Advances in Portable Heavy Metal Ion Sensors
Abstract
:1. Introduction
2. Optical Sensors
2.1. Portable Fluorescence Sensing
2.2. Portable Colorimetric Sensors
2.3. Portable Raman Scattering Sensors
2.4. Local Surface Plasmon Resonance Sensing (LSPR/SPR)
3. Electrochemical Sensors
3.1. Voltammetry
3.2. Impedance Method
3.3. Potentiometric Method
3.4. Electrical Conductivity Method
3.5. Capacitance Method
4. Other Types of Sensors
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nguyen, N.L.T.; Kim, E.J.; Chang, S.K.; Park, T.J. Sensitive detection of lead ions using sodium thiosulfate and surfactant-capped gold nanoparticles. Biochip J. 2016, 10, 65–73. [Google Scholar] [CrossRef]
- Wang, Y.; Zhai, H.G.; Yin, J.Q.; Guo, Q.; Zhang, Y.H.; Sun, X.; Guo, Y.M.; Yang, Q.Q.; Li, F.L.; Zhang, Y.Y. Recent advances and future prospects of aptamer-based biosensors in food safety analysis. Int. J. Electrochem. Sci. 2022, 17, 22019. [Google Scholar] [CrossRef]
- He, Y.Y.; Wang, Y.B.; Mao, G.N.; Liang, C.Y.; Fan, M. Ratiometric fluorescent nanoprobes based on carbon dots and multicolor CdTe quantum dots for multiplexed determination of heavy metal ions. Anal. Chim. Acta 2022, 1191, 339251. [Google Scholar] [CrossRef] [PubMed]
- Pham, V.H.T.; Kim, J.; Chang, S.; Chung, W. Bacterial biosorbents, an efficient heavy metals green clean-Up strategy: Prospects, challenges, and opportunities. Microorganisms 2022, 10, 610. [Google Scholar] [CrossRef]
- Ullah, N.; Mansha, M.; Khan, I.; Qurashi, A. Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: Recent advances and challenges. Trac Trends Anal. Chem. 2018, 100, 155–166. [Google Scholar] [CrossRef]
- Li, W.; Zu, B.; Yang, Q.W.; Huang, Y.Q.; Li, J.W. Adsorption of lead and cadmium by microplastics and their desorption behavior as vectors in the gastrointestinal environment. J. Environ. Chem. Eng. 2022, 10, 107379. [Google Scholar] [CrossRef]
- Pan, H.J.; Lakshmipriya, T.; Gopinath, S.C.B.; Anbu, P. High-Affinity detection of metal-mediated nephrotoxicity by aptamer nanomaterial complementation. Curr. Nanosci. 2019, 15, 549–556. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, Z.; Zhang, L.; Meng, R.N.; Gao, J.; Jin, M.; Li, M.; Wang, X.P. Effect of metal ions on Alzheimer’s disease. Brain Behav. 2022, 12, e2527. [Google Scholar] [CrossRef] [PubMed]
- Dadfarnia, S.; Assadollahi, T.; Shabani, A.M.H. Speciation and determination of thallium by on-line microcolumn separation/preconcentration by flow injection-flame atomic absorption spectrometry using immobilized oxine as sorbent. J. Hazard. Mater. 2007, 148, 446–452. [Google Scholar] [CrossRef]
- Zachariadis, G.A.; Themelis, D.G.; Kosseoglou, D.J.; Stratis, J.A. Flame AAS and UV-VIS determination of cobalt, nickel and palladium using the synergetic effect of 2-benzoylpyridine-2-pyridylhydrazone and thiocyanate ions. Talanta 1998, 47, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Thines, L.; Iserentant, A.; Morsomme, P. Determination of the Cellular Ion Concentration in Saccharomyces cerevisiae Using ICP-AES. Bio-Protoc. 2020, 10, 3727. [Google Scholar] [CrossRef]
- Chunqiang, L.U.; Sun, D.; Sun, K.; Liu, J.; Luo, C. Determination of the Three Harmful Heavy Mental Ions in Plant Fiber Molded Products by ICP-MS. Food Ind. 2019, 40, 299–301. [Google Scholar]
- Hołyńska, B.; Ostachowicz, B.; Wȩgrzynek, D. Simple method of determination of copper, mercury and lead in potable water with preliminary pre-concentration by total reflection X-ray fluorescence spectrometry. Spectrochim. Acta Part B At. Spectrosc. 1996, 51, 769–773. [Google Scholar] [CrossRef]
- Kojima, I.; Katsuzaki, M. Selective extraction and “One-Drop” flame atomic absorption spectrometric determination of silver in biological standard reference materials. Anal. Sci. 1997, 13, 1021–1023. [Google Scholar] [CrossRef]
- Chen, Z.L.; Xie, M.J.; Zhao, F.G.; Han, S.Y. Application of Nanomaterial Modified Aptamer-Based Electrochemical Sensor in Detection of Heavy Metal Ions. Foods 2022, 11, 1404. [Google Scholar] [CrossRef]
- Ferrari, A.G.M.; Crapnell, R.D.; Adarakatti, P.S.; Suma, B.P.; Banks, C.E. Electroanalytical overview: The detection of chromium. Sens. Actuators Rep. 2022, 4, 100116. [Google Scholar] [CrossRef]
- Ali, T.A.; Mohamed, G.G. Development of Chromium(III) Selective Potentiometric Sensors for Its Determination in Petroleum Water Samples Using Synthesized Nano Schiff Base Complex as an Ionophore. J. Aoac Int. 2022, 105, 727–738. [Google Scholar] [CrossRef]
- Tu, Y.G.; Zhao, Y.; Xu, M.S.; Li, X.; Du, H.Y. Simultaneous Determination of 20 Inorganic Elements in Preserved Egg Prepared with Different Metal Ions by ICP-AES. Food Anal. Methods 2013, 6, 667–676. [Google Scholar] [CrossRef]
- Michalski, R.; Jablonska, M.; Szopa, S.; Lyko, A. Application of Ion Chromatography with ICP-MS or MS Detection to the Determination of Selected Halides and Metal/Metalloids Species. Crit. Rev. Anal. Chem. 2011, 41, 133–150. [Google Scholar] [CrossRef]
- Gerdan, Z.; Saylan, Y.; Denizli, A. Recent advances of optical sensors for copper ion detection. Micromachines 2022, 13, 1298. [Google Scholar] [CrossRef]
- Xu, M.M.; Wang, X.Y.; Liu, X.P. Detection of Heavy Metal Ions by Ratiometric Photoelectric Sensor. J. Agric. Food Chem. 2022, 70, 11468–11480. [Google Scholar] [CrossRef]
- Ghosh, S.; Dissanayake, K.; Asokan, S.; Sun, T.; Rahman, B.M.A.; Grattan, K.T.V. Lead (Pb2+) ion sensor development using optical fiber gratings and nanocomposite materials. Sens. Actuators B-Chem. 2022, 364, 131818. [Google Scholar] [CrossRef]
- Tan, R.X.; Ibsen, M.; Tjin, S.C. Optical Fiber Refractometer Based Metal Ion Sensors. Chemosensors 2019, 7, 63. [Google Scholar] [CrossRef]
- Hu, H.; Xie, B.; Lu, Y.; Zhu, J. Advances in electrochemical detection electrodes for As3+. Nanomaterials 2022, 12, 781. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Wu, M.; Chen, G.; Dai, Z.; Zhang, Y.; Chen, G.; Dong, X. 3D Printed Microfluidic Device with Microporous Mn2O3-Modified Screen Printed Electrode for Real-Time Determination of Heavy Metal Ions. ACS Appl. Mater. Interfaces 2016, 8, 32940–32947. [Google Scholar] [CrossRef]
- Radovanovic, M.; Vasiljevic, D.; Krstic, D.; Antic, I.; Korzhyk, O.; Stojanovic, G.; Skrbic, B.D. Flexible sensors platform for determination of cadmium concentration in soil samples. Comput. Electron. Agric. 2019, 166, 105001. [Google Scholar] [CrossRef]
- Mukherjee, S.; Bhattacharyya, S.; Ghosh, K.; Pal, S.; Halder, A.; Naseri, M.; Mohammadniaei, M.; Sarkar, S.; Ghosh, A.; Sun, Y.; et al. Sensory development for heavy metal detection: A review on translation from conventional analysis to field-portable sensor. Trends Food Sci. Technol. 2021, 109, 674–689. [Google Scholar] [CrossRef]
- Pol, R.; Céspedes, F.; Gabriel, D.; Baeza, M. Microfluidic lab-on-a-chip platforms for environmental monitoring. Trac Trends Anal. Chem. 2017, 95, 62–68. [Google Scholar] [CrossRef]
- Zhao, X.; Kong, D.S.; Jin, R.; Li, H.X.; Yan, X.; Liu, F.M.; Sun, P.; Gao, Y.; Lu, G.Y. On-site monitoring of thiram via aggregation-induced emission enhancement of gold nanoclusters based on electronic-eye platform. Sens. Actuators B-Chem. 2019, 296, 126641. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Sun, X.; Li, C.H.; He, X.Q.; Liu, G. On-site detection of heavy metals in agriculture land by a disposable sensor based virtual instrument. Comput. Electron. Agric. 2016, 123, 176–183. [Google Scholar] [CrossRef]
- Matsumoto, S.; Umeno, T.; Suzuki, N.; Usui, K.; Kawahata, M.; Karasawa, S. Chelate-free “turn-on”-type fluorescence detection of trivalent metal ions. Chem. Commun. 2022, 58, 12435–12438. [Google Scholar] [CrossRef]
- Sergeev, A.A.; Leonov, A.A. Rhodamine-microalgae based bionic structures for metal ions detection. In Asia-Pacific Conference on Fundamental Problems of Opto-and Microelectronics 2017; SPIE: Bellingham, WA, USA, 2019; Volume 11024, pp. 115–119. [Google Scholar]
- Cheng, Z.; Zheng, L.; Xu, H.; Pang, L.; He, H. A rhodamine-based fluorescent probe for Fe3+: Synthesis, theoretical calculation and bioimaging application. Anal. Methods 2019, 11, 2565–2570. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Zuo, P.; Ye, B.C. A low-cost and simple paper-based microfluidic device for simultaneous multiplex determination of different types of chemical contaminants in food. Biosens. Bioelectron. 2015, 68, 14–19. [Google Scholar] [CrossRef]
- Anas, N.A.A.; Fen, Y.W.; Omar, N.A.S.; Daniyal, W.; Ramdzan, N.S.M.; Saleviter, S. Development of Graphene Quantum Dots-Based Optical Sensor for Toxic Metal Ion Detection. Sensors 2019, 19, 3850. [Google Scholar] [CrossRef] [PubMed]
- Margheri, G.; Giorgetti, E.; Marsili, P.; Zoppi, A.; Lascialfari, L.; Cicchi, S. Metal-clad optical waveguide fluorescence device for the detection of heavy metal ions. Opt. Eng. 2014, 53, 071816. [Google Scholar] [CrossRef]
- Sharma, P.; Bhogal, S.; Mohiuddin, I.; Yusuf, M.; Malik, A.K. Fluorescence “turn-off” sensing of iron (III) Ions utilizing pyrazoline based sensor: Experimental and computational study. J. Fluoresc. 2022, 32, 2319–2331. [Google Scholar] [CrossRef]
- Tian, H.; Li, Z.M.; Wang, C.Z.; Xu, P.; Xu, S.F. Construction and application of molecularly imprinted fluorescence sensor. Prog. Chem. 2022, 34, 593–608. [Google Scholar]
- Huang, G.L.; Luo, X.L.; Lin, W.M.; Tang, W.Z.; Yue, T.L.; Wang, J.L.; Li, Z.H. Carbon dots based multicolor fluorescence sensor for ratiometric and colorimetric dual-model detection of Cu2+. Dye. Pigment. 2022, 203, 110381. [Google Scholar] [CrossRef]
- Bohoyo Gil, D.; Rodriguez-Caceres, M.I.; Hurtado-Sanchez Mdel, C.; Munoz de la Pena, A. Fluorescent determination of Hg2+ in water and fish samples using a chemodosimeter based in a Rhodamine 6G derivative and a portable fiber-optic spectrofluorimeter. Appl. Spectrosc. 2010, 64, 520–527. [Google Scholar] [PubMed]
- Li, D.J.; Sun, Y.; Shen, Q.R.; Zhang, Q.; Huang, W.; Kang, Q.; Shen, D.Z. Smartphone-based three-channel ratiometric fluorescent device and application in filed analysis of Hg2+, Fe3+ and Cu2+ in water samples. Microchem. J. 2020, 152, 104423. [Google Scholar] [CrossRef]
- Nath, P.; Arun, R.K.; Chanda, N. Smart gold nanosensor for easy sensing of lead and copper ions in solution and using paper strips. RSC Adv. 2015, 5, 69024–69031. [Google Scholar] [CrossRef]
- Chen, B.; Liu, J.; Yang, T.; Chen, L.; Hou, J.; Feng, C.; Huang, C.Z. Development of a portable device for Ag+ sensing using CdTe QDs as fluorescence probe via an electron transfer process. Talanta 2019, 191, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, H.L.; Song, D.; Li, Z.G.; Han, S.T.; Long, F.; Zhu, A.N. Simple, rapid, and sensitive on-site detection of Hg2+ in water samples through combining portable evanescent wave optofluidic biosensor and fluorescence resonance energy transfer principle. Anal. Chim. Acta 2021, 1155, 338351. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; Song, D.; Chen, Y.Y.; Xu, W.J.; Han, X.Z.; Zhu, A.N.; Long, F. Development of portable whole-cell biosensing platform with lyophilized bacteria and its application for rapid on-site detection of heavy metal toxicity without pre-resuscitation. Anal. Chim. Acta 2022, 1228, 340354. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Wang, N. FRET and mechanobiology. Integerative Biol. 2009, 1, 565–573. [Google Scholar] [CrossRef]
- Taitt, C.R.; Anderson, G.P.; Ligler, F.S. Evanescent wave fluorescence biosensors: Advances of the last decade. Biosens. Bioelectron. 2016, 76, 103–112. [Google Scholar] [CrossRef]
- Qin, M.; Li, J.S.; Song, Y.L. Toward high sensitivity: Perspective on colorimetric photonic sensors. Anal. Chem. 2022, 94, 9497–9507. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.T.; Niu, Y.X.; Yang, Y.; Liang, T.; Qin, X.D.; Ding, M. Sapphire Fiber High-Temperature Sensor Based on Colorimetric Method. IEEE Trans. Instrum. Meas. 2022, 71, 9508506. [Google Scholar] [CrossRef]
- Xiao, W.; Xiao, M.; Fu, Q.Q.; Yu, S.T.; Shen, H.C.; Bian, H.F.; Tang, Y. A portable smart-phone readout device for the detection of mercury contamination based on an aptamer-assay nanosensor. Sensors 2016, 16, 1871. [Google Scholar] [CrossRef]
- Li, B.H.; Wang, J.H.; Tu, H.H.; Yang, Z.J.; Zhao, D.F.; Feng, H.H.; Yang, J. A self-designed versatile and portable sensing device based on smart phone for colorimetric detection. Anal. Bioanal. Chem. 2021, 413, 533–541. [Google Scholar] [CrossRef]
- Firdaus, M.; Aprian, A.; Meileza, N.; Hitsmi, M.; Elvia, R.; Rahmidar, L.; Khaydarov, R. Smartphone coupled with a paper-based colorimetric device for sensitive and portable mercury ion sensing. Chemosensors 2019, 7, 25. [Google Scholar] [CrossRef]
- Yu, S.; Xiao, W.; Fu, Q.; Wu, Z.; Yao, C.; Shen, H.; Tang, Y. A portable chromium ion detection system based on a smartphone readout device. Anal. Methods 2016, 8, 6877–6882. [Google Scholar] [CrossRef]
- Zhao, C.; Zhong, G.W.; Kim, D.E.; Liu, J.X.; Liu, X.Y. A portable lab-on-a-chip system for gold-nanoparticle-based colorimetric detection of metal ions in water. Biomicrofluidics 2014, 8, 052107. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, L.; Chu, S.; Liu, B.; Zhang, Q.; Zou, L.; Yu, S.; Jiang, C. Semiquantitative Visual Detection of Lead Ions with a Smartphone via a Colorimetric Paper-Based Analytical Device. Anal. Chem. 2019, 91, 9292–9299. [Google Scholar] [CrossRef] [PubMed]
- De L. M. de Morais, C.; Carvalho, J.C.; Sant’Anna, C.; Eugênio, M.; Gasparotto, L.H.S.; Lima, K.M.G. A low-cost microcontrolled photometer with one color recognition sensor for selective detection of Pb2+ using gold nanoparticles. Anal. Methods 2015, 7, 7917–7922. [Google Scholar] [CrossRef]
- Fan, M.K.; Andrade, G.F.S.; Brolo, A.G. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal. Chim. Acta 2020, 1097, 1–29. [Google Scholar] [CrossRef]
- Liu, X.J.; Guo, J.C.; Li, Y.; Wang, B.; Yang, S.K.; Chen, W.J.; Wu, X.G.; Guo, J.H.; Ma, X. SERS substrate fabrication for biochemical sensing: Towards point-of-care diagnostics. J. Mater. Chem. B 2021, 9, 8378–8388. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.B.; Zhu, C.H.; Meng, G.W.; Wu, N.Q. Review-Surface-Enhanced Raman Scattering Sensors for Food Safety and Environmental Monitoring. J. Electrochem. Soc. 2018, 165, B3098–B3118. [Google Scholar] [CrossRef]
- Carron, K.; Ray, B.; Buller, S.; Strickland, A. New Designs for Portable Raman Instrumentation in Defense Applications. In Chemical, Biological, Radiological, Nuclear, and Explosives (Cbrne) Sensing Xvii; SPIE: Bellingham, WA, USA, 2016; Volume 9824, p. 9824. [Google Scholar]
- Qi, N.; Li, B.; You, H.; Zhang, W.; Fu, L.; Wang, Y.; Chen, L. Surface-enhanced Raman scattering on a zigzag microfluidic chip: Towards high-sensitivity detection of As(iii) ions. Anal. Methods 2014, 6, 4077–4082. [Google Scholar] [CrossRef]
- He, X.; Zhou, X.; Liu, Y.; Wang, X.L. Ultrasensitive, recyclable and portable microfluidic surface-enhanced raman scattering (SERS) biosensor for uranyl ions detection. Sens. Actuator B-Chem. 2020, 311, 127676. [Google Scholar] [CrossRef]
- Zhang, H.J.; Wang, D.; Zhang, D.; Zhang, T.T.; Yang, L.K.; Li, Z.P. In Situ Microfluidic SERS Chip for Ultrasensitive Hg2+ Sensing Based on I--Functionalized Silver Aggregates. Acs Appl. Mater. Interfaces 2022, 14, 2211–2218. [Google Scholar] [CrossRef] [PubMed]
- Amirjani, A.; Koochak, N.N.; Haghshenas, D.F. Investigating the shape and size-dependent optical properties of silver nanostructures using UV–vis spectroscopy. J. Chem. Educ. 2019, 96, 2584–2589. [Google Scholar] [CrossRef]
- Amirjani, A.; Sadrnezhaad, S.K. Computational electromagnetics in plasmonic nanostructures. J. Mater. Chem. C 2021, 9, 9791–9819. [Google Scholar] [CrossRef]
- Amirjani, A.; Haghshenas, D.F. Ag nanostructures as the surface plasmon resonance (SPR)-based sensors: A mechanistic study with an emphasis on heavy metallic ions detection. Sens. Actuators B-Chem. 2018, 273, 1768–1779. [Google Scholar] [CrossRef]
- Yuan, H.Z.; Ji, W.; Chu, S.W.; Liu, Q.; Qian, S.Y.; Guang, J.Y.; Wang, J.B.; Han, X.Y.; Masson, J.F.; Peng, W. Mercaptopyridine-functionalized gold nanoparticles for fiber-optic surface plasmon resonance Hg2+ sensing. ACS Sens. 2019, 4, 704–710. [Google Scholar] [CrossRef]
- Dhara, P.; Kumar, R.; Binetti, L.; Nguyen, H.T.; Alwis, L.S.; Sun, T.; Grattan, K.T.V. Optical fiber-based heavy metal detection using the localized surface plasmon resonance technique. IEEE Sens. J. 2019, 19, 8720–8726. [Google Scholar] [CrossRef]
- Solomonea, B.G.; Jinga, L.I.; Antohe, V.A.; Socol, G.; Antohe, I. Cadmium ions’ trace-Level detection using a portable fiber optic-surface plasmon resonance sensor. Biosensors 2022, 12, 573. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Y.; Lu, M.D.; Du, Y.T.; Chen, M.; Meng, S.; Ji, W.; Sun, C.S.; Peng, W. Near-infrared band gold nanoparticles-Au film "hot spot" model based label-free ultratrace lead (II) ions detection via fiber SPR DNAzyme biosensor. Sens. Actuators B-Chem. 2021, 337, 129816. [Google Scholar] [CrossRef]
- Liu, X.X.; Yao, Y.; Ying, Y.B.; Ping, J.F. Recent advances in nanomaterial-enabled screen-printed electrochemical sensors for heavy metal detection. Trac-Trends Anal. Chem. 2019, 115, 187–202. [Google Scholar] [CrossRef]
- Pujol, L.; Evrard, D.; Groenen-Serrano, K.; Freyssinier, M.; Ruffien-Cizsak, A.; Gros, P. Electrochemical sensors and devices for heavy metals assay in water: The French groups’ contribution. Front. Chem. 2014, 2, 19. [Google Scholar] [CrossRef]
- Baranwal, J.; Barse, B.; Gatto, G.; Broncova, G.; Kumar, A. Electrochemical sensors and their applications: A review. Chemosensors 2022, 10, 363. [Google Scholar] [CrossRef]
- Katiyar, R.; Usha Rani, K.R.; Sindhu, T.S.; Sneha Jain, H.D.; Vidhyashree; Ashoka, S.; Channegowda, M. Design and development of electrochemical potentiostat circuit for the sensing of toxic cadmium and lead ions in soil. Eng. Res. Express 2021, 3, 045026. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Zhang, Z.; Tong, J.; Bian, C.; Dong, H.; Xia, S. A portable sensor system for detection of copper ions in water samples. In Proceedings of the 2019 14th International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand, 11–14 April 2019; pp. 385–388. [Google Scholar]
- Gao, W.; Nyein, H.Y.Y.; Shahpar, Z.; Fahad, H.M.; Chen, K.; Emaminejad, S.; Gao, Y.; Tai, L.-C.; Ota, H.; Wu, E.; et al. Wearable microsensor array for multiplexed heavy metal monitoring of body fluids. ACS Sens. 2016, 1, 866–874. [Google Scholar] [CrossRef]
- Wang, S.-L.; Hsieh, C.-Y.; Sukesan, R.; Chen, J.-C.; Wang, Y.-L. Highly sensitive lead ion detection in one drop of human whole blood using impedance-modulated field-effect transistors and a portable measurement device. ECS J. Solid State Sci. Technol. 2020, 9, 055020. [Google Scholar] [CrossRef]
- Pawar, A.V.; Kanapally, S.S.; Kadam, K.D.; Patil, S.L.; Dongle, V.S.; Jadhav, S.A.; Kim, S.; Dongale, T.D. MemSens: A new detection method for heavy metals based on silver nanoparticle assisted memristive switching principle. J. Mater. Sci.-Mater. Electron. 2019, 30, 11383–11394. [Google Scholar] [CrossRef]
- Mou, J. Editorial: Advances in memristor and memristor-based applications. Front. Phys. 2022, 10, 1005216. [Google Scholar] [CrossRef]
- Abunahla, H.; Mohammad, B.; Mahmoud, L.; Darweesh, M.; Alhawari, M.; Jaoude, M.A.; Hitt, G.W. MemSens: Memristor-Based Radiation Sensor. IEEE Sens. J. 2018, 18, 3198–3205. [Google Scholar] [CrossRef]
- Bansod, B.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens. Bioelectron. 2017, 94, 443–455. [Google Scholar] [CrossRef]
- Gupta, A.K.; Khanna, M.; Roy, S.; Pankaj; Nagabooshanam, S.; Kumar, R.; Wadhwa, S.; Mathur, A. Design and development of a portable resistive sensor based on alpha-MnO2/GQD nanocomposites for trace quantification of Pb(II) in water. IET Nanobiotechnol. 2021, 15, 505–511. [Google Scholar] [CrossRef]
- Vasiljevic, D.; Zlebic, C.; Stojanovic, G.; Simic, M.; Stamenkovic, Z. Cost-Effective Sensors and Sensor Nodes for Monitoring Environmental Parameters. Facta Univ. Ser. Electron. Energetics 2018, 31, 11–23. [Google Scholar] [CrossRef]
- You, R.; Li, P.; Jing, G.; Cui, T. Ultrasensitive micro ion selective sensor arrays for multiplex heavy metal ions detection. Microsyst. Technol. 2019, 25, 845–849. [Google Scholar] [CrossRef]
- Evenhuis, C.J.; Hruska, V.; Guijt, R.M.; Macka, M.; Gas, B.; Marriott, P.J.; Haddad, P.R. Reliable eletrophoretic mobilities free from Joule heating effects using CE. Electrophoresis 2007, 28, 3759–3766. [Google Scholar]
- Pumera, M.; Merkoci, A.; Alegret, S. Carbon nanotube detectors for microchip CE: Comparative study of single-wall and multiwall carbon nanotube, and graphite powder films on glassy carbon, gold, and platinum electrode surfaces. Electrophoresis 2007, 28, 1274–1280. [Google Scholar] [CrossRef]
- Duarte, G.M.; Coltro, W.T.; Borba, J.; Price, C.; Landers, J.; Carrilho, E. Disposable polyester-toner electrophoresis microchips for DNA analysis. Anal. Lond. Soc. Public Anal. R. Soc. Chem. 2012, 137, 2692–2698. [Google Scholar] [CrossRef]
- Liu, B.Y.; Zhang, Y.; Mayer, D.; Krause, H.J.; Jin, Q.H.; Zhao, J.L.; Offenhausser, A.; Xu, Y.S. Determination of heavy metal ions by microchip capillary electrophoresis coupled with contactless conductivity detection. Electrophoresis 2012, 33, 1247–1250. [Google Scholar] [CrossRef] [PubMed]
- Petkovic, K.; Swallow, A.; Stewart, R.; Gao, Y.; Li, S.; Glenn, F.; Gotama, J.; Dell’Olio, M.; Best, M.; Doward, J.; et al. An integrated portable multiplex microchip device for fingerprinting chemical warfare agents. Micromachines 2019, 10, 617. [Google Scholar] [CrossRef]
- Kholimatussadiah, S.; Prijo, T.A. A portable and low-cost parallel-plate capacitor sensor for alkali and heavy metal ions detection. J. Adv. Dielectr. 2018, 8, 1850026. [Google Scholar] [CrossRef]
- Liang, Y.; Ma, M.; Zhang, F.; Liu, F.; Lu, T.; Liu, Z.; Li, Y. Wireless Microfluidic Sensor for Metal Ion Detection in Water. ACS Omega 2021, 6, 9302–9309. [Google Scholar] [CrossRef] [PubMed]
- Bera, S.C.; Chattopadhyay, S. A modified Schering bridge for measurement of the dielectric parameters of a material and the capacitance of a capacitive transducer. Measurement 2003, 33, 3–7. [Google Scholar] [CrossRef]
- Rajput, S.; Averbukh, M.; Yahalom, A. Electric power generation using a parallel-plate capacitor. Int. J. Energy Res. 2019, 43, 3905–3913. [Google Scholar] [CrossRef]
- Shen, C.Y.; Yeh, R.; Chung, M.H.; Hwang, R.C. Analytical performance and characterization of a quartz crystal microbalance for the detection of Cu2+ ions in water. In Proceedings of the 2016 2nd International Conference on Electrical Engineering and Industrial Engineering, Shanghai, China, 11–12 December 2016; pp. 103–108. [Google Scholar]
- Rotake, D.R.; Kumar, A.; Darji, A.D.; Singh, J. Highly selective sensor for the detection of Hg2+ions using homocysteine functionalised quartz crystal microbalance with cross-linked pyridinedicarboxylic acid. IET Nanobiotechnol. 2020, 14, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Sartore, L.; Barbaglio, M.; Borgese, L.; Bontempi, E. Polymer-grafted QCM chemical sensor and application to heavy metal ions real time detection. Sens. Actuators B-Chem. 2011, 155, 538–544. [Google Scholar] [CrossRef] [PubMed]
Principle | Type | Transducer | Detection Range | LOD | Analytes | Ref. |
---|---|---|---|---|---|---|
Optical sensors | Fluorescence | TGA/CdTe | 5–200 nM | 5 nM | Ag+ | [43] |
CY-A14/BQ-T14 | 0–400 nM | 8.5 nM | Hg2+ | [44] | ||
E. coli/PtTFPP | 0–80 μM | 5.62 μM | Hg2+ | [45] | ||
Colorimetric | SPSD | 0.2–7 μg/mL 5–30 μg/mL 0.1–1 μg/mL 0.05–1 μg/mL | 2.18 × 10−2 μg/mL 1 μg/mL 0.001 μg/mL 0.02 μg/mL | Pb2+ Hg2+ Cd2+ Zn2+ | [51] | |
AgNPs/Smartphone | 5–20 nM | 10 nM | Hg2+ | [52] | ||
ELISA/Smartphone | 0.8–50 ng/mL | 0.81 ng/mL | Cr3+ | [53] | ||
AgNPs/Chip lab | 0–500 ppb 100–400 ppb | 30 ppb 89 ppb | Pb2+ Al3+ | [54] | ||
Raman scattering | Rhodamine B/DNA | 1 nM–0.1 μM | 7.2 × 10−7 μM | UO22+ | [62] | |
I− | 0.1–103 nM | 1 fM | Hg2+ | [63] | ||
LSPR/SPR | AuNPs/4-MPY | 8–100 nM | 8 nM | Hg2+ | [67] | |
AuNPs/MUA | 0–100 mM | 800 μM | Pb2+ | [68] | ||
BSA/Chitosan/PANI | 0–100 μM | 7.1 nM | Cd2+ | [69] | ||
Electrochemical sensors | Voltammetry | SWV/ARM | 0–400 μg/L | 0.0075 μA/μgL−1 | Cu2+ | [75] |
SWASV | 0–300 μg/L | 200 μg/L | Cu2+ | [76] | ||
Impedance | ISM-FET | 10–100 nM | 10−5 μM | Pb2+ | [77] | |
α-MnO2/GQD | 0.001–1 nM | 0.81 nM | Pb2+ | [82] | ||
Potentiometric | μISE/Ag/AgCl | - | 1 ppb 3 ppb 1 ppb | Pb2+ Cd2+ Hg2+ | [84] | |
Electrical conductivity | CE-C4D | 0–1 mM | 0.7 μM 2.5 μM 5.4 μM 3.5 μM 1.9 μM | Mn2+ Cd2+ Co2+ Cu2+ Pb2+ | [88] | |
Capacitance | LTCC | 0–5 mM | 5 μM | Pb2+, Cd2+ | [91] | |
Other sensors | QCM | VNA | 0.498–6.74 mM | 0.1 ppb | Hg2+ | [95] |
Au electrodes | 0.01–103 ppm | - | Pb2+ | [96] |
Methods | Pros | Cons |
---|---|---|
Optical sensors | Fast, high sensitivity, and high resolution | Easily disturbed and complex device composition |
Electrochemical sensors | Low cost, simple operation, and high sensitivity | Poor reproducibility and stability |
QCM | Repeatable, low sample volume, and real-time monitoring | Low portability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, T.; Lai, Q.; Fan, W.; Zhang, Y.; Liu, Z. Advances in Portable Heavy Metal Ion Sensors. Sensors 2023, 23, 4125. https://doi.org/10.3390/s23084125
Hu T, Lai Q, Fan W, Zhang Y, Liu Z. Advances in Portable Heavy Metal Ion Sensors. Sensors. 2023; 23(8):4125. https://doi.org/10.3390/s23084125
Chicago/Turabian StyleHu, Tao, Qingteng Lai, Wen Fan, Yanke Zhang, and Zhengchun Liu. 2023. "Advances in Portable Heavy Metal Ion Sensors" Sensors 23, no. 8: 4125. https://doi.org/10.3390/s23084125
APA StyleHu, T., Lai, Q., Fan, W., Zhang, Y., & Liu, Z. (2023). Advances in Portable Heavy Metal Ion Sensors. Sensors, 23(8), 4125. https://doi.org/10.3390/s23084125