Social Type-Aware Navigation Framework for Mobile Robots in Human-Shared Environments
Abstract
:1. Introduction
- We present a pipeline using robot sensors to classify humans into diverse social types, moving beyond the conventional approach of treating all humans the same.
- We develop a new layered costmap that adjusts personal space for each social type, enabling robots to navigate more sensitively and safely around humans.
- We validate our framework through qualitative and quantitative analysis in simulated and real-world human–robot interaction scenarios and demonstrate its performance.
2. Related Work
2.1. Human Detection and Tracking
2.2. Proxemics in Human–Robot Interaction
3. Methods
3.1. Social Type Classification Pipeline
Algorithm 1 Group Classification |
|
3.2. Social Type-Aware Costmap (STAC)
3.2.1. Age-Based Layer
3.2.2. Group-Based Layer
4. Experiments
4.1. Robot Specifications
4.2. Experimental Setup and Scenarios
4.3. Simulation Experiment Results
- Navigation Time (NT): The traveling time until the robot arrives at the goal position [s];
- Path Length (PL): The total distance of the robot until it arrives at the goal position [m];
- Minimum Distance (MD): The minimum distance to human in all cases [m];
- Invasion Distance (ID): The total distance the robot moved while invading the personal space (1.2 m for an adult; 1.7 m for a child) [m].
Social Type | Method | NT [s] | PL [m] | MD [m] | ID [m] |
---|---|---|---|---|---|
Adult | Traditional | 22.39 | 9.51 | 0.76 | 0.59 |
STAC (Ours) | 22.69 | 9.59 | 1.11 | 0.15 | |
Child | Traditional | 22.23 | 9.51 | 0.86 | 1.20 |
STAC-A | 22.77 | 9.65 | 1.23 | 0.99 | |
STAC (Ours) | 23.62 | 9.75 | 1.46 | 0.68 | |
Group | Traditional | 31.69 | 12.68 | 0.41 | 0.19 |
STAC (Ours) | 30.28 | 12.91 | 1.00 | 0.33 |
4.3.1. Adult
4.3.2. Child
4.3.3. Group
4.4. Real-World Experiments
4.4.1. Individuals
4.4.2. Human Group
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Triebel, R.; Arras, K.; Alami, R.; Beyer, L.; Breuers, S.; Chatila, R.; Chetouani, M.; Cremers, D.; Evers, V.; Fiore, M.; et al. Spencer: A socially aware service robot for passenger guidance and help in busy airports. In Field and Service Robotics: Results of the 10th International Conference; Springer: Berlin/Heidelberg, Germany, 2016; pp. 607–622. [Google Scholar]
- Hellou, M.; Lim, J.; Gasteiger, N.; Jang, M.; Ahn, H.S. Technical methods for social robots in museum settings: An overview of the literature. Int. J. Soc. Robot. 2022, 14, 1767–1786. [Google Scholar] [CrossRef]
- Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 1986, 5, 90–98. [Google Scholar] [CrossRef]
- Fox, D.; Burgard, W.; Thrun, S. The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 1997, 4, 23–33. [Google Scholar] [CrossRef]
- Berg, J.; Lin, M.; Manocha, D. Reciprocal velocity obstacles for real-time multi-agent navigation. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 1928–1935. [Google Scholar]
- Kruse, T.; Pandey, A.K.; Alami, R.; Kirsch, A. Human-aware robot navigation: A survey. Robot. Auton. Syst. 2013, 61, 1726–1743. [Google Scholar] [CrossRef]
- Hall, E.T.; Birdwhistell, R.L.; Bock, B.; Bohannan, P.; Diebold, A.R., Jr.; Durbin, M.; Edmonson, M.S.; Fischer, J.; Hymes, D.; Kimball, S.T.; et al. Proxemics [and comments and replies]. Curr. Anthropol. 1968, 9, 83–108. [Google Scholar] [CrossRef]
- Neggers, M.M.; Cuijpers, R.H.; Ruijten, P.A. Comfortable passing distances for robots. In Social Robotics: 10th International Conference, ICSR 2018, Qingdao, China, 28–30 November 2018; Proceedings 10; Springer: Berlin/Heidelberg, Germany, 2018; pp. 431–440. [Google Scholar]
- Pacchierotti, E.; Christensen, H.I.; Jensfelt, P. Evaluation of passing distance for social robots. In Proceedings of the ROMAN 2006—The 15th IEEE International Symposium on Robot and Human Interactive Communication, Hatfield, UK, 6–8 September 2006; pp. 315–320. [Google Scholar]
- Sisbot, E.A.; Marin-Urias, L.F.; Alami, R.; Simeon, T. A human aware mobile robot motion planner. IEEE Trans. Robot. 2007, 23, 874–883. [Google Scholar] [CrossRef]
- Kirby, R.; Simmons, R.; Forlizzi, J. Companion: A constraint-optimizing method for person acceptable navigation. In Proceedings of the ROMAN 2009—The 18th IEEE International Symposium on Robot and Human Interactive Communication, Toyama, Japan, 27 September–2 October 2009; pp. 607–612. [Google Scholar]
- O’Neal, E.E.; Jiang, Y.; Franzen, L.J.; Rahimian, P.; Yon, J.P.; Kearney, J.K.; Plumert, J.M. Changes in perception–action tuning over long time scales: How children and adults perceive and act on dynamic affordances when crossing roads. J. Exp. Psychol. Hum. Percept. Perform. 2018, 44, 18. [Google Scholar] [CrossRef]
- Parr, M.N.; O’Neal, E.E.; Zhou, S.; Williams, B.; Butler, K.M.; Chen, A.; Kearney, J.K.; Plumert, J.M. How children judge affordances when walking and bicycling across virtual roads: Does mode of locomotion matter? Dev. Psychol. 2023, 56, 1098. [Google Scholar] [CrossRef] [PubMed]
- Walters, M.L.; Dautenhahn, K.; Koay, K.L.; Kaouri, C.; Boekhorst, R.; Nehaniv, C.; Werry, I.; Lee, D. Close encounters: Spatial distances between people and a robot of mechanistic appearance. In Proceedings of the 5th IEEE-RAS International Conference on Humanoid Robots, Tsukuba, Japan, 5–7 December 2005; pp. 450–455. [Google Scholar]
- Leigh, A.; Pineau, J.; Olmedo, N.; Zhang, H. Person tracking and following with 2D laser scanners. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 726–733. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Levi, G.; Hassner, T. Age and gender classification using convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, USA, 7–12 June 2015; pp. 34–42. [Google Scholar]
- Foggia, P.; Greco, A.; Percannella, G.; Vento, M.; Vigilante, V. A system for gender recognition on mobile robots. In Proceedings of the 2nd International Conference on Applications of Intelligent Systems, Las Palmas de Gran Canaria, Spain, 7–9 January 2019; pp. 1–6. [Google Scholar]
- Khalifa, A.; Abdelrahman, A.A.; Strazdas, D.; Hintz, J.; Hempel, T.; Al-Hamadi, A. Face recognition and tracking framework for human–robot interaction. Appl. Sci. 2022, 12, 5568. [Google Scholar] [CrossRef]
- Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and realtime tracking. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3464–3468. [Google Scholar]
- Ince, O.F.; Park, J.; Song, J.; Yoon, B. Child and adult classification using ratio of head and body heights in images. Int. J. Comput. Commun. Eng. 2014, 3, 120. [Google Scholar] [CrossRef]
- Lin, J.-M.; Lin, W.-L.; Fan, C.-P. Age group classifier of adults and children with yolo-based deep learning pre-processing scheme for embedded platforms. In Proceedings of the 2022 IEEE 12th International Conference on Consumer Electronics (ICCE-Berlin), Berlin, Germany, 2–6 September 2022; pp. 1–3. [Google Scholar]
- Ramirez, O.A.I.; Varni, G.; Andries, M.; Chetouani, M.; Chatila, R. Modeling the dynamics of individual behaviors for group detection in crowds using low-level features. In Proceedings of the 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), New York, NY, USA, 26–31 August 2016; pp. 1104–1111. [Google Scholar]
- Chatterjee, I.; Steinfeld, A. Performance of a low-cost, human-inspired perception approach for dense moving crowd navi-gation. In Proceedings of the 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), New York, NY, USA, 26–31 August 2016; pp. 578–585. [Google Scholar]
- Taylor, A.; Chan, D.M.; Riek, L.D. Robot-centric perception of human groups. ACM Trans. Hum. Robot Interact. (THRI) 2020, 9, 1–21. [Google Scholar] [CrossRef]
- Linder, T.; Breuers, S.; Leibe, B.; Arras, K.O. On multi-modal people tracking from mobile platforms in very crowded and dynamic environments. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 5512–5519. [Google Scholar]
- Dondrup, C.; Bellotto, N.; Jovan, F.; Hanheide, M. Real-time multisensor people tracking for human-robot spatial interaction. In Proceedings of the Workshop on Machine Learning for Social Robotics at International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21 May 2015. [Google Scholar]
- Linder, T.; Girrbach, F.; Arras, K.O. Towards a robust people tracking framework for service robots in crowded, dynamic environments. In Proceedings of the Assistance and Service Robotics Workshop (ASROB-15) at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015. [Google Scholar]
- Arras, K.O.; Grzonka, S.; Luber, M.; Burgard, W. Efficient people tracking in laser range data using a multi-hypothesis leg-tracker with adaptive occlusion probabilities. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 1710–1715. [Google Scholar]
- Jafari, O.H.; Mitzel, D.; Leibe, B. Real-time rgb-d based people detection and tracking for mobile robots and head-worn cameras. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 5636–5643. [Google Scholar]
- Eirale, A.; Martini, M.; Chiaberge, M. Human-centered navigation and person-following with omnidirectional robot for indoor assistance and monitoring. Robotics 2022, 11, 108. [Google Scholar] [CrossRef]
- Nonaka, S.; Inoue, K.; Arai, T.; Mae, Y. Evaluation of human sense of security for coexisting robots using virtual reality. 1st report: Evaluation of pick and place motion of humanoid robots. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’04), New Orleans, LA, USA, 26 April–1 May 2004; Volume 3, pp. 2770–2775. [Google Scholar]
- Neggers, M.M.; Cuijpers, R.H.; Ruijten, P.A.; IJsselsteijn, W.A. Determining shape and size of personal space of a human when passed by a robot. Int. J. Soc. Robot. 2022, 14, 561–572. [Google Scholar] [CrossRef]
- Lu, D.V.; Hershberger, D.; Smart, W.D. Layered costmaps for context-sensitive navigation. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 709–715. [Google Scholar]
- Ngo, H.Q.T.; Le, V.N.; Thien, V.D.N.; Nguyen, T.P.; Nguyen, H. Develop the socially human-aware navigation system using dynamic window approach and optimize cost function for autonomous medical robot. Adv. Mech. Eng. 2020, 12, 1687814020979430. [Google Scholar] [CrossRef]
- Patompak, P.; Jeong, S.; Nilkhamhang, I.; Chong, N.Y. Learning proxemics for personalized human–robot social interaction. Int. J. Soc. Robot. 2020, 12, 267–280. [Google Scholar] [CrossRef]
- Bera, A.; Randhavane, T.; Prinja, R.; Kapsaskis, K.; Wang, A.; Gray, K.; Manocha, D. The emotionally intelligent robot: Improving social navigation in crowded environments. arXiv 2019, arXiv:1903.03217. [Google Scholar]
- Gines, J.; Martin, F.; Vargas, D.; Rodriguez, F.J.; Matellan, V. Social navigation in a cognitive architecture using dynamic proxemic zones. Sensors 2019, 19, 5189. [Google Scholar] [CrossRef] [PubMed]
- Kendon, A. Conducting Interaction: Patterns of Behavior in Focused Encounters; CUP Archive; Cambridge University Press: Cambridge, UK, 1990; Volume 7. [Google Scholar]
- Yang, F.; Peters, C. Social-aware navigation in crowds with static and dynamic groups. In Proceedings of the 2019 11th International Conference on Virtual Worlds and Games for Serious Applications (VS-Games), Vienna, Austria, 4–6 September 2019; pp. 1–4. [Google Scholar]
- Haarslev, F.; Juel, W.K.; Kollakidou, A.; Kruger, N.; Bodenhagen, L. Human-aware robot behavior in healthcare facilities. In Proceedings of the IROS 2020 Workshop: Robots for Health and Elderly Care: An Honest Discourse on the Gap between Research and Practical Applications, Las Vegas, NV, USA, 25–29 October 2020. [Google Scholar]
- Daza, M.; Barrios-Aranibar, D.; Diaz-Amado, J.; Cardinale, Y.; Vilasboas, J. An approach of social navigation based on proxemics for crowded environments of humans and robots. Micromachines 2021, 12, 193. [Google Scholar] [CrossRef]
- Cai, K.; Chen, W.; Wang, C.; Song, S.; Meng, M.Q.-H. Human-aware path planning with improved virtual doppler method in highly dynamic environments. IEEE Trans. Autom. Sci. Eng. 2022, 20, 1304–1321. [Google Scholar] [CrossRef]
- Forer, S.; Banisetty, S.B.; Yliniemi, L.; Nicolescu, M.; Feil-Seifer, D. Socially-aware navigation using non-linear multi-objective optimization. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1–9. [Google Scholar]
- Truong, X.-T.; Ngo, T.-D. Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. Int. J. Soc. Robot. 2016, 8, 663–684. [Google Scholar] [CrossRef]
- Truong, X.-T.; Ngo, T.-D. “To approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Trans. Cogn. Dev. Syst. 2017, 10, 557–572. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Sugimoto, T.; Tanaka, K.; Shimomura, Y.; Arjonilla Garcia, F.J.; Kim, C.H.; Yabushita, H.; Toda, T. Robot navigation based on predicting of human interaction and its reproducible evaluation in a densely crowded environment. Int. J. Soc. Robot. 2022, 14, 373–387. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. Yolov7: Trainable bag-of-freebies sets new state-of the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Shao, S.; Zhao, Z.; Li, B.; Xiao, T.; Yu, G.; Zhang, X.; Sun, J. Crowdhuman: A benchmark for detecting human in a crowd. arXiv 2018, arXiv:1805.00123. [Google Scholar]
- Lin, J.-M.; Lin, W.-L.; Fan, C.-P. Deep learning based efficient pedestrian age group estimation and tracking techniques for autonomous mover. In Proceedings of the 2023 5th International Conference on Computer Communication and the Internet (ICCCI), Fujisawa, Japan, 23–25 June 2023; pp. 15–19. [Google Scholar]
- Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. J. Fluids Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef]
- costmap_2d. Available online: http://wiki.ros.org/costmap_2d (accessed on 28 November 2023).
- Haarslev, F.; Juel, W.K.; Kollakidou, A.; Kruger, N.; Bodenhagen, L. Context-aware social robot navigation. In Proceedings of the 18th International Conference, ICINCO 2021, Lieusaint–Paris, France, 6–8 July 2021; pp. 426–433. [Google Scholar]
- SocialTypeAwareCostmap. Available online: https://github.com/suminkxng/SocialTypeAwareCostmap (accessed on 18 June 2024).
- Navfn. Available online: https://wiki.ros.org/navfn (accessed on 6 December 2023).
- dwa_local_planner. Available online: https://wiki.ros.org/dwa_local_planner?distro=noetic (accessed on 6 December 2023).
- Jackal UGV. Available online: https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/ (accessed on 6 February 2024).
- PedsimROS. Available online: https://github.com/srl-freiburg/pedsim_ros (accessed on 14 February 2024).
- Helbing, D.; Molnar, P. Social force model for pedestrian dynamics. Phys. Rev. E 1995, 51, 4282. [Google Scholar] [CrossRef]
Parameter | Simulation | Real World |
---|---|---|
A | 150 | 125 |
0.8 | 0.5 | |
0.7 | 1.0 | |
5 | 5 | |
170 | 125 | |
1.5 | 1.3 |
Scenario | Method | NT [s] | PL [m] | MD [m] | ID [m] |
---|---|---|---|---|---|
Stationary Adult | Traditional | 18.79 | 6.92 | 0.66 | 3.16 |
STAC (Ours) | 21.06 | 7.09 | 1.09 | 2.80 | |
Stationary Child | Traditional | 19.85 | 6.56 | 0.38 | 3.12 |
STAC (Ours) | 23.20 | 6.72 | 1.61 | 0.34 | |
Moving Adult | Traditional | 17.89 | 7.34 | 0.41 | 1.31 |
STAC (Ours) | 21.57 | 7.70 | 0.88 | 0.83 | |
Moving Child | Traditional | 20.02 | 6.73 | 0.70 | 3.22 |
STAC (Ours) | 21.40 | 7.30 | 1.47 | 0.62 |
Scenario | Method | NT [s] | PL [m] | MD [m] | ID [m] |
---|---|---|---|---|---|
Standing Group | Traditional | 17.75 | 6.71 | 0.61 | 2.19 |
STAC (Ours) | 21.27 | 7.36 | 1.10 | 0.58 | |
Standing C-Group | Traditional | 18.20 | 7.30 | 0.44 | 4.30 |
STAC (Ours) | 22.75 | 7.68 | 0.62 | 3.23 | |
Moving Group | Traditional | 20.16 | 7.05 | 0.51 | 1.14 |
STAC (Ours) | 21.15 | 7.59 | 0.63 | 0.97 | |
Moving C-Group | Traditional | 20.32 | 7.01 | 0.33 | 2.68 |
STAC (Ours) | 23.75 | 7.94 | 0.86 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.; Yang, S.; Kwak, D.; Jargalbaatar, Y.; Kim, D. Social Type-Aware Navigation Framework for Mobile Robots in Human-Shared Environments. Sensors 2024, 24, 4862. https://doi.org/10.3390/s24154862
Kang S, Yang S, Kwak D, Jargalbaatar Y, Kim D. Social Type-Aware Navigation Framework for Mobile Robots in Human-Shared Environments. Sensors. 2024; 24(15):4862. https://doi.org/10.3390/s24154862
Chicago/Turabian StyleKang, Sumin, Sungwoo Yang, Daewon Kwak, Yura Jargalbaatar, and Donghan Kim. 2024. "Social Type-Aware Navigation Framework for Mobile Robots in Human-Shared Environments" Sensors 24, no. 15: 4862. https://doi.org/10.3390/s24154862
APA StyleKang, S., Yang, S., Kwak, D., Jargalbaatar, Y., & Kim, D. (2024). Social Type-Aware Navigation Framework for Mobile Robots in Human-Shared Environments. Sensors, 24(15), 4862. https://doi.org/10.3390/s24154862