Human-to-Robot Handover Based on Reinforcement Learning
Abstract
:1. Introduction
2. Related Work
3. Framework Setting
- The robot’s gripper must grasp the object where the human placed it to prevent any harm to the human;
- The robot should be capable of visually distinguishing the object that the human is offering and determining the object’s coordinates;
- Regardless of the various poses in which the human presents the object, the robot should be able to successfully grasp it.
3.1. Agent and Environment State Setting
3.2. Robot Environment
3.3. Task Environment
4. Experiments and Evaluation
4.1. Simulation
4.2. Real World Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, H.; Kim, M.; Lee, B.; Kim, D. Design and experiment of an anthropomorphic robot hand for variable grasping stiffness. IEEE Access 2021, 9, 99467–99479. [Google Scholar] [CrossRef]
- Scherzinger, S.; Roennau, A.; Dillmann, R. Inverse kinematics with forward dynamics solvers for sampled motion tracking. In Proceedings of the 19th International Conference on Advanced Robotics (ICAR), IEEE, Belo Horizonte, Brazil, 2–6 December 2019; pp. 681–687. [Google Scholar]
- Wiering, M.A.; Martijn, V.O. Reinforcement learning. Adapt. Learn. Optim. 2012, 12, 729. [Google Scholar]
- Curioni, A.; Knoblich, G.; Sebanz, N.; Goswami, A.; Vadakkepat, P. Joint action in humans: A model for human-robot interactions. In Humanoid Robotics: A Reference; Springer: Berlin/Heidelberg, Germany, 2019; pp. 2149–2167. [Google Scholar]
- Mukherjee, D.; Gupta, K.; Chang, L.H.; Najjaran, H. A survey of robot learning strategies for human-robot collaboration in industrial settings. Robot. Comput. -Integr. Manuf. 2022, 73, 102231. [Google Scholar] [CrossRef]
- Castro, A.; Filipe, S.; Vitor, S. Trends of human-robot collaboration in industry contexts: Handover, learning, and metrics. Sensors 2021, 21, 4113. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.T.; Knoop, S.; Christensen, H.I.; Allen, P.K. Automatic grasp planning using shape primitives. In Proceedings of the IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), Taipei, Taiwan, 14–19 September 2003; Volume 2. [Google Scholar]
- Lundell, J.; Francesco, V.; Ville, K. Robust grasp planning over uncertain shape completions. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019. [Google Scholar]
- Lu, Q.; Van der Merwe, M.; Sundaralingam, B.; Hermans, T. Multifingered grasp planning via inference in deep neural networks: Outperforming sampling by learning differentiable models. IEEE Robot. Autom. Mag. 2020, 27, 55–65. [Google Scholar] [CrossRef]
- Yang, W.; Paxton, C.; Mousavian, A.; Chao, Y.W.; Cakmak, M.; Fox, D. Reactive human-to-robot handovers of arbitrary objects. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), IEEE, Xi’an, China, 30 May–5 June 2021. [Google Scholar]
- Ortenzi, V.; Cosgun, A.; Pardi, T.; Chan, W.P.; Croft, E.; Kulić, D. Object handovers: A review for robotics. IEEE Trans. Robot. 2021, 37, 1855–1873. [Google Scholar] [CrossRef]
- Yue, X.; Li, H.; Shimizu, M.; Kawamura, S.; Meng, L. YOLO-GD: A deep learning-based object detection algorithm for empty-dish recycling robots. Machines 2022, 10, 294. [Google Scholar] [CrossRef]
- Object Tracker. Available online: https://github.com/QualiaT/object_tracker (accessed on 11 August 2024).
- Taunyazov, T.; Song, L.S.; Lim, E.; See, H.H.; Lee, D.; Tee, B.C.; Soh, H. Extended tactile perception: Vibration sensing through tools and grasped objects. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Prague, Czech Republic, 27 September–1 October 2021; pp. 1755–1762. [Google Scholar]
- Pang, Y.L.; Xompero, A.; Oh, C.; Cavallaro, A. Towards safe human-to-robot handovers of unknown containers. In Proceedings of the 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN), Vancouver, BC, Canada, 8–12 August 2021; pp. 51–58. [Google Scholar]
- Christen, S.; Yang, W.; Pérez-D’Arpino, C.; Hilliges, O.; Fox, D.; Chao, Y.W. Learning human-to-robot handovers from point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 9654–9664. [Google Scholar]
- Wang, L.; Xiang, Y.; Yang, W.; Mousavian, A.; Fox, D. Goal-auxiliary actor-critic for 6d robotic grasping with point clouds. In Proceedings of the Conference on Robot Learning, PMLR, Auckland, New Zealand, 14–18 December 2022; pp. 70–80. [Google Scholar]
- Gupta, A.; Eppner, C.; Levine, S.; Abbeel, P. Learning dexterous manipulation for a soft robotic hand from human demonstrations. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Daejeon, Republic of Korea, 9–14 October 2016; pp. 3786–3793. [Google Scholar]
- Nguyen, H.; Hung, L.A. Review of deep reinforcement learning for robot manipulation. In Proceedings of the Third IEEE International Conference on Robotic Computing (IRC), IEEE, Naples, Italy, 25–27 February 2019; pp. 590–595. [Google Scholar]
- Kshirsagar, A.; Hoffman, G.; Biess, A. Evaluating guided policy search for human-robot handovers. IEEE Robot. Autom. Lett. 2021, 6, 3933–3940. [Google Scholar] [CrossRef]
- Chang, P.-K.; Huang, J.T.; Huang, Y.Y.; Wang, H.C. Learning end-to-end 6dof grasp choice of human-to-robot handover using affordance prediction and deep reinforcement learning. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022. [Google Scholar]
- Yang, W.; Sundaralingam, B.; Paxton, C.; Akinola, I.; Chao, Y.W.; Cakmak, M.; Fox, D. Model predictive control for fluid human-to-robot handovers. In Proceedings of the 2022 International Conference on Robotics and Automation, ICRA, Philadelphia, PA, USA, 23–27 May 2022; pp. 6956–6962. [Google Scholar]
- Kedia, K.; Bhardwaj, A.; Dan, P.; Choudhury, S. InteRACT: Transformer Models for Human Intent Prediction Conditioned on Robot Actions. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024; pp. 621–628. [Google Scholar] [CrossRef]
- Duan, H.; Li, Y.; Li, D.; Wei, W.; Huang, Y.; Wang, P. Learning Realistic and Reasonable Grasps for Anthropomorphic Hand in Cluttered Scenes. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024; pp. 1893–1899. [Google Scholar] [CrossRef]
- Christen, S.; Feng, L.; Yang, W.; Chao, Y.W.; Hilliges, O.; Song, J. SynH2R: Synthesizing Hand-Object Motions for Learning Human-to-Robot Handovers. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024; pp. 3168–3175. [Google Scholar] [CrossRef]
- Gazebo. Available online: https://gazebosim.org (accessed on 11 August 2024).
- Lucchi, M.; Zindler, F.; Mühlbacher-Karrer, S.; Pichler, H. Robo-gym–an open source toolkit for distributed deep reinforcement learning on real and simulated robots. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021. [Google Scholar]
Feature | Version |
---|---|
ROS version | Noetic |
Pytorch | Ver.1.11.0 |
Python | Ver.3.7.11 |
RL framework | Robo-gym [27] |
Simulation | Gazebo |
Learning algorithm | PPO |
Graphic card | RTX 3060Ti |
CUDA | Ver.11.6 |
Control rate | 125 Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Yang, S.; Kim, B.; Kim, J.; Kim, D. Human-to-Robot Handover Based on Reinforcement Learning. Sensors 2024, 24, 6275. https://doi.org/10.3390/s24196275
Kim M, Yang S, Kim B, Kim J, Kim D. Human-to-Robot Handover Based on Reinforcement Learning. Sensors. 2024; 24(19):6275. https://doi.org/10.3390/s24196275
Chicago/Turabian StyleKim, Myunghyun, Sungwoo Yang, Beomjoon Kim, Jinyeob Kim, and Donghan Kim. 2024. "Human-to-Robot Handover Based on Reinforcement Learning" Sensors 24, no. 19: 6275. https://doi.org/10.3390/s24196275
APA StyleKim, M., Yang, S., Kim, B., Kim, J., & Kim, D. (2024). Human-to-Robot Handover Based on Reinforcement Learning. Sensors, 24(19), 6275. https://doi.org/10.3390/s24196275