A Stress Test for Robustness of Photo Response Nonuniformity (Camera Sensor Fingerprint) Identification on Smartphones
Abstract
:1. Introduction
2. Materials and Methods
2.1. PRNU or Camera Fingerprint
2.2. Attacking Methods
2.2.1. Noise Addition (or Modification)
2.2.2. Geometric Distortions
2.2.3. Noise Reduction
2.2.4. Combined Methods
- Combination of simple noise addition and geometric techniques, without Wiener or other noise reduction (n = 3, r = 2, , , sf = 3).
- Wiener filtering, followed by rotation and de-rotation (, ), and then a “deblurring” method for improving image quality, namely, the Lucy–Richardson deconvolution filter [44].
2.3. Design of Tests
2.3.1. Testing with Still Images
2.3.2. Testing with Videos
3. Results
3.1. Testing with Still Images
3.2. Testing with Videos
4. Discussion
4.1. General Conclusions and Future Work
4.2. Method Selection
4.3. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Law, S.-C.; Law, N.-F. PRNU-based source identification for network video surveillance system. In Proceedings of the 2018 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 12–14 January 2018; pp. 1–2. [Google Scholar] [CrossRef]
- Chen, M.; Fridrich, J.; Goljan, M.; Lukas, J. Determining Image Origin and Integrity Using Sensor Noise. IEEE Trans. Inf. Forensics Secur. 2008, 3, 74–90. [Google Scholar] [CrossRef] [Green Version]
- Pedrouzo-Ulloa, A.; Masciopinto, M.; Troncoso-Pastoriza, J.R.; Perez-Gonzalez, F. Camera Attribution Forensic Analyzer in the Encrypted Domain. In Proceedings of the 2018 IEEE International Workshop on Information Forensics and Security (WIFS), Hong Kong, China, 11–13 December 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Pérez-Miguélez, P.; Pérez-González, F. Study and Implementation of PRNU-Based Image Clustering Algorithms. Master’s Thesis, University of Vigo, Vigo, Spain, 2019. [Google Scholar]
- Bernacki, J. A survey on digital camera identification methods. Forensic Sci. Int. Digit. Investig. 2020, 34, 300983. [Google Scholar] [CrossRef]
- Choi, K.S.; Lam, E.Y.; Wong, K.K.Y. Source camera identification using footprints from lens aberration. In Proceedings of the Electronic Imaging 2006, San Jose, CA, USA, 15–19 January 2006; p. 60690J. [Google Scholar] [CrossRef]
- Freire-Obregón, D.; Narducci, F.; Barra, S.; Castrillón-Santana, M. Deep learning for source camera identification on mobile devices. Pattern Recognit. Lett. 2019, 126, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Dirik, A.E.; Sencar, H.; Memon, N. Source Camera Identification Based on Sensor Dust Characteristics. In Proceedings of the 2007 IEEE Workshop on Signal Processing Applications for Public Security and Forensics, Washington, DC, USA, 11–13 April 2007. [Google Scholar] [CrossRef]
- Lukas, J.; Fridrich, J.; Goljan, M. Digital Camera Identification from Sensor Pattern Noise. IEEE Trans. Inf. Forensics Secur. 2006, 1, 205–214. [Google Scholar] [CrossRef]
- Gisolf, F.; Malgoezar, A.; Baar, T.; Geradts, Z. Improving source camera identification using a simplified total variation based noise removal algorithm. Digit. Investig. 2013, 10, 207–214. [Google Scholar] [CrossRef]
- Goljan, M. Digital Camera Identification from Images—Estimating False Acceptance Probability. In Proceedings of the International Workshop on Digital Watermarking, Busan, Republic of Korea, 10–12 November 2009; pp. 454–468. [Google Scholar] [CrossRef]
- Gupta, B.; Tiwari, M. Improving source camera identification performance using DCT based image frequency components dependent sensor pattern noise extraction method. Digit. Investig. 2018, 24, 121–127. [Google Scholar] [CrossRef]
- Uhl, A.; Holler, Y. Iris-sensor authentication using camera PRNU fingerprints. In Proceedings of the 2012 5th IAPR International Conference on Biometrics (ICB), New Delhi, India, 29 March–1 April 2012; pp. 230–237. [Google Scholar] [CrossRef]
- Perez-Gonzalez, F.; Fernandez-Menduina, S. PRNU-leaks: Facts and remedies. In Proceedings of the 2020 28th European Signal Processing Conference (EUSIPCO), Amsterdam, The Netherlands, 18–21 January 2021. [Google Scholar] [CrossRef]
- Bondi, L.; Perez-Gonzalez, F.; Bestagini, P.; Tubaro, S. Design of projection matrices for PRNU compression. In Proceedings of the 2017 IEEE Workshop on Information Forensics and Security (WIFS), Rennes, France, 4–7 December 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Mascicpinto, M.; Perez-Gonzalez, F. Putting the PRNU Model in Reverse Gear: Findings with Synthetic Signals. In Proceedings of the 2018 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, 3–7 September 2018; pp. 1352–1356. [Google Scholar] [CrossRef]
- Fernández-Menduíña, S.; Pérez-González, F.; Masciopinto, M. PRNU Emphasis: A Generalization of the Multiplicative Model. arXiv 2022, arXiv:2202.12357. [Google Scholar]
- Debiasi, L.; Uhl, A. Comparison of PRNU enhancement techniques to generate PRNU fingerprints for biometric source sensor attribution. In Proceedings of the 2016 4th International Conference on Biometrics and Forensics (IWBF), Limassol, Cyprus, 3–4 March 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Gou, H.; Swaminathan, A.; Wu, M. Intrinsic Sensor Noise Features for Forensic Analysis on Scanners and Scanned Images. IEEE Trans. Inf. Forensics Secur. 2009, 4, 476–491. [Google Scholar] [CrossRef]
- Chierchia, G.; Poggi, G.; Sansone, C.; Verdoliva, L. A Bayesian-MRF Approach for PRNU-Based Image Forgery Detection. IEEE Trans. Inf. Forensics Secur. 2014, 9, 554–567. [Google Scholar] [CrossRef]
- Rathgeb, C.; Botaljov, A.; Stockhardt, F.; Isadskiy, S.; Debiasi, L.; Uhl, A.; Busch, C. PRNU-based detection of facial retouching. IET Biom. 2020, 9, 154–164. [Google Scholar] [CrossRef]
- Akbari, Y.; Al-Maadeed, S.; Elharrouss, O.; Khelifi, F.; Lawgaly, A.; Bouridane, A. Digital forensic analysis for source video identification: A survey. Forensic Sci. Int. Digit. Investig. 2022, 41, 301390. [Google Scholar] [CrossRef]
- Al-Athamneh, M.; Kurugollu, F.; Crookes, D.; Farid, M. Digital Video Source Identification Based on Green-Channel Photo Response Non-Uniformity (G-PRNU). In Proceedings of the Sixth International Conference on Computer Science, Engineering & Applications, Vienna, Austria, 21–22 May 2016; pp. 47–57. [Google Scholar] [CrossRef] [Green Version]
- Altinisik, E.; Sencar, H.T. Source Camera Verification for Strongly Stabilized Videos. IEEE Trans. Inf. Forensics Secur. 2020, 16, 643–657. [Google Scholar] [CrossRef]
- Amerini, I.; Caldelli, R.; Del Mastio, A.; Di Fuccia, A.; Molinari, C.; Rizzo, A.P. Dealing with video source identification in social networks. Signal Process. Image Commun. 2017, 57, 1–7. [Google Scholar] [CrossRef]
- Goljan, M.; Fridrich, J.; Chen, M. Defending Against Fingerprint-Copy Attack in Sensor-Based Camera Identification. IEEE Trans. Inf. Forensics Secur. 2010, 6, 227–236. [Google Scholar] [CrossRef] [Green Version]
- Villalba, L.J.G.; Orozco, A.L.S.; Corripio, J.R.; Hernandez-Castro, J. A PRNU-based counter-forensic method to manipulate smartphone image source identification techniques. Futur. Gener. Comput. Syst. 2017, 76, 418–427. [Google Scholar] [CrossRef]
- Available online: https://sourceforge.net/projects/prnudecompare/ (accessed on 25 January 2023).
- Goljan, M.; Fridrich, J. Camera identification from cropped and scaled images. In Proceedings of the Electronic Imaging, San Jose, CA, USA, 27–31 January 2008. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, K.; Sencar, H.T. A study of the robustness of PRNU-based camera identification. In Proceedings of the IS&T/SPIE Electronic Imaging, San Jose, CA, USA, 18–22 January 2009. [Google Scholar] [CrossRef]
- Goljan, M.; Fridrich, J. Sensor fingerprint digests for fast camera identification from geometrically distorted images. In Proceedings of the IS&T/SPIE Electronic Imaging, Burlingame, CA, USA, 3–7 February 2013. [Google Scholar] [CrossRef] [Green Version]
- Gloe, T.; Kirchner, M.; Winkler, A.; Böhme, R. Can we trust digital image forensics? In Proceedings of the 15th International Conference on Multimedia, Augsburg, Germany, 25–29 September 2007. [Google Scholar] [CrossRef] [Green Version]
- Dirik, A.E.; Sencar, H.T.; Memon, N. Analysis of Seam-Carving-Based Anonymization of Images Against PRNU Noise Pattern-Based Source Attribution. IEEE Trans. Inf. Forensics Secur. 2014, 9, 2277–2290. [Google Scholar] [CrossRef]
- Karaküçük, A.; Dirik, A.E. Adaptive photo-response non-uniformity noise removal against image source attribution. Digit. Investig. 2015, 12, 66–76. [Google Scholar] [CrossRef]
- Entrieri, J.; Kirchner, M. Patch-Based Desynchronization of Digital Camera Sensor Fingerprints. Electron. Imaging 2016, 28, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bloy, G.J. Blind Camera Fingerprinting and Image Clustering. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 532–534. [Google Scholar] [CrossRef]
- Ogawa, H.; Oja, E. Projection filter, Wiener filter, and Karhunen-Loève subspaces in digital image restoration. J. Math. Anal. Appl. 1986, 114, 37–51. [Google Scholar] [CrossRef] [Green Version]
- Goljan, M.; Fridrich, J.; Filler, T. Large scale test of sensor fingerprint camera identification. In Proceedings of the IS&T/SPIE Electronic Imaging, San Jose, CA, USA, 18–22 January 2009. [Google Scholar] [CrossRef] [Green Version]
- Camera Fingerprint Homepage (from Professor Goljan). Available online: http://dde.binghamton.edu/download/camera_fingerprint/ (accessed on 25 January 2023).
- Chui, C. An Introduction to Wavelets; Academic Press: San Diego, CA, USA, 1992. [Google Scholar]
- Kumar, B.V.K.V.; Hassebrook, L. Performance measures for correlation filters. Appl. Opt. 1990, 29, 2997–3006. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.B. DCT quantization matrices visually optimized for individual images. In Proceedings of the IS&T/SPIE'S Symposium on Electronic Imaging: Science and Technology, San Jose, CA, USA, 31 January–5 February 1993. [Google Scholar] [CrossRef] [Green Version]
- Getreuer, P. Linear Methods for Image Interpolation. Image Process. Line 2011, 1, 238–259. [Google Scholar] [CrossRef] [Green Version]
- Richardson, W.H. Bayesian-Based Iterative Method of Image Restoration. J. Opt. Soc. Am. 1972, 62, 55–59. [Google Scholar] [CrossRef]
- Gloe, T.; Böhme, R. The ‘Dresden Image Database’ for benchmarking digital image forensics. In Proceedings of the 2010 ACM Symposium on Applied Computing, Sierre, Switzerland, 22–26 March 2010; pp. 1584–1590. [Google Scholar] [CrossRef]
- Shullani, D.; Fontani, M.; Iuliani, M.; Al Shaya, O.; Piva, A. VISION: A video and image dataset for source identification. EURASIP J. Inf. Secur. 2017, 2017, 1–16. [Google Scholar] [CrossRef] [Green Version]
- MATLAB. Available online: https://es.mathworks.com/products/matlab.html (accessed on 25 January 2023).
- Martín-Rodríguez, F.; Isasi-de-Vicente, F.; Fernández-Barciela, M. PRNU Based Source Camera Identification for Webcam and Smartphone Videos. arXiv 2022, arXiv:2201.11737. [Google Scholar]
- Goljan, M.; Chen, M.; Comesaña, P.; Fridrich, J. Effect of Compression on Sensor-Fingerprint Based Camera Identification. Electron. Imaging 2016, 28, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kouokam, E.K.; Dirik, A.E. PRNU-based source device attribution for YouTube videos. Digit. Investig. 2019, 29, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, P.; Iuliani, M.; Piva, A. PRNU-Based Video Source Attribution: Which Frames Are You Using? J. Imaging 2022, 8, 57. [Google Scholar] [CrossRef] [PubMed]
- Taspinar, S.; Mohanty, M.; Memon, N. Camera Fingerprint Extraction via Spatial Domain Averaged Frames. IEEE Trans. Inf. Forensics Secur. 2020, 15, 3270–3282. [Google Scholar] [CrossRef] [Green Version]
Average in the Training Phase | Average in the Running Phase. | Error (%) |
---|---|---|
NO | NO | 3.55 |
YES | NO | 4.26 |
NO | YES | 0.71 |
YES | YES | 2.13 |
Attacking Method: | Key Letter: | Visual Quality: | SNR (av. dB): | Mean Exec. Time (s): | <<Error Rate>>, Non-Fooled Train Set (%). | <<Error Rate>>, Fooled Train Set (%). |
---|---|---|---|---|---|---|
Aleatorizing least significant bits (n = 3) | A | Good, except color degradations (clouds). | 38 | 2.59 | 9.30 | 10.48 |
Introducing noise on DCT coefficients | B | Good | 49 | 6.48 | 9.50 | 9.55 |
Scramble randomly pixels (r = 1) | C | Good | 31 | 3.24 | 11.25 | 11.72 |
Rotating and de-rotating (A = 10°, a = 0.5°) | D | Good, except for artifacts on borders. | 22 | 2.88 | 78.16 | 9.75 |
Scaling and de-scaling (sf = 3) | E | Good | 44 | 3.36 | 9.19 | 9.30 |
Ordinary Wiener filter | F | Good | 31 | 0.25 | 32.58 | 23.28 |
Wavelet transform Wiener filtered and inverted | G | Good | 41 | 0.51 | 10.74 | 12.75 |
Combination of simple noise addition and geometric techniques (n = 3, r = 2, A = 10°, a = 0.5°, sf = 3) | H | Good, artifacts in some borders, quantification in color degradation areas (sky, clouds). | 23 | 3.68 | 81.72 (*) | 47.23 |
Wiener + rotating/de-rotating + deblurring (Lucy) | I | Good | 23 | 2.90 | 78.83 | 25.29 |
Average in the Training Phase | Average in the Running Phase | Error (%) |
---|---|---|
NO | NO | 61.90 |
YES | NO | 50.00 |
NO | YES | 59.92 |
YES | YES | 45.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Rodríguez, F.; Isasi-de-Vicente, F.; Fernández-Barciela, M. A Stress Test for Robustness of Photo Response Nonuniformity (Camera Sensor Fingerprint) Identification on Smartphones. Sensors 2023, 23, 3462. https://doi.org/10.3390/s23073462
Martín-Rodríguez F, Isasi-de-Vicente F, Fernández-Barciela M. A Stress Test for Robustness of Photo Response Nonuniformity (Camera Sensor Fingerprint) Identification on Smartphones. Sensors. 2023; 23(7):3462. https://doi.org/10.3390/s23073462
Chicago/Turabian StyleMartín-Rodríguez, Fernando, Fernando Isasi-de-Vicente, and Mónica Fernández-Barciela. 2023. "A Stress Test for Robustness of Photo Response Nonuniformity (Camera Sensor Fingerprint) Identification on Smartphones" Sensors 23, no. 7: 3462. https://doi.org/10.3390/s23073462
APA StyleMartín-Rodríguez, F., Isasi-de-Vicente, F., & Fernández-Barciela, M. (2023). A Stress Test for Robustness of Photo Response Nonuniformity (Camera Sensor Fingerprint) Identification on Smartphones. Sensors, 23(7), 3462. https://doi.org/10.3390/s23073462