Smartphone Pedometer Sensor Application for Evaluating Disease Activity and Predicting Comorbidities in Patients with Rheumatoid Arthritis: A Validation Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Recruitment
2.2. Experimental Design
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prevoo, M.L.; van’t Hof, M.A.; Kuper, H.H.; van Leeuwen, M.A.; van de Putte, L.B.; van Riel, P.L. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum. 1995, 38, 44–48. [Google Scholar] [CrossRef] [Green Version]
- Bruce, B.; Fries, J.F. The Stanford Health Assessment Questionnaire: A review of its history, issues, progress, and documentation. J. Rheumatol. 2003, 30, 167–178. [Google Scholar]
- Yu, C.-A.; Rouse, P.C.; Van Zanten, J.J.V.; Ntoumanis, N.; Kitas, G.D.; Duda, J.L.; Metsios, G.S. Subjective and objective levels of physical activity and their association with cardiorespiratory fitness in rheumatoid arthritis patients. Arthritis Res. Ther. 2015, 17, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacquemin, C.; Molto, A.; Servy, H.; Sellam, J.; Foltz, V.; Gandjbakhch, F.; Hudry, C.; Mitrovic, S.; Granger, B.; Fautrel, B.; et al. Flares assessed weekly in patients with rheumatoid arthritis or axial spondyloarthritis and relationship with physical activity measured using a connected activity tracker: A 3-month study. RMD Open 2017, 3, e000434. [Google Scholar] [CrossRef] [Green Version]
- Aviña-Zubieta, J.A.; Choi, H.K.; Sadatsafavi, M.; Etminan, M.; Esdaile, J.M.; Lacaille, D. Risk of cardiovascular mortality in patients with rheumatoid arthritis: A meta-analysis of observational studies. Arthritis Rheum. 2008, 59, 1690–1697. [Google Scholar] [CrossRef] [PubMed]
- Young, A.; Koduri, G.; Batley, M.; Kulinskaya, E.; Gough, A.; Norton, S.; Dixey, J.; on behalf of the Early Rheumatoid Arthritis Study (ERAS) Group Mortality in Rheumatoid Arthritis. Increased in the early course of disease, in ischaemic heart disease and in pulmonary fibrosis. Rheumatology 2007, 46, 350–357. [Google Scholar] [CrossRef] [Green Version]
- Metsios, G.S.; Kitas, G.D. Physical activity, exercise and rheumatoid arthritis: Effectiveness, mechanisms and implementation. Best Pract. Res. Clin. Rheumatol. 2018, 32, 669–682. [Google Scholar] [CrossRef] [PubMed]
- Höchsmann, C.; Knaier, R.; Eymann, J.; Hintermann, J.; Infanger, D.; Schmidt-Trucksäss, A. Validity of activity trackers, smartphones, and phone applications to measure steps in various walking conditions. Scand. J. Med. Sci. Sports 2018, 28, 1818–1827. [Google Scholar] [CrossRef]
- O’Brien, C.M.; Duda, J.L.; Kitas, G.D.; van Zanten, J.J.C.S.V.; Metsios, G.S.; Fenton, S.A.M. Measurement of sedentary time and physical activity in rheumatoid arthritis: An ActiGraph and activPAL™ validation study. Rheumatol. Int. 2020, 40, 1509–1518. [Google Scholar] [CrossRef]
- Leong, J.Y.; Wong, J.E. Accuracy of three Android-based pedometer applications in laboratory and free-living settings. J. Sports Sci. 2016, 35, 14–21. [Google Scholar] [CrossRef]
- Yamada, M.; Aoyama, T.; Mori, S.; Nishiguchi, S.; Okamoto, K.; Ito, T.; Muto, S.; Ishihara, T.; Yoshitomi, H.; Ito, H. Objective assessment of abnormal gait in patients with rheumatoid arthritis using a smartphone. Rheumatol. Int. 2012, 32, 3869–3874. [Google Scholar] [CrossRef] [PubMed]
- Ibfelt, E.H.; Jensen, D.V.; Hetland, M.L. The Danish nationwide clinical register for patients with rheumatoid arthritis: DANBIO. Clin. Epidemiol. 2016, 8, 737–742. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.B.; Krc, K.M.; Mitchell, E.A.; Eng, J.J.; Noble, J.W. Pedometer accuracy in slow-walking older adults. Int. J. Ther. Rehabil. 2012, 19, 387–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltrán-Carrillo, V.J.; Jiménez-Loaisa, A.; Alarcón-López, M.; Elvira, J.L.L. Validity of the “Samsung Health” application to measure steps: A study with two different samsung smartphones. J. Sports Sci. 2019, 37, 788–794. [Google Scholar] [CrossRef]
- Beevi, F.H.; Miranda, J.; Pedersen, C.F.; Wagner, S. An Evaluation of Commercial Pedometers for Monitoring Slow Walking Speed Populations. Telemed. e-Health 2016, 22, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Tophøj, K.H.; Petersen, M.G.; Sæbye, C.; Baad-Hansen, T.; Wagner, S. Validity and Reliability Evaluation of Four Commercial Activity Trackers’ Step Counting Performance. Telemed. e-Health 2018, 24, 669–677. [Google Scholar] [CrossRef]
- Tam, K.M.; Cheung, S.Y. Validation of Electronic Activity Monitor Devices During Treadmill Walking. Telemed. e-Health 2018, 24, 782–789. [Google Scholar] [CrossRef]
- Feehan, L.M.; Geldman, J.; Sayre, E.C.; Park, C.; Ezzat, A.M.; Yoo, J.Y.; Hamilton, C.B.; Li, L.C. Accuracy of Fitbit Devices: Systematic Review and Narrative Syntheses of Quantitative Data. JMIR mHealth uHealth 2018, 6, e10527. [Google Scholar] [CrossRef] [Green Version]
- Shin, G.; Jarrahi, M.H.; Fei, Y.; Karami, A.; Gafinowitz, N.; Byun, A.; Lu, X. Wearable activity trackers, accuracy, adoption, acceptance and health impact: A systematic literature review. J. Biomed. Inform. 2019, 93, 103153. [Google Scholar] [CrossRef]
- Okura, T.; Enomoto, D.; Miyoshi, K.-I.; Nagao, T.; Kukida, M.; Tanino, A.; Pei, Z.; Higaki, J.; Uemura, H.; Akiko, T. The Importance of Walking for Control of Blood Pressure: Proof Using a Telemedicine System. Telemed. e-Health 2016, 22, 1019–1023. [Google Scholar] [CrossRef]
- Lee, B.J.; Park, Y.H.; Lee, J.Y.; Kim, S.J.; Jang, Y. Smartphone Application Versus Pedometer to Promote Physical Activity in Prostate Cancer Patients. Telemed. e-Health 2019, 25, 1231–1236. [Google Scholar] [CrossRef] [PubMed]
- Katz, P.; Margaretten, M.; Gregorich, S.; Trupin, L. Physical Activity to Reduce Fatigue in Rheumatoid Arthritis: A Randomized Controlled Trial. Arthritis Care Res. 2018, 70, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douglas-Withers, J.; McCulloch, K.; Waters, D.; Parker, K.; Hogg, N.; Mitsuhashi, T.; Treharne, G.J.; Abbott, J.H.; Stebbings, S. Associations between Health Assessment Questionnaire Disability Index and physical performance in rheumatoid arthritis and osteoarthritis. Int. J. Rheum. Dis. 2019, 22, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Gossec, L.; Guyard, F.; Leroy, D.; Lafargue, T.; Seiler, M.; Jacquemin, C.; Molto, A.; Sellam, J.; Foltz, V.; Gandjbakhch, F.; et al. Detection of Flares by Decrease in Physical Activity, Collected Using Wearable Activity Trackers in Rheumatoid Arthritis or Axial Spondyloarthritis: An Application of Machine Learning Analyses in Rheumatology. Arthritis Care Res. 2019, 71, 1336–1343. [Google Scholar] [CrossRef] [PubMed]
- Larkin, L.; Nordgren, B.; Purtill, H.; Brand, C.; Fraser, A.; Kennedy, N. Criterion Validity of the activPAL Activity Monitor for Sedentary and Physical Activity Patterns in People Who Have Rheumatoid Arthritis. Phys. Ther. 2016, 96, 1093–1101. [Google Scholar] [CrossRef] [Green Version]
- Backhouse, M.R.; Hensor, E.M.; White, D.; Keenan, A.-M.; Helliwell, P.S.; Redmond, A.C. Concurrent validation of activity monitors in patients with rheumatoid arthritis. Clin. Biomech. 2013, 28, 473–479. [Google Scholar] [CrossRef] [Green Version]
- De Ridder, R.; De Blaiser, C. Activity trackers are not valid for step count registration when walking with crutches. Gait Posture 2019, 70, 30–32. [Google Scholar] [CrossRef]
- Stlind, E.; Sant’Anna, A.; Eek, F.; Stigmar, K.; Ekvall Hansson, E. Physical activity patterns, adherence to using a wearable activity tracker during a 12-week period and correlation between self-reported function and physical activity in working age individuals with hip and/or knee osteoarthritis. BMC Musculoskelet. Disord. 2021, 22, 450. [Google Scholar] [CrossRef]
- Afrasiabifar, A.; Mehri, Z.; Ghaffarian Shirazi, H.R. Orem’s self-care model with multiple sclerosis patients’ balance and motor function. Nurs. Sci. Q. 2020, 33, 46–54. [Google Scholar] [CrossRef]
- Le Masurier, G.C.; Lee, S.M.; Tudor-Locke, C. Motion sensor accuracy under controlled and free-living conditions. Med. Sci. Sports Exerc. 2004, 36, 905–910. [Google Scholar] [CrossRef]
- Song, Z.; Park, H.-J.; Thapa, N.; Yang, J.-G.; Harada, K.; Lee, S.; Shimada, H.; Park, H.; Park, B.-K. Carrying Position-Independent Ensemble Machine Learning Step-Counting Algorithm for Smartphones. Sensors 2022, 22, 3736. [Google Scholar] [CrossRef] [PubMed]
- Ebara, T.; Azuma, R.; Shoji, N.; Matsukawa, T.; Yamada, Y.; Akiyama, T.; Kurihara, T.; Yamada, S. Reliability of smartphone-based gait measurements for quantification of physical activity/inactivity levels. J. Occup. Health 2017, 59, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Bauman, A.; Allman-Farinelli, M. A Study to Determine the Most Popular Lifestyle Smartphone Applications and Willingness of the Public to Share Their Personal Data for Health Research. Telemed. e-Health 2016, 22, 655–665. [Google Scholar] [CrossRef] [PubMed]
Parameter | RA Patients (n = 30) |
---|---|
Female, n/total (%) | 22/30 (73) |
Years of age, median (IQR) | 61 (50–74) |
Years since diagnosis, median (IQR) | 13 (4–21) |
Prosthetic joint in LE, n/total (%) | 4/30 (13) |
Previous fractures in LE since diagnosis, n/total (%) | 1/30 (3) |
Erosive disease, n/total (%) | 21/30 (70) |
Anti-citrullinated peptide antibody positive, n/total (%) | 21/28 (75) |
IgM Rheumatoid factor positive, n/total (%) | 21/30 (76) |
Swollen joints UE, n/total (%) | 6/30 (20) |
Tender joints UE, n/total (%) | 8/30 (27) |
Swollen joints LE, n/total (%) | 1/30 (3) |
Tender joints LE, n/total (%) | 5/30 (17) |
DAS28-CRP, median (IQR) | 2.2 (1.6–2.9) |
HAQ-DI, median (IQR) | 0.2 (0–0.9) |
VAS pain (0–100), median (IQR) | 21 (7–59) |
APE Samsung (km/h) | APE Pixel (km/h) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | |
Valid | 29 | 28 | 26 | 27 | 25 | 25 | 29 | 28 | 26 | 27 | 25 | 25 |
Mean | 19.3 | 7.3 | 5.3 | 4.1 | 2.9 | 1.5 | 17.7 | 2.6 | 2.4 | 1.0 | 1.1 | 2.5 |
Median | 10.0 | 5.0 | 2.0 | 2.0 | 2.0 | 1.0 | 7.0 | 1.0 | 1.0 | 1.0 | 0.0 | 1.0 |
Minimum | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Maximum | 74.0 | 23.0 | 46.0 | 29.0 | 20.0 | 5.0 | 68.0 | 34.0 | 39.0 | 7.0 | 16.0 | 45.0 |
Variable | Observed Steps | Steps Samsung | Steps Pixel | Cadence | Walking Speed km/h | APE Samsung | APE Pixel | |
---|---|---|---|---|---|---|---|---|
1. Observed Steps | Spearman’s rho | — | ||||||
p-value | — | |||||||
2. Steps Samsung | Spearman’s rho | 0.033 | — | |||||
p-value | 0.680 | — | ||||||
3. Steps Pixel | Spearman’s rho | 0.141 | 0.313 | — | ||||
p-value | 0.075 | <0.001 | — | |||||
4. Cadence | Spearman’s rho | 0.113 | 0.392 | 0.326 | — | |||
p-value | 0.156 | <0.001 | <0.001 | — | ||||
5. Walking speed km/h | Spearman’s rho | 0.162 | 0.450 | 0.459 | 0.511 | — | ||
p-value | 0.040 | <0.001 | <0.001 | <0.001 | — | |||
6. APE Samsung | Spearman’s rho | −0.021 | −0.889 | −0.287 | −0.385 | −0.459 | — | |
p-value | 0.795 | <0.001 | <0.001 | <0.001 | <0.001 | — | ||
7. APE Pixel | Spearman’s rho | 0.004 | −0.253 | −0.318 | −0.249 | −0.343 | 0.349 | — |
p-value | 0.962 | 0.001 | <0.001 | 0.001 | <0.001 | <0.001 | — |
Overall APE | ||||
Samsung Device | Pixel Device | |||
R | p | R | p | |
Years since diagnosis | −0.28 | 0.14 | −0.09 | 0.64 |
HAQ-DI | −0.22 | 0.33 | 0.03 | 0.90 |
VAS pain (0–100) | −0.02 | 0.93 | 0.01 | 0.97 |
DAS-28 CRP | −0.19 | 0.40 | −0.07 | 0.76 |
APE 2.5 km/h | ||||
Samsung Device | Pixel Device | |||
R | p | R | p | |
Years since diagnosis | −0.26 | 0.17 | −0.13 | 0.47 |
HAQ-DI | −0.29 | 0.19 | −0.13 | 0.57 |
VAS pain (0–100) | −0.08 | 0.71 | −0.00 | 0.99 |
DAS-28 CRP | −0.25 | 0.27 | −0.05 | 0.83 |
ACPA Positive (n = 20) | ACPA Negative (n = 7) | p | |
Overall APE for Samsung device | 5.7 (2.6–11) | 3.7 (2.3–10.2 | 0.65 |
Overall APE for Pixel device | 5.0 (1.1–9.2) | 0.7 (0.3–2.2) | 0.05 |
APE 2.5 km/h for Samsung device | 19 (2.5–38) | 7.0 (3.0–26) | 0.35 |
APE 2.5 km/h for Pixel device | 11 (2.0–41) | 1.0 (1.0–7.0) | 0.05 |
RF Positive (n = 20) | RF Negative (n = 9) | p | |
Overall APE for Samsung device | 5.1 (2.4–9.7) | 7.7 (3.0–11.7) | 0.32 |
Overall APE for Pixel device | 1.8 (0.9–7.4) | 2.2 (0.7–11.8) | 0.97 |
APE 2.5 km/h for Samsung device | 9.5 (2.0–31.5) | 13 (3.0–44) | 0.40 |
APE 2.5 km/h for Pixel device | 16.8 (0.5–33) | 7.0 (1.0–24) | 0.72 |
Erosive (n = 21) | Non-Erosive (n = 8) | p | |
Overall APE for Samsung device | 4.8 (2.3–10.2) | 5.7 (4.1–10.6) | 0.58 |
Overall APE for Pixel device | 1.2 (0.8–6.5) | 7.3 (2.0–10.9) | 0.11 |
APE 2.5 km/h for Samsung device | 9.0 (2.0–34) | 11.5 (2.5–30.5) | 0.76 |
APE 2.5 km/h for Pixel device | 3.0 (1.0–26) | 8.5 (5.0–35) | 0.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagner, S.R.; Gregersen, R.R.; Henriksen, L.; Hauge, E.-M.; Keller, K.K. Smartphone Pedometer Sensor Application for Evaluating Disease Activity and Predicting Comorbidities in Patients with Rheumatoid Arthritis: A Validation Study. Sensors 2022, 22, 9396. https://doi.org/10.3390/s22239396
Wagner SR, Gregersen RR, Henriksen L, Hauge E-M, Keller KK. Smartphone Pedometer Sensor Application for Evaluating Disease Activity and Predicting Comorbidities in Patients with Rheumatoid Arthritis: A Validation Study. Sensors. 2022; 22(23):9396. https://doi.org/10.3390/s22239396
Chicago/Turabian StyleWagner, Stefan R., Rasmus R. Gregersen, Line Henriksen, Ellen-Margrethe Hauge, and Kresten K. Keller. 2022. "Smartphone Pedometer Sensor Application for Evaluating Disease Activity and Predicting Comorbidities in Patients with Rheumatoid Arthritis: A Validation Study" Sensors 22, no. 23: 9396. https://doi.org/10.3390/s22239396
APA StyleWagner, S. R., Gregersen, R. R., Henriksen, L., Hauge, E. -M., & Keller, K. K. (2022). Smartphone Pedometer Sensor Application for Evaluating Disease Activity and Predicting Comorbidities in Patients with Rheumatoid Arthritis: A Validation Study. Sensors, 22(23), 9396. https://doi.org/10.3390/s22239396