high device cost | - | [123] |
2017 | Optical vortex grating | Digital micromirror | Fast switching speed/- | The router has a fast-switching time of 6.9 μs | [124] |
2021 | Optical separation | Reflector and SLM | Simple structure and low cost/ - | - | [126] |
Year | Methods | Equipment | Strengths/ Weaknesses | Transmission Result | Ref. |
---|---|---|---|---|---|
2014 | Optical geometric transformation | SLM | Mode adjustable/ Difficult to filter out OAM with small mode intervals | The output power rejection ratio of blocking mode and propagation mode exceeds 14.5 dB. | [134] |
2016 | Labeling overlapped optical flows | Dammann optical vortex grating | Diversified function/- | The power of the blocked output port is suppressed by more than 23 dB by the filter | [135] |
2019 | Controlling the phase difference | Interferometer | Reduce the overlapping effect of adjacent OAM models/- | Specific OAM schema values can achieve 100% passing theoretically | [136] |
2022 | Chiral long-period fiber grating | SLM, grating | Without exerting extra loss for other OAM/- | - | [137] |
Year | Methods | Equipment | Hopping Type | Strengths/ Weaknesses | Transmission Result | Ref. |
---|---|---|---|---|---|---|
2015 | Mode hopping controller | Digital micromirror | OAM mode | Fast Channel hopping/Additional losses | The measured power penalties are below 5.3 dB. | [145] |
2018 | Orthogonality of OAM modes | PNG, BPF, LPF, integrator | OAM mode, frequency | Low BER/ Low integration | The BER is much lower than the traditional method | [146] |
2022 | IM-MH scheme | Signal modulator, index selector, UCA | mode hopping | Low ABERs and Increase the SE/ - | The ABER is around 25% of the traditional scheme | [147] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Zhang, X.; Tian, J.; Merabet, B.; Li, Z.; Shah, S.A.A.; Lei, Y.; Liu, B.; Guo, K.; Guo, Z. Research Progress on Router Devices for the OAM Optical Communication. Sensors 2024, 24, 944. https://doi.org/10.3390/s24030944
Wang B, Zhang X, Tian J, Merabet B, Li Z, Shah SAA, Lei Y, Liu B, Guo K, Guo Z. Research Progress on Router Devices for the OAM Optical Communication. Sensors. 2024; 24(3):944. https://doi.org/10.3390/s24030944
Chicago/Turabian StyleWang, Binbin, Xizheng Zhang, Jinlong Tian, Badreddine Merabet, Zhixiang Li, Syed Afaq Ali Shah, Yi Lei, Bingyi Liu, Kai Guo, and Zhongyi Guo. 2024. "Research Progress on Router Devices for the OAM Optical Communication" Sensors 24, no. 3: 944. https://doi.org/10.3390/s24030944
APA StyleWang, B., Zhang, X., Tian, J., Merabet, B., Li, Z., Shah, S. A. A., Lei, Y., Liu, B., Guo, K., & Guo, Z. (2024). Research Progress on Router Devices for the OAM Optical Communication. Sensors, 24(3), 944. https://doi.org/10.3390/s24030944