An SNR Enhancement Method for Φ-OTDR Vibration Signals Based on the PCA-VSS-NLMS Algorithm
Abstract
:1. Introduction
2. Working Principle of PCA-VSS-NLMS
3. Experimental Section
3.1. Simulation Experiments and Results
3.2. Experimental Setup and Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.; Lu, W.; Liu, L.; Shieh, W. Phase Noise-Induced Interference for Coherently Detected OTDR Systems. Opt. Lett. 2024, 49, 766. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.-H.; Liu, S.; Shao, L.; Xu, W.; Xiao, D.; Zhao, F.; Hu, J.; Lin, W.; Wang, G.; Wang, W.; et al. Ultra-Low Sampling Resolution Technique for Heterodyne Phase-OTDR Based Distributed Acoustic Sensing. Opt. Lett. 2022, 47, 3379. [Google Scholar] [CrossRef] [PubMed]
- Ashry, I.; Mao, Y.; Wang, B.; Hveding, F.; Bukhamsin, A.; Ng, T.K.; Ooi, B.S. A Review of Distributed Fiber–Optic Sensing in the Oil and Gas Industry. J. Light. Technol. 2022, 40, 1407–1431. [Google Scholar] [CrossRef]
- Zahoor, R.; Cerri, E.; Vallifuoco, R.; Zeni, L.; De Luca, A.; Caputo, F.; Minardo, A. Lamb Wave Detection for Structural Health Monitoring Using a Φ-OTDR System. Sensors 2022, 22, 5962. [Google Scholar] [CrossRef] [PubMed]
- Lyu, C.; Niu, Z.; Tian, J.; Jin, J.; Yang, J.; Ge, C. Identification of Intrusion Events Based on Distributed Optical Fiber Sensing in Complex Environment. IEEE Internet Things J. 2022, 9, 24212–24220. [Google Scholar] [CrossRef]
- Ding, Z.-W.; Zhang, X.-P.; Zou, N.-M.; Xiong, F.; Song, J.-Y.; Fang, X.; Wang, F.; Zhang, Y.-X. Phi-OTDR Based On-Line Monitoring of Overhead Power Transmission Line. J. Light. Technol. 2021, 39, 5163–5169. [Google Scholar] [CrossRef]
- Yang, N.; Zhao, Y.; Chen, J. Real-Time Φ-OTDR Vibration Event Recognition Based on Image Target Detection. Sensors 2022, 22, 1127. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, J.; Wang, Z.; Xiong, J.; Rao, Y.-J. Bandwidth-Enhanced Quasi-Distributed Acoustic Sensing With Interleaved Chirped Pulses. IEEE Sens. J. 2020, 20, 12739–12743. [Google Scholar] [CrossRef]
- Alekseev, A.E.; Gorshkov, B.G.; Potapov, V.T.; Taranov, M.A.; Simikin, D.E. A Fiber Phase-Sensitive Optical Time-Domain Reflectometer for Engineering Geology Application. Instrum. Exp. Tech. 2023, 66, 843–848. [Google Scholar] [CrossRef]
- Hartlieb, S.; Ringkowski, M.; Haist, T.; Sawodny, O.; Osten, W. Multi-Positional Image-Based Vibration Measurement by Holographic Image Replication. Light Adv. Manuf. 2021, 2, 1. [Google Scholar] [CrossRef]
- Horiguchi, T.; Shimizu, K.; Kurashima, T.; Tateda, M.; Koyamada, Y. Development of a Distributed Sensing Technique Using Brillouin Scattering. J. Light. Technol. 1995, 13, 1296–1302. [Google Scholar] [CrossRef]
- Chen, Y.; Mao, B.-M.; Zhou, B.; Guo, C.; Lin, Z. Improving the SNR of the Phase-OTDR by Controlling the Carrier in the SOA. J. Mod. Opt. 2020, 67, 1241–1246. [Google Scholar] [CrossRef]
- Zhu, F.; Zhang, X.; Xia, L.; Guo, Z.; Zhang, Y. Active Compensation Method for Light Source Frequency Drifting in Φ-OTDR Sensing System. IEEE Photon. Technol. Lett. 2015, 27, 2523–2526. [Google Scholar] [CrossRef]
- Baker, C.; Vanus, B.; Wuilpart, M.; Chen, L.; Bao, X. Enhancement of Optical Pulse Extinction-Ratio Using the Nonlinear Kerr Effect for Phase-OTDR. Opt. Express 2016, 24, 19424. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, B.; Xiong, J.; Fu, Y.; Lin, S.; Jiang, J.; Chen, Y.; Wu, Y.; Meng, Q.; Rao, Y. Distributed Acoustic Sensing Based on Pulse-Coding Phase-Sensitive OTDR. IEEE Internet Things J. 2019, 6, 6117–6124. [Google Scholar] [CrossRef]
- Qin, Z.; Chen, L.; Bao, X. Wavelet Denoising Method for Improving Detection Performance of Distributed Vibration Sensor. IEEE Photon. Technol. Lett. 2012, 24, 542–544. [Google Scholar] [CrossRef]
- Qin, Z.; Chen, L. Continuous Wavelet Transform for Non- Stationary Vibration Detection with Phase-OTDR. Opt. Express 2012, 20, 20459–20465. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Xiao, S.; Li, X.; Wang, Z.; Xu, J.; Rao, Y. Separation and Determination of the Disturbing Signals in Phase-Sensitive Optical Time Domain Reflectometry (Φ-OTDR). J. Light. Technol. 2015, 33, 3156–3162. [Google Scholar] [CrossRef]
- He, H.; Shao, L.; Li, H.; Pan, W.; Luo, B.; Zou, X.; Yan, L. SNR Enhancement in Phase-Sensitive OTDR with Adaptive 2-D Bilateral Filtering Algorithm. IEEE Photonics J. 2017, 9, 1–10. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Shen, X.; Xiao, Y.; Wu, Z.; Guo, P.; Hu, J.; Liu, Y.; Dang, H.; Sun, Q.; et al. SNR Enhancement of Quasi-Distributed Weak Acoustic Signal Detection by Elastomers and MMF Integrated Φ-OTDR. Opt. Express 2023, 31, 37019. [Google Scholar] [CrossRef]
- Lv, Y.; Wang, P.; Wang, Y.; Liu, X.; Bai, Q.; Li, P.; Zhang, H.; Gao, Y.; Jin, B. Eliminating Phase Drift for Distributed Optical Fiber Acoustic Sensing System with Empirical Mode Decomposition. Sensors 2019, 19, 5392. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Feng, L.; Zhao, D. A Method to Enhance SNR Based on CEEMDAN and the Interval Thresholding in Φ_OTDR Systems. Appl. Phys. B 2020, 126, 97. [Google Scholar] [CrossRef]
- Jiang, F.; Zhang, Z.; Lu, Z.; Li, H.; Tian, Y.; Zhang, Y.; Zhang, X. High-Fidelity Acoustic Signal Enhancement for Phase-OTDR Using Supervised Learning. Opt. Express 2021, 29, 33467. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Gao, X.; Gao, Y.; Zhang, X.; Zhong, Z. A Study on Noise Reduction of Φ-OTDR System Based on VSS-NLMS Algorithm. IEEE Sens. J. 2021, 21, 7648–7656. [Google Scholar] [CrossRef]
- He, Q.; Zeng, Z.; Zhao, Q.; Shang, X.; Li, T. SNR Improvement of Vibration Sensing in a Conventional Phase-OTDR by k-Parameter Statistical Analysis. Opt. Commun. 2022, 509, 127789. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Z.; Zhou, X.; Wang, Y.; Bai, Q.; Jin, B. Signal-to-Noise Ratio Improvement for Phase-Sensitive Optical Time-Domain Reflectometry Using a Genetic Least Mean Square Method. Photonics 2023, 10, 1362. [Google Scholar] [CrossRef]
- Turov, A.T.; Barkov, F.L.; Konstantinov, Y.A.; Korobko, D.A.; Lopez-Mercado, C.A.; Fotiadi, A.A. Activation Function Dynamic Averaging as a Technique for Nonlinear 2D Data Denoising in Distributed Acoustic Sensors. Algorithms 2023, 16, 440. [Google Scholar] [CrossRef]
- Gueraini, I.; Benallal, A.; Tedjani, A. New Variable Step-Size Fast NLMS Algorithm for Non-Stationary Systems. SIViP 2023, 17, 3099–3107. [Google Scholar] [CrossRef]
- Cai, Y.; Yu, Z.; Mo, D.; Liu, R.; Chen, A.; Dai, B.; Li, Y. Noise Reduction with Adaptive Filtering Scheme on Interferometric Fiber Optic Hydrophone. Optik 2020, 211, 164648. [Google Scholar] [CrossRef]
- Haykin, S. Adaptive Filter Theory Fifth Edition; Pearson Education: Upper Saddle River, NJ, USA, 2014. [Google Scholar]
- Li, Y.; Hamamura, M. Zero-attracting Variable-step-size Least Mean Square Algorithms for Adaptive Sparse Channel Estimation. Adapt. Control Signal 2015, 29, 1189–1206. [Google Scholar] [CrossRef]
Noisy Signal SNR | ||||||||
---|---|---|---|---|---|---|---|---|
Filtering Algorithm | −1.23 dB | 4.88 dB | 7.74 dB | 10.24 dB | 12.51 dB | 14.96 dB | 17.19 dB | 19.82 dB |
WD | No signal | No signal | 7.88 | 12.72 | 15.36 | 17.85 | 19.87 | 22.73 |
Wiener | No signal | No signal | No signal | 8.32 | 10.41 | 13.23 | 16.79 | 21.64 |
VMD | No signal | No signal | 6.69 | 6.46 | 9.67 | 12.41 | 14.18 | 17.18 |
VSS-NLMS | No signal | 5.04 | 7.86 | 10.39 | 12.85 | 15.09 | 17.24 | 19.78 |
PCA-VSS-NLMS | 30.68 | 26.65 | 27.29 | 27.89 | 28.49 | 29.60 | 30.62 | 31.55 |
Filtering Algorithm | 100 Hz SNR/dB | 200 Hz SNR/dB | 300 Hz SNR/dB | 400 Hz SNR/dB | 500 Hz SNR/dB | 600 Hz SNR/dB | 700 Hz SNR/dB | 800 Hz SNR/dB | 900 Hz SNR/dB |
---|---|---|---|---|---|---|---|---|---|
Unfiltered | 8.77 | 9.36 | 9.93 | 10.03 | 11.16 | 9.27 | 7.70 | 10.44 | 7.91 |
WD | 11.47 | 10.40 | 12.18 | 11.79 | 11.82 | 12.67 | 10.88 | 13.59 | 10.36 |
Wiener | 6.02 | 7.69 | 7.97 | 8.17 | 9.31 | 7.52 | 5.07 | 9.44 | 5.28 |
VMD | 6.61 | 6.34 | 7.34 | 8.76 | 8.37 | 9.46 | 6.08 | 9.24 | 8.57 |
VSS-NLMS | 8.92 | 9.03 | 9.95 | 9.95 | 10.92 | 9.19 | 7.58 | 10.20 | 7.27 |
PCA-VSS-NLMS | 26.17 | 26.40 | 25.52 | 24.52 | 26.92 | 25.39 | 28.35 | 26.01 | 26.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Yu, H.; Xu, J.; Gao, F. An SNR Enhancement Method for Φ-OTDR Vibration Signals Based on the PCA-VSS-NLMS Algorithm. Sensors 2024, 24, 4340. https://doi.org/10.3390/s24134340
Chen X, Yu H, Xu J, Gao F. An SNR Enhancement Method for Φ-OTDR Vibration Signals Based on the PCA-VSS-NLMS Algorithm. Sensors. 2024; 24(13):4340. https://doi.org/10.3390/s24134340
Chicago/Turabian StyleChen, Xiaojuan, Haoyu Yu, Jingyao Xu, and Funan Gao. 2024. "An SNR Enhancement Method for Φ-OTDR Vibration Signals Based on the PCA-VSS-NLMS Algorithm" Sensors 24, no. 13: 4340. https://doi.org/10.3390/s24134340
APA StyleChen, X., Yu, H., Xu, J., & Gao, F. (2024). An SNR Enhancement Method for Φ-OTDR Vibration Signals Based on the PCA-VSS-NLMS Algorithm. Sensors, 24(13), 4340. https://doi.org/10.3390/s24134340