Microfluidic-Based Electrical Operation and Measurement Methods in Single-Cell Analysis
Abstract
:1. Introduction
2. Microfluidic-Based Electrical Manipulation of Single Cells
2.1. DEP Manipulation of Single Cells
2.2. Microfluidic-Based Electroporation of Single Cells
2.3. Fabrication of Electrical Microfluidic Devices
3. Microfluidic-Based Electrical Analysis of Single Cells
3.1. Microfluidic-Based Impedance Measurements of Single Cells
3.1.1. Electrode Configuration
3.1.2. Microchannel Geometry
3.1.3. Fluid Flow-Assisted Single-Cell Impedance Measurement
3.2. Microfluidic-Based AC Electrokinetic Measurement of Single Cells
3.3. Microfluidic-Based Electrochemical Analysis of Single Cells
4. Conclusions and Perspectives
4.1. Strengths and Weaknesses
4.2. Opportunities and Threats
Funding
Conflicts of Interest
Abbreviations
DEP | Dielectrophoresis |
AC | Alternating current |
pDEP | Positive dielectrophoresis |
nDEP | Negative dielectrophoresis |
AFM | Atomic force microscopy |
BPE | Bipolar electrode |
MOE | Microwell structures on the electrode |
PDMS | Polydimethylsiloxane |
ITO | Indium tin oxide |
FIB | Focused ion beam |
EIS | Electric impedance spectroscopy |
IFC | Impedance flow cytometry |
ROT | Electrorotation |
ECL | Electrochemiluminescence technique |
DA | Dopamine |
References
- Altschuler, S.J.; Wu, L.F. Cellular heterogeneity: Do differences make a difference? Cell 2010, 141, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Junker, J.P.; van Oudenaarden, A. Every cell is special: Genome-wide studies add a new dimension to single-cell biology. Cell 2014, 157, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Pelkmans, L. Cell Biology. Using cell-to-cell variability--a new era in molecular biology. Science 2012, 336, 425–426. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, Z.; Zhu, S.; Ni, Z.H.; Xiang, N. Label-free microfluidics for single-cell analysis. Microchem. J. 2022, 177, 107284. [Google Scholar] [CrossRef]
- Evers, T.M.J.; Hochane, M.; Tans, S.J.; Heeren, R.M.A.; Semrau, S.; Nemes, P.; Mashaghi, A. Deciphering Metabolic Heterogeneity by Single-Cell Analysis. Anal. Chem. 2019, 91, 13314–13323. [Google Scholar] [CrossRef]
- Stylianou, A.; Lekka, M.; Stylianopoulos, T. AFM assessing of nanomechanical fingerprints for cancer early diagnosis and classification: From single cell to tissue level. Nanoscale 2018, 10, 20930–20945. [Google Scholar] [CrossRef] [PubMed]
- Galler, K.; Brautigam, K.; Grosse, C.; Popp, J.; Neugebauer, U. Making a big thing of a small cell—Recent advances in single cell analysis. Analyst 2014, 139, 1237–1273. [Google Scholar] [CrossRef]
- Aerts, J.T.; Louis, K.R.; Crandall, S.R.; Govindaiah, G.; Cox, C.L.; Sweedler, J.V. Patch clamp electrophysiology and capillary electrophoresis-mass spectrometry metabolomics for single cell characterization. Anal. Chem. 2014, 86, 3203–3208. [Google Scholar] [CrossRef]
- Collier, J.L. Flow Cytometry and the Single Cell in Phycology. J. Phycol. 2000, 36, 628–644. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Ayachit, N.H.; Aminabhavi, T.M. A Short Review on Miniaturized Biosensors for the Detection of Nucleic Acid Biomarkers. Biosensors 2023, 13, 412. [Google Scholar] [CrossRef]
- Sharma, V.; Mottafegh, A.; Joo, J.U.; Kang, J.H.; Wang, L.; Kim, D.P. Toward microfluidic continuous-flow and intelligent downstream processing of biopharmaceuticals. Lab Chip 2024, 24, 2861–2882. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhu, J.; Huang, Y.; Wu, D.; Sun, J. Microfluidic-Based Single-Cell Study: Current Status and Future Perspective. Molecules 2018, 23, 2347. [Google Scholar] [CrossRef] [PubMed]
- Jae-Sung, K.; Oh, J.H. Microfluidic Technology for Cell Manipulation. Appl. Sci. 2018, 8, 992. [Google Scholar] [CrossRef]
- Luo, T.; Fan, L.; Zhu, R.; Sun, D. Microfluidic Single-Cell Manipulation and Analysis: Methods and Applications. Micromachines 2019, 10, 104. [Google Scholar] [CrossRef]
- Wang, F.; Lin, S.; Yu, Z.; Wang, Y.; Zhang, D.; Cao, C.; Wang, Z.; Cui, D.; Chen, D. Recent advances in microfluidic-based electroporation techniques for cell membranes. Lab Chip 2022, 22, 2624–2646. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, P.; Wang, W. 3D cell electrorotation and imaging for measuring multiple cellular biophysical properties. Lab Chip 2018, 18, 2359–2368. [Google Scholar] [CrossRef]
- Wang, N.; Ao, H.; Xiao, W.; Chen, W.; Li, G.; Wu, J.; Ju, H. Confined electrochemiluminescence imaging microarray for high-throughput biosensing of single cell-released dopamine. Biosens. Bioelectron. 2022, 201, 113959. [Google Scholar] [CrossRef]
- Li, M.; Anand, R.K. Cellular dielectrophoresis coupled with single-cell analysis. Anal. Bioanal. Chem. 2018, 410, 2499–2515. [Google Scholar] [CrossRef]
- Mohd Maidin, N.N.; Buyong, M.R.; Rahim, R.; Mohamed, M.A. Dielectrophoresis applications in biomedical field and future perspectives in biomedical technology. Electrophoresis 2021, 42, 2033–2059. [Google Scholar] [CrossRef]
- Kim, D.; Sonker, M.; Ros, A. Dielectrophoresis: From Molecular to Micrometer-Scale Analytes. Anal. Chem. 2019, 91, 277–295. [Google Scholar] [CrossRef]
- Cha, H.; Fallahi, H.; Dai, Y.; Yuan, D.; An, H.; Nguyen, N.T.; Zhang, J. Multiphysics microfluidics for cell manipulation and separation: A review. Lab Chip 2022, 22, 423–444. [Google Scholar] [CrossRef] [PubMed]
- Valero, A.; Braschler, T.; Renaud, P. A unified approach to dielectric single cell analysis: Impedance and dielectrophoretic force spectroscopy. Lab Chip 2010, 10, 2216–2225. [Google Scholar] [CrossRef] [PubMed]
- Qiang, Y.; Liu, J.; Dao, M.; Suresh, S.; Du, E. Mechanical fatigue of human red blood cells. Proc. Natl. Acad. Sci. USA 2019, 116, 19828–19834. [Google Scholar] [CrossRef] [PubMed]
- Qiang, Y.; Liu, J.; Dao, M.; Du, E. In vitro assay for single-cell characterization of impaired deformability in red blood cells under recurrent episodes of hypoxia. Lab Chip 2021, 21, 3458–3470. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, I.I.; Moghimi Zand, M.; Ebadi, A.A.; Fathipour, M. Cell properties assessment using optimized dielectrophoresis-based cell stretching and lumped mechanical modeling. Sci. Rep. 2021, 11, 2341. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Wang, Z.; Shen, L.; Zhao, G. Label-Free and Noninvasive Single-Cell Characterization for the Viscoelastic Properties of Cryopreserved Human Red Blood Cells Using a Dielectrophoresis-On-a-Chip Approach. Anal. Chem. 2022, 94, 10245–10255. [Google Scholar] [CrossRef]
- Li, M.; Anand, R.K. Integration of marker-free selection of single cells at a wireless electrode array with parallel fluidic isolation and electrical lysis. Chem. Sci. 2019, 10, 1506–1513. [Google Scholar] [CrossRef]
- Wu, Y.; Ren, Y.; Tao, Y.; Hou, L.; Jiang, H. High-Throughput Separation, Trapping, and Manipulation of Single Cells and Particles by Combined Dielectrophoresis at a Bipolar Electrode Array. Anal. Chem. 2018, 90, 11461–11469. [Google Scholar] [CrossRef]
- Takeuchi, M.; Nagasaka, K.; Yoshida, M.; Kawata, Y.; Miyagawa, Y.; Tago, S.; Hiraike, H.; Wada-Hiraike, O.; Oda, K.; Osuga, Y.; et al. On-chip immunofluorescence analysis of single cervical cells using an electroactive microwell array with barrier for cervical screening. Biomicrofluidics 2019, 13, 044107. [Google Scholar] [CrossRef]
- Qin, Y.; Wu, L.; Schneider, T.; Yen, G.S.; Wang, J.; Xu, S.; Li, M.; Paguirigan, A.L.; Smith, J.L.; Radich, J.P.; et al. A Self-Digitization Dielectrophoretic (SD-DEP) Chip for High-Efficiency Single-Cell Capture, On-Demand Compartmentalization, and Downstream Nucleic Acid Analysis. Angew. Chem. Int. Ed. Engl. 2018, 57, 11378–11383. [Google Scholar] [CrossRef]
- Thiriet, P.E.; Pezoldt, J.; Gambardella, G.; Keim, K.; Deplancke, B.; Guiducci, C. Selective Retrieval of Individual Cells from Microfluidic Arrays Combining Dielectrophoretic Force and Directed Hydrodynamic Flow. Micromachines 2020, 11, 322. [Google Scholar] [CrossRef] [PubMed]
- Lv, D.; Zhang, X.; Xu, M.; Cao, W.; Liu, X.; Deng, J.; Yang, J.; Hu, N. Trapping and releasing of single microparticles and cells in a microfluidic chip. Electrophoresis 2022, 43, 2165–2174. [Google Scholar] [CrossRef]
- Kim, S.H.; Fujii, T. Efficient analysis of a small number of cancer cells at the single-cell level using an electroactive double-well array. Lab Chip 2016, 16, 2440–2449. [Google Scholar] [CrossRef]
- Bai, Z.; Deng, Y.; Kim, D.; Chen, Z.; Xiao, Y.; Fan, R. An Integrated Dielectrophoresis-Trapping and Nanowell Transfer Approach to Enable Double-Sub-Poisson Single-Cell RNA Sequencing. ACS Nano 2020, 14, 7412–7424. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Komori, T.; Uda, T.; Miyajima, K.; Fujii, T.; Kim, S.H. Sequential Cell-Processing System by Integrating Hydrodynamic Purification and Dielectrophoretic Trapping for Analyses of Suspended Cancer Cells. Micromachines 2019, 11, 47. [Google Scholar] [CrossRef]
- Park, J.; Park, C.; Sugitani, Y.; Fujii, T.; Kim, S.H. An electroactive microwell array device to realize simultaneous trapping of single cancer cells and clusters. Lab Chip 2022, 22, 3000–3007. [Google Scholar] [CrossRef] [PubMed]
- Hata, M.; Suzuki, M.; Yasukawa, T. Selective retrieval of antibody-secreting hybridomas in cell arrays based on the dielectrophoresis. Biosens. Bioelectron. 2022, 209, 114250. [Google Scholar] [CrossRef]
- Okayama, H.; Tomita, M.; Suzuki, M.; Yasukawa, T. Rapid Formation of Arrayed Cells on an Electrode with Microwells by a Scanning Electrode Based on Positive Dielectrophoresis. Anal. Sci. 2019, 35, 701–704. [Google Scholar] [CrossRef]
- Van den Eeckhoudt, R.; Christiaens, A.S.; Ceyssens, F.; Vangalis, V.; Verstrepen, K.J.; Boon, N.; Tavernier, F.; Kraft, M.; Taurino, I. Full-electric microfluidic platform to capture, analyze and selectively release single cells. Lab Chip 2023, 23, 4276–4286. [Google Scholar] [CrossRef]
- Huang, K.; Cui, Z.; Lai, J.; Lu, B.; Chu, H.K. Optimization of a Single-Particle Micropatterning System With Robotic nDEP-Tweezers. IEEE Trans. Autom. Sci. Eng. 2022, 19, 818–832. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Wan, K.; Wu, M.; Guo, L.; Liu, X.; Wei, G. On the design, functions, and biomedical applications of high-throughput dielectrophoretic micro-/nanoplatforms: A review. Nanoscale 2021, 13, 4330–4358. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huang, C.; Han, S.I.; Han, A. Measurement of dielectric properties of cells at single-cell resolution using electrorotation. Biomed. Microdevices 2022, 24, 23. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.R.U.; Kwak, T.J.; Woehl, J.C.; Chang, W.J. Quantitative analysis of the three-dimensional trap stiffness of a dielectrophoretic corral trap. Electrophoresis 2021, 42, 644–655. [Google Scholar] [CrossRef]
- Kwak, T.J.; Lee, H.; Lee, S.W.; Woehl, J.C.; Chang, W.J. Size-Selective Particle Trapping in Dielectrophoretic Corral Traps. J. Phys. Chem. C 2021, 125, 6278–6286. [Google Scholar] [CrossRef]
- Rahman, M.R.U.; Kwak, T.J.; Woehl, J.C.; Chang, W.J. Effect of geometry on dielectrophoretic trap stiffness in microparticle trapping. Biomed. Microdevices 2021, 23, 33. [Google Scholar] [CrossRef]
- Li, M.; Anand, R.K. High-Throughput Selective Capture of Single Circulating Tumor Cells by Dielectrophoresis at a Wireless Electrode Array. J. Am. Chem. Soc. 2017, 139, 8950–8959. [Google Scholar] [CrossRef]
- Anand, R.K.; Johnson, E.S.; Chiu, D.T. Negative dielectrophoretic capture and repulsion of single cells at a bipolar electrode: The impact of faradaic ion enrichment and depletion. J. Am. Chem. Soc. 2015, 137, 776–783. [Google Scholar] [CrossRef] [PubMed]
- Menze, L.; Duarte, P.A.; Haddon, L.; Chu, M.; Chen, J. Selective Single-Cell Sorting Using a Multisectorial Electroactive Nanowell Platform. ACS Nano 2022, 16, 211–220. [Google Scholar] [CrossRef]
- Lei, K.F.; Ho, Y.C.; Huang, C.H.; Huang, C.H.; Pai, P.C. Characterization of stem cell-like property in cancer cells based on single-cell impedance measurement in a microfluidic platform. Talanta 2021, 229, 122259. [Google Scholar] [CrossRef]
- Hata, M.; Suzuki, M.; Yasukawa, T. Selective Trapping and Retrieval of Single Cells Using Microwell Array Devices Combined with Dielectrophoresis. Anal. Sci. 2021, 37, 803–806. [Google Scholar] [CrossRef]
- Stewart, M.P.; Sharei, A.; Ding, X.; Sahay, G.; Langer, R.; Jensen, K.F. In vitro and ex vivo strategies for intracellular delivery. Nature 2016, 538, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, H.; Zhou, W.; Ma, L.; Perez, S.; Ibarra, A.; Xu, F.; Zhan, S.; Li, X. Recent advances in microfluidic platforms for single-cell analysis in cancer biology, diagnosis and therapy. Trends Anal. Chem. 2019, 117, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.E.; Khoo, H.; Hur, S.C. Recent Advances in Microscale Electroporation. Chem. Rev. 2022, 122, 11247–11286. [Google Scholar] [CrossRef]
- Xu, X.; Wang, J.; Wu, L.; Guo, J.; Song, Y.; Tian, T.; Wang, W.; Zhu, Z.; Yang, C. Microfluidic Single-Cell Omics Analysis. Small 2020, 16, e1903905. [Google Scholar] [CrossRef]
- Santra, T.S.; Kar, S.; Chang, H.Y.; Tseng, F.G. Nano-localized single-cell nano-electroporation. Lab Chip 2020, 20, 4194–4204. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, T.; Zhu, R. Single-cell individualized electroporation with real-time impedance monitoring using a microelectrode array chip. Microsyst. Nanoeng. 2020, 6, 81. [Google Scholar] [CrossRef]
- Punjiya, M.; Mocker, A.; Napier, B.; Zeeshan, A.; Gutsche, M.; Sonkusale, S. CMOS microcavity arrays for single-cell electroporation and lysis. Biosens. Bioelectron. 2020, 150, 111931. [Google Scholar] [CrossRef]
- Chang, L.; Gallego-Perez, D.; Chiang, C.L.; Bertani, P.; Kuang, T.; Sheng, Y.; Chen, F.; Chen, Z.; Shi, J.; Yang, H.; et al. Controllable Large-Scale Transfection of Primary Mammalian Cardiomyocytes on a Nanochannel Array Platform. Small 2016, 12, 5971–5980. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Jiao, Y.; Xie, B.; Hao, Y.; Wang, P.; Liu, Y.; Shi, J.; Chitrakar, C.; Black, S.; Wang, Y.C.; et al. On-chip multiplexed single-cell patterning and controllable intracellular delivery. Microsyst. Nanoeng. 2020, 6, 2. [Google Scholar] [CrossRef]
- Dong, Z.; Yan, S.; Liu, B.; Hao, Y.; Lin, L.; Chang, T.; Sun, H.; Wang, Y.; Li, H.; Wu, H.; et al. Single Living Cell Analysis Nanoplatform for High-Throughput Interrogation of Gene Mutation and Cellular Behavior. Nano Lett. 2021, 21, 4878–4886. [Google Scholar] [CrossRef]
- Shokouhi, A.R.; Aslanoglou, S.; Nisbet, D.; Voelcker, N.H.; Elnathan, R. Vertically configured nanostructure-mediated electroporation: A promising route for intracellular regulations and interrogations. Mater. Horiz. 2020, 7, 2810–2831. [Google Scholar] [CrossRef]
- Yousuff, C.M.; Tirth, V.; Zackria Ansar Babu Irshad, M.; Irshad, K.; Algahtani, A.; Islam, S. Numerical Study of Joule Heating Effects on Microfluidics Device Reliability in Electrode Based Devices. Materials 2021, 14, 5819. [Google Scholar] [CrossRef] [PubMed]
- Muralidharan, A.; Pesch, G.R.; Hubbe, H.; Rems, L.; Nouri-Goushki, M.; Boukany, P.E. Microtrap array on a chip for localized electroporation and electro-gene transfection. Bioelectrochemistry 2022, 147, 108197. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Luan, X.; Zhang, L.; Zhao, W.; Cheng, J.; Li, M.; Zhao, Y.; Huang, C. Single-Cell Electroporation with Real-Time Impedance Assessment Using a Constriction Microchannel. Micromachines 2020, 11, 856. [Google Scholar] [CrossRef]
- Ding, X.; Stewart, M.; Sharei, A.; Weaver, J.C.; Langer, R.S.; Jensen, K.F. High-throughput Nuclear Delivery and Rapid Expression of DNA via Mechanical and Electrical Cell-Membrane Disruption. Nat. Biomed. Eng. 2017, 1, 0039. [Google Scholar] [CrossRef]
- Luo, Z.Y.; Bai, B.F. Solute release from an elastic capsule flowing through a microfluidic channel constriction. Phys. Fluids 2019, 31, 121902. [Google Scholar] [CrossRef]
- Niculescu, A.G.; Chircov, C.; Birca, A.C.; Grumezescu, A.M. Fabrication and Applications of Microfluidic Devices: A Review. Int. J. Mol. Sci. 2021, 22, 2011. [Google Scholar] [CrossRef]
- Tanwar, A.; Gandhi, H.; Kushwaha, D.; Bhattacharya, J. A review on microelectrode array fabrication techniques and their applications. Mater. Today Chem. 2022, 26, 101153. [Google Scholar] [CrossRef]
- Pattanayak, P.; Singh, S.K.; Gulati, M.; Vishwas, S.; Kapoor, B.; Chellappan, D.K.; Anand, K.; Gupta, G.; Jha, N.K.; Gupta, P.K.; et al. Microfluidic chips: Recent advances, critical strategies in design, applications and future perspectives. Microfluid. Nanofluidics 2021, 25, 99. [Google Scholar] [CrossRef]
- Phillip, J.M.; Han, K.S.; Chen, W.C.; Wirtz, D.; Wu, P.H. A robust unsupervised machine-learning method to quantify the morphological heterogeneity of cells and nuclei. Nat. Protoc. 2021, 16, 754–774. [Google Scholar] [CrossRef]
- De Ninno, A.; Reale, R.; Giovinazzo, A.; Bertani, F.R.; Businaro, L.; Bisegna, P.; Matteucci, C.; Caselli, F. High-throughput label-free characterization of viable, necrotic and apoptotic human lymphoma cells in a coplanar-electrode microfluidic impedance chip. Biosens. Bioelectron. 2020, 150, 111887. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Yang, X.; Wang, J.; Wang, Y.; Yang, W.; Liu, L. Determination of Dielectric Properties of Cells using AC Electrokinetic-based Microfluidic Platform: A Review of Recent Advances. Micromachines 2020, 11, 513. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Huang, X.; Liu, K.; Lan, T.; Wang, Z.; Zhu, Z. Recent Advances in Electrical Impedance Sensing Technology for Single-Cell Analysis. Biosensors 2021, 11, 470. [Google Scholar] [CrossRef]
- McGrath, J.S.; Honrado, C.; Moore, J.H.; Adair, S.J.; Varhue, W.B.; Salahi, A.; Farmehini, V.; Goudreau, B.J.; Nagdas, S.; Blais, E.M.; et al. Electrophysiology-based stratification of pancreatic tumorigenicity by label-free single-cell impedance cytometry. Anal. Chim. Acta 2020, 1101, 90–98. [Google Scholar] [CrossRef]
- Spencer, D.C.; Paton, T.F.; Mulroney, K.T.; Inglis, T.J.J.; Sutton, J.M.; Morgan, H. A fast impedance-based antimicrobial susceptibility test. Nat. Commun. 2020, 11, 5328. [Google Scholar] [CrossRef]
- Honrado, C.; Michel, N.; Moore, J.H.; Salahi, A.; Porterfield, V.; McConnell, M.J.; Swami, N.S. Label-Free Quantification of Cell Cycle Synchronicity of Human Neural Progenitor Cells Based on Electrophysiology Phenotypes. ACS Sens. 2021, 6, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Salahi, A.; Rane, A.; Xiao, L.; Honrado, C.; Li, X.; Jin, L.; Swami, N.S. Single-cell assessment of the modulation of macrophage activation by ex vivo intervertebral discs using impedance cytometry. Biosens. Bioelectron. 2022, 210, 114346. [Google Scholar] [CrossRef]
- Bilican, I.; Guler, M.T.; Serhatlioglu, M.; Kirindi, T.; Elbuken, C. Focusing-free impedimetric differentiation of red blood cells and leukemia cells: A system optimization. Sens. Actuat B-Chem. 2020, 307, 127531. [Google Scholar] [CrossRef]
- Tang, T.; Liu, X.; Yuan, Y.; Kiya, R.; Shen, Y.; Zhang, T.; Suzuki, K.; Tanaka, Y.; Li, M.; Hosokawa, Y.; et al. Dual-frequency impedance assays for intracellular components in microalgal cells. Lab Chip 2022, 22, 550–559. [Google Scholar] [CrossRef]
- Zhong, J.W.; Tang, Q.; Liang, M.H.; Ai, Y. Accurate profiling of blood components in microliter with position-insensitive coplanar electrodes-based cytometry. Sens. Actuat B-Chem. 2022, 367, 132068. [Google Scholar] [CrossRef]
- Salahi, A.; Honrado, C.; Rane, A.; Caselli, F.; Swami, N.S. Modified Red Blood Cells as Multimodal Standards for Benchmarking Single-Cell Cytometry and Separation Based on Electrical Physiology. Anal. Chem. 2022, 94, 2865–2872. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Chen, L.; Zhang, S.; Wang, J.; Duan, X. Label-Free and Simultaneous Mechanical and Electrical Characterization of Single Plant Cells Using Microfluidic Impedance Flow Cytometry. Anal. Chem. 2020, 92, 14568–14575. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, K.; Sun, X.H.; Chen, D.Y.; Wang, J.B.; Chen, J. Development of microfluidic platform capable of characterizing cytoplasmic viscosity, cytoplasmic conductivity and specific membrane capacitance of single cells. Microfluid. Nanofluidics 2020, 24, 45. [Google Scholar] [CrossRef]
- Feng, Y.; Huang, L.; Zhao, P.; Liang, F.; Wang, W. A Microfluidic Device Integrating Impedance Flow Cytometry and Electric Impedance Spectroscopy for High-Efficiency Single-Cell Electrical Property Measurement. Anal. Chem. 2019, 91, 15204–15212. [Google Scholar] [CrossRef]
- Tang, D.Z.; Chen, M.; Han, Y.; Xiang, N.; Ni, Z.H. Asymmetric serpentine microchannel based impedance cytometer enabling consistent transit and accurate characterization of tumor cells and blood cells. Sens. Actuat B-Chem. 2021, 336, 129719. [Google Scholar] [CrossRef]
- Petchakup, C.; Tay, H.M.; Li, K.H.H.; Hou, H.W. Integrated inertial-impedance cytometry for rapid label-free leukocyte isolation and profiling of neutrophil extracellular traps (NETs). Lab Chip 2019, 19, 1736–1746. [Google Scholar] [CrossRef]
- Petchakup, C.; Hutchinson, P.E.; Tay, H.M.; Leong, S.Y.; Li, K.H.H.; Hou, H.W. Label-free quantitative lymphocyte activation profiling using microfluidic impedance cytometry. Sens. Actuat B-Chem. 2021, 339, 129864. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, X.; Chen, M.; Tang, D.; Han, Y.; Xiang, N.; Ni, Z. An easy-fabricated and disposable polymer-film microfluidic impedance cytometer for cell sensing. Anal. Chim. Acta 2021, 1175, 338759. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, H.Y.; Tan, H.W.; Chen, D.Y.; Wang, Y.X.; Xu, Y.; Wang, J.B.; Chen, J. Development of microfluidic platform to high-throughput quantify single-cell intrinsic bioelectrical markers of tumor cell lines, subtypes and patient tumor cells. Sens. Actuat B-Chem. 2020, 317, 128231. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Chen, D.; Wang, K.; Wei, Y.; Xu, Y.; Huang, C.; Wang, J.; Chen, J. Crossing constriction channel-based microfluidic cytometry capable of electrically phenotyping large populations of single cells. Analyst 2019, 144, 1008–1015. [Google Scholar] [CrossRef]
- Petchakup, C.; Yang, H.; Gong, L.; He, L.; Tay, H.M.; Dalan, R.; Chung, A.J.; Li, K.H.H.; Hou, H.W. Microfluidic Impedance-Deformability Cytometry for Label-Free Single Neutrophil Mechanophenotyping. Small 2022, 18, e2104822. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Jiang, L.; Xiang, N.; Ni, Z. Discrimination of tumor cell type based on cytometric detection of dielectric properties. Talanta 2022, 246, 123524. [Google Scholar] [CrossRef] [PubMed]
- Eades, J.; Audiffred, J.F.; Fincher, M.; Choi, J.W.; Soper, S.A.; Monroe, W.T. A Simple Micromilled Microfluidic Impedance Cytometer with Vertical Parallel Electrodes for Cell Viability Analysis. Micromachines 2023, 14, 283. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liang, Z.; Luo, Y.; Yuan, X.; Cai, Y.; Yu, D.; Xing, X. Single-cell impedance cytometry of anticancer drug-treated tumor cells exhibiting mitotic arrest state to apoptosis using low-cost silver-PDMS microelectrodes. Lab Chip 2023, 23, 4848–4859. [Google Scholar] [CrossRef]
- Lin, Y.S.; Tsang, S.; Bensalem, S.; Tsai, C.C.; Chen, S.J.; Sun, C.L.; Lopes, F.; Le Pioufle, B.; Wang, H.Y. Electrorotation of single microalgae cells during lipid accumulation for assessing cellular dielectric properties and total lipid contents. Biosens. Bioelectron. 2021, 173, 112772. [Google Scholar] [CrossRef]
- Huang, L.; Liang, F.; Feng, Y.; Zhao, P.; Wang, W. On-chip integrated optical stretching and electrorotation enabling single-cell biophysical analysis. Microsyst. Nanoeng. 2020, 6, 57. [Google Scholar] [CrossRef]
- Keim, K.; Rashed, M.Z.; Kilchenmann, S.C.; Delattre, A.; Goncalves, A.F.; Ery, P.; Guiducci, C. On-chip technology for single-cell arraying, electrorotation-based analysis and selective release. Electrophoresis 2019, 40, 1830–1838. [Google Scholar] [CrossRef]
- Kawai, S.; Suzuki, M.; Arimoto, S.; Korenaga, T.; Yasukawa, T. Determination of membrane capacitance and cytoplasm conductivity by simultaneous electrorotation. Analyst 2020, 145, 4188–4195. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Liang, F.; Feng, Y.X. A microfluidic chip for single-cell 3D rotation enabling self-adaptive spatial localization. J. Appl. Phys. 2019, 126, 234702. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, X.; Zhou, Z.; Han, Y.; Xiang, N.; Ni, Z. Microfluidic impedance cytometry for single-cell sensing: Review on electrode configurations. Talanta 2021, 233, 122571. [Google Scholar] [CrossRef]
- Daguerre, H.; Solsona, M.; Cottet, J.; Gauthier, M.; Renaud, P.; Bolopion, A. Positional dependence of particles and cells in microfluidic electrical impedance flow cytometry: Origin, challenges and opportunities. Lab Chip 2020, 20, 3665–3689. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Kawai, S.; Shee, C.F.; Yamada, R.; Uchida, S.; Yasukawa, T. Development of a simultaneous electrorotation device with microwells for monitoring the rotation rates of multiple single cells upon chemical stimulation. Lab Chip 2023, 23, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.L.; Tang, D.Z.; Ni, Z.H.; Xiang, N.; Yi, H. A portable single-cell analysis system integrating hydrodynamic trapping with broadband impedance spectroscopy. Sci. China-Technol. Sci. 2017, 60, 1707–1715. [Google Scholar] [CrossRef]
- Caselli, F.; De Ninno, A.; Reale, R.; Businaro, L.; Bisegna, P. A novel wiring scheme for standard chips enabling high-accuracy impedance cytometry. Sens. Actuat B-Chem. 2018, 256, 580–589. [Google Scholar] [CrossRef]
- Reale, R.; De Ninno, A.; Businaro, L.; Bisegna, P.; Caselli, F. High-throughput electrical position detection of single flowing particles/cells with non-spherical shape. Lab Chip 2019, 19, 1818–1827. [Google Scholar] [CrossRef]
- Xie, X.W.; Gong, M.L.; Zhang, Z.W.; Dou, X.C.; Zhou, W.B.; Li, J.S.; Zhu, M.F.; Du, Y.H.; Xu, X.X. Optimization of an electrical impedance flow cytometry system and analysis of submicron particles and bacteria. Sens. Actuat B-Chem. 2022, 360, 131432. [Google Scholar] [CrossRef]
- Cottet, J.; Kehren, A.; van Lintel, H.; Buret, F.; Frénéa-Robin, M.; Renaud, P. How to improve the sensitivity of coplanar electrodes and micro channel design in electrical impedance flow cytometry: A study. Microfluid. Nanofluidics 2019, 23, 11. [Google Scholar] [CrossRef]
- Spencer, D.; Morgan, H. High-Speed Single-Cell Dielectric Spectroscopy. ACS Sens. 2020, 5, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Ai, Y. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles. Lab Chip 2019, 19, 3609–3617. [Google Scholar] [CrossRef]
- Wang, K.; Liu, Y.; Chen, D.Y.; Wang, J.B.; Chen, J. Development of Microfluidic System Enabling High-Throughput Characterization of Multiple Biophysical Parameters of Single Cells. Ieee Trans. Electron. Devices 2022, 69, 2015–2022. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, D.; Zhou, Y.; Khoo, B.L.; Han, J.; Ai, Y. Characterizing Deformability and Electrical Impedance of Cancer Cells in a Microfluidic Device. Anal. Chem. 2018, 90, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Chai, H.; He, W.; Liang, F.; Cheng, Z.; Wang, W. Impedance-Enabled Camera-Free Intrinsic Mechanical Cytometry. Small Methods 2022, 6, e2200325. [Google Scholar] [CrossRef]
- Tan, H.; Wang, M.; Zhang, Y.; Huang, X.; Chen, D.; Li, Y.; Wu, M.H.; Wang, K.; Wang, J.; Chen, J. Inherent bioelectrical parameters of hundreds of thousands of single leukocytes based on impedance flow cytometry. Cytom. A 2022, 101, 630–638. [Google Scholar] [CrossRef]
- Yang, D.; Zhou, Y.; Zhou, Y.; Han, J.; Ai, Y. Biophysical phenotyping of single cells using a differential multiconstriction microfluidic device with self-aligned 3D electrodes. Biosens. Bioelectron. 2019, 133, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Yuan, D. Continuous microfluidic 3D focusing enabling microflow cytometry for single-cell analysis. Talanta 2021, 221, 121401. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Chen, Y.; Zhu, S.; Liu, L.; Ni, Z.; Xiang, N. Inertial microfluidics for high-throughput cell analysis and detection: A review. Analyst 2021, 146, 6064–6083. [Google Scholar] [CrossRef]
- Trainito, C.I.; Sweeney, D.C.; Cemazar, J.; Schmelz, E.M.; Francais, O.; Le Pioufle, B.; Davalos, R.V. Characterization of sequentially-staged cancer cells using electrorotation. PLoS ONE 2019, 14, e0222289. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Fang, Q. Electrical properties characterization of single yeast cells by dielectrophoretic motion and electro-rotation. Biomed. Microdevices 2021, 23, 11. [Google Scholar] [CrossRef]
- Tang, T.; Hosokawa, Y.; Hayakawa, T.; Tanaka, Y.; Li, W.H.; Li, M.; Yalikun, Y. Rotation of Biological Cells: Fundamentals and Applications. Engineering 2022, 10, 110–126. [Google Scholar] [CrossRef]
- Henslee, E.A. Review: Dielectrophoresis in cell characterization. Electrophoresis 2020, 41, 1915–1930. [Google Scholar] [CrossRef]
- Adekanmbi, E.O.; Srivastava, S.K. Dielectric characterization of bioparticles via electrokinetics: The past, present, and the future. Appl. Phys. Rev. 2019, 6, 041313. [Google Scholar] [CrossRef]
- Walsh, A.J.; Sharick, J.T.; Skala, M.C. Imaging intratumoral metabolic heterogeneity. Nat. Biomed. Eng. 2019, 3, 333–334. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Mao, S.; Khan, M.; Lin, J.M. Single-cell assay on microfluidic devices. Analyst 2019, 144, 808–823. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.M.; Peng, Y.Y.; Ying, Y.L.; Long, Y.T. Electrochemical Sensing at a Confined Space. Anal. Chem. 2020, 92, 5621–5644. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Gu, Q.; Wang, Z.; Tian, Z.; Wang, Z.; Liu, W.; Han, J.; Liu, S. Electrochemiluminescence Analysis of Multiple Glycans on Single Living Cell with a Closed Bipolar Electrode Array Chip. Anal. Chem. 2024, 96, 2165–2172. [Google Scholar] [CrossRef]
- Chang, Y.; Chen, Y.; Shao, Y.; Li, B.; Wu, Y.; Zhang, W.; Zhou, Y.; Yu, Z.; Lu, L.; Wang, X.; et al. Solid-phase microextraction integrated nanobiosensors for the serial detection of cytoplasmic dopamine in a single living cell. Biosens. Bioelectron. 2021, 175, 112915. [Google Scholar] [CrossRef]
- Zhou, L.; Kasai, N.; Nakajima, H.; Kato, S.; Mao, S.; Uchiyama, K. In Situ Single-Cell Stimulation and Real-Time Electrochemical Detection of Lactate Response Using a Microfluidic Probe. Anal. Chem. 2021, 93, 8680–8686. [Google Scholar] [CrossRef]
- Lu, S.M.; Long, Y.T. Confined Nanopipette-A new microfluidic approach for single cell analysis. Trac-Trends Anal. Chem. 2019, 117, 39–46. [Google Scholar] [CrossRef]
- Ruan, Y.F.; Wang, H.Y.; Shi, X.M.; Xu, Y.T.; Yu, X.D.; Zhao, W.W.; Chen, H.Y.; Xu, J.J. Target-Triggered Assembly in a Nanopipette for Electrochemical Single-Cell Analysis. Anal. Chem. 2021, 93, 1200–1208. [Google Scholar] [CrossRef]
- Oomen, P.E.; Aref, M.A.; Kaya, I.; Phan, N.T.N.; Ewing, A.G. Chemical Analysis of Single Cells. Anal. Chem. 2019, 91, 588–621. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, H.Y.; Xu, J.J. Electrogenerated chemiluminescence detection of single entities. Chem. Sci. 2021, 12, 5720–5736. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Huang, P.; Qin, Y.; Jiang, D.; Chen, H.Y. Analysis of Intracellular Glucose at Single Cells Using Electrochemiluminescence Imaging. Anal. Chem. 2016, 88, 4609–4612. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Jiang, D.; Qin, Y.; Xia, J.; Jiang, D.; Chen, H.Y. C(3)N(4) Nanosheet Modified Microwell Array with Enhanced Electrochemiluminescence for Total Analysis of Cholesterol at Single Cells. Anal. Chem. 2017, 89, 2216–2220. [Google Scholar] [CrossRef] [PubMed]
- Caselli, F.; Reale, R.; De Ninno, A.; Spencer, D.; Morgan, H.; Bisegna, P. Deciphering impedance cytometry signals with neural networks. Lab Chip 2022, 22, 1714–1722. [Google Scholar] [CrossRef] [PubMed]
- Honrado, C.; McGrath, J.S.; Reale, R.; Bisegna, P.; Swami, N.S.; Caselli, F. A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry. Anal. Bioanal. Chem. 2020, 412, 3835–3845. [Google Scholar] [CrossRef]
- Feng, Y.; Cheng, Z.; Chai, H.; He, W.; Huang, L.; Wang, W. Neural network-enhanced real-time impedance flow cytometry for single-cell intrinsic characterization. Lab Chip 2022, 22, 240–249. [Google Scholar] [CrossRef]
Method | Material | Configuration | Cell | Electrical Parameters | Capture Sites | Capture Efficiency/Single-Cell Occupancy | Flow Velocity/Flow Rate | Selectively Release | Ref. |
---|---|---|---|---|---|---|---|---|---|
BPE | Electrode:/; structure: PDMS | Electrode: wireless conductor with tip; structure: micropocket | MDA-MB-231; 20 μm | 22 VPP | 40–640 | Single-cell occupancy = 84.4% | 120 μm/s | NO | [28] |
BPE | Electrode: ITO; structure: PDMS | Electrode: wireless conductor of 20 μm diameter circle; structure:/ | Yeast cell; 5 μm | 500 kHz, 5 VPP | 1875 | Single-cell occupancy = 72% | 100 μm/s | NO | [29] |
Electroactive microwell array with barriers (EMAB) | Electrode: ITO; structure: SU-8 | Electrode: interdigitated array; microwell: 24 μm diameter circle | HeLa cells; - | 1 MHz, 5 VPP | 5000 | Capture efficiency = 98% | 2 μL/min | NO | [30] |
Self-Digitization Dielectrophoretic (SD-DEP) Chip | Electrode: gold; structure: PDMS | Electrode: 50 μm wide parallel array; trap: 15 μm micropocket | Chronic myelogenous leukemia K562 cells; - | 1.5 MHz, 5 VPP | 96 | Single-cell occupancy > 90% | / | NO | [31] |
Electrode with micropillars | Electrode: Ti/Pt/Ti; structure: SU-8 | Electrode: parallel electrode with 15 μm high × 7 μm extrusion; trap: 5 µm aperture | The human T-lymphocytes Jurkat cell line;10 μm | 1–20 MHz, 8–10 VPP | 16 | Single-cell occupancy = 90% | / | YES | [32] |
Electrode with micropillars | Electrode: gold; structure: PDMS | Electrode: 50 µm wide face-to-face planes; trap: 8 µm × 16 µm with 5 µm gap | Polystyrene microparticles and human leukemia K562 cells; 14–20 μm | 1 MHz, 9 VPP | 36 | Single-cell occupancy = 91.34% ± 0.01% | 1 μL/min | YES | [33] |
Electroactive double-well array (EdWA) | Electrode: ITO; structure: SU-8 | Electrode: interdigitated distance, 8 μm; trap-wells (20 μm in diameter) reaction-wells 160 | PC3 cells; 15 μm | 8 MHz, 5 VPP | 1464 | Capture efficiency = 96% ± 2.8% | 2 μL/min | NO | [34] |
MOE | Electrode: gold structure: SU-8 | Electrode: interdigitated array with 6 μm gap; microwell: 20 μm diameter circle | Human HEK and mouse 3T3 cells; - | 10 MHz, 4 VPP | 3500 | Single-cell occupancy = 91.84% | 1 μL/min | NO | [35] |
MOE | Electrode: ITO; structure: SU-8 | Electrode: interdigitated array; microwell: 24 μm diameter circle | Prostate cancer cells (PC3); 22 μm | 6 MHz, 10 VPP | 5554 | Capture efficiency = 93.3% | 2.5 μL/min | NO | [36] |
MOE | Electrode: ITO; structure: SU-8 | Electrode:- microwell: 10–30 μm diameter circle | DU-145 cancer cell line; 15.8 μm | 0.8–2.6 VPP | 56,874 | Capture efficiency = 97%; single-cell occupancy = 98% | 5 μL/min | NO | [37] |
MOE | Electrode: ITO; structure: SU-8 | Electrode: 40 μm microband; microwell: 16 μm | Hybridomas and mouse myeloma cells | 3.0 MHz, 10 VPP | 144 | Single-cell occupancy > 90% | 100 μm/s | YES | [38] |
MOE | Electrode: ITO, gold; structure: SU-8 | A gold-disk electrode stick (electrode diameter of 1.6 mm; square-shaped microwell: 24 μm | Myeloma cells; - | 5 MHz, 20 VPP | 10,000 | Cell occupancy = 80–90% | 100 μm/s (electrode moving speed) | NO | [39] |
MOE | Electrode: gold; structure: SU-8 | Electrode: coplanar electrode pairs, 30–120 μm; rectangular microwell: 30/60/90/120 μm × 60 μm | Bakers’ yeast; - | 5 MHz, 4 VPP | 8 | Capture efficiency = 100% | 20 μL/h | YES | [40] |
Method | Layout | Frequency | Cell | Measured Parameter | Application | Ref. |
---|---|---|---|---|---|---|
Impedance measurement | Five pairs of facing electrodes | 0.5, 2, and 50 MHz | Pancreatic ductal adenocarcinoma cells | Electrical opacity | Tumorigenicity identification | [74] |
Four pairs of facing electrodes | 5 and 40 MHz | K. pneumoniae | Electrical opacity | Antimicrobial susceptibility test | [75] | |
Two pairs of facing electrodes | 0.5 and 50 MHz | Human neural progenitor cells | Cell diameter and impedance phase | Phenotypic quantification | [76] | |
Two pairs of facing electrodes | 0.5, 2, 1, and 30 MHz | Raw 264.7 cells | Impedance phase and electrical diameter | Detecting macrophage activation | [77] | |
Three coplanar electrodes | 0.5 and 10 MHz | U937 cells | Electrical diameter | Cell status detection | [71] | |
Three coplanar electrodes | 1.5 MHz | Leukemia and human red blood cells | Electrical diameter | Cell discrimination | [78] | |
Two pairs of coplanar electrodes | 0.5 and 6 MHz | E. gracilis cells | Electrical diameter and conductivity of intracellular components | Quantifying cellular component distribution | [79] | |
Seven coplanar electrodes | 0.26, 1, 8, and 25 MHz | Leukocytes | Electrical opacity, electrical diameter, and impedance phase | Three-part leukocyte classification | [80] | |
Five pairs of parallel-facing electrodes | 0.5, 5, and 30 MHz | Human red blood cells | Electrical diameter, membrane capacitance, and cytoplasm conductivity | Cell phenotyping | [81] | |
Two pairs of coplanar electrodes, straight constriction microchannel | 0.5 and 5 MHz | Arabidopsis and Populus protoplasts | Passing time and electrical opacity | Cell discrimination | [82] | |
A pair of coplanar electrodes, crossing constriction channels | 100 and 250 kHz | HL-60 cells | Membrane capacitance and cytoplasmic viscosity and conductivity | Cell classification | [83] | |
Two pairs of coplanar electrodes, hydrodynamic trap microstructure | 1 MHz and 1–1000 kHz | HeLa, HepG2, and A549 cells | Cytoplasm conductivity and membrane capacitance | Cell discrimination | [84] | |
Three coplanar electrodes, asymmetric serpentine microchannel | 0.5 and 2 MHz | White blood cells, MCF7 cells, and A549 cells | Electrical diameter | Cell phenotyping | [85] | |
Three coplanar electrodes, asymmetric serpentine microchannel | 0.3 and 1.7 MHz | Leukocytes | Electrical diameter | Cell counting | [86] | |
Three coplanar electrodes, hydrodynamic single stream focusing microstructure | 0.3 and 1.72 MHz | Lymphocyte cells | Electrical diameter and membrane capacitance | Cell status detection | [87] | |
Two pairs of facing electrodes, asymmetric serpentine microchannel | 0.5, 2, and 3 MHz | A549 cells and PANC-1 cells | Electrical diameter | Cell counting | [88] | |
A pair of planar electrodes, asymmetrical constriction channel | 100 and 250 kHz | A549, Hep G2, SW620, AGS, PANC-1, Hela, CAL 27, and HL-60 cells | Membrane capacitance, cytoplasm conductivity, and electrical diameter | Cell classification | [89] | |
Two pairs of planar electrodes, crossing the constriction channel | 100 and 250 kHz | A549, SACC-83, and SACC-LM cells | Membrane capacitance and cytoplasm conductivity | Cell classification | [90] | |
Two pairs of planar electrodes, hydrodynamic cell pinch structure | 0.3, 1.72, and 12 MHz | HL-60 cells | Electrical diameter, membrane opacity, and nucleus opacity | Cell counting | [91] | |
Three coplanar electrodes, asymmetric serpentine microchannel | 0.5, 2, 4, and 6 MHz | White blood cells, A549, MCF7, H226, and H460 cells | Electrical diameter, impedance amplitude and phase shift, and electrical opacity | Cell discrimination | [92] | |
Vertical sidewall electrodes | 1.0, 1.5, and 2 MHz | Jurkat cells | Impedance magnitude and phase | Cell status detection | [93] | |
Aligned parallel microelectrodes in PDMS channel sidewalls | 500 kHz and 10 MHz | HeLa cells | Electrical volume and opacity | Cell status detection | [94] | |
A pair of coplanar electrodes for every trap | 5 MHz | Yeast cells | Impedance magnitude and phase | Cell sorting | [40] | |
AC electrokinetic measurement | Quadrupolar electrodes | 500 kHz (nDEP), 1 MHz (ROT) | Yeast cells | Membrane permittivity and wall conductivity | Detecting the total lipid contents | [95] |
Quadrupolar electrodes | 10 kHz (DEP), 0.3–10 MHz (ROT) | Mouse ovarian surface epithelial cell line | Membrane capacitance and cytoplasm conductivity | Detecting cell malignancy | [96] | |
Four planar hyperbolic electrodes | 1 MHz (nDEP), 37 kHz to 25 MHz (ROT) | Scenedesmus abundans cells | Inner core and wall conductivity and permittivity | Detecting the total lipid contents | [97] | |
Eight coplanar electrodes | 10 kHz (nDEP), 10 kHz to 100 MHz (ROT) | Sta6 cells | Membrane capacitance and cytoplasm conductivity | Detecting the total lipid contents | [42] | |
Three-dimensional sidewall electrodes | 100 kHz to 10 MHz | HeLa, A549, HepaRG, MCF7, and MCF10A cells | Membrane capacitance and cytoplasm conductivity | Multiple physical parameter measurements | [98] | |
Three-dimensional pillar electrode array | 100 kHz (nDEP), 0.01–10 MHz (ROT) | Hela, HEK 293, human T-lymphocyte, and M17 cells | Membrane capacitance and cytoplasm conductivity | Dielectric property measurement | [99] | |
3D interdigitated electrode array | 100 to 1000 kHz | K562, Jurkat, and THP-1 cells | Membrane capacitance and cytoplasm conductivity | Cell discrimination | [100] | |
Four planar electrodes, four 3D sidewall electrodes | 0.5 MHz (nDEP), 0.5 MHz (ROT) | Hela cells | - | Three-dimensional cell morphology reconstruction | [101] | |
Four microelectrodes arranged on each side of the rectangular microwells | 300 kHz | Jurkat cells | Membrane capacitance and conductance | Dielectric property measurement | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zheng, X. Microfluidic-Based Electrical Operation and Measurement Methods in Single-Cell Analysis. Sensors 2024, 24, 6359. https://doi.org/10.3390/s24196359
Liu X, Zheng X. Microfluidic-Based Electrical Operation and Measurement Methods in Single-Cell Analysis. Sensors. 2024; 24(19):6359. https://doi.org/10.3390/s24196359
Chicago/Turabian StyleLiu, Xing, and Xiaolin Zheng. 2024. "Microfluidic-Based Electrical Operation and Measurement Methods in Single-Cell Analysis" Sensors 24, no. 19: 6359. https://doi.org/10.3390/s24196359
APA StyleLiu, X., & Zheng, X. (2024). Microfluidic-Based Electrical Operation and Measurement Methods in Single-Cell Analysis. Sensors, 24(19), 6359. https://doi.org/10.3390/s24196359