Assessing Static Balance, Balance Confidence, and Fall Rate in Patients with Heart Failure and Preserved Ejection Fraction: A Comprehensive Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Design
2.3. Clinical Examination and Echocardiography
2.4. Body Composition Analysis
2.5. Evaluation of Static Balance
2.6. Lower Limb Strength
2.7. 30 s Sit-to-Stand Test
2.8. Activities-Specific Balance Confidence (ABC) Scale
2.9. Number of Falls
2.10. Sample Size Estimation
2.11. Statistical Analysis
3. Results
3.1. Participants’ Characteristics
3.2. Functional Strength Tests
3.3. Falls and Balance Confidence
3.4. Static Balance Parameters
3.4.1. Range of the Center of Pressure Displacement (COPRANGE)
COPRANGE in Mediolateral Axis
- Analyses revealed a main effect of Group in the Range of the COP displacement in the mediolateral axis (ML), (COPRANGEX: F (1, 142) = 53.796, p < 0.001, ηp2 = 0.275) (Figure 2a) suggesting that Patients with HFpEF swayed more in the ML direction in comparison with healthy controls in both tasks. Specifically, in the bipedal stance, there was a 26% difference (p < 0.001) in the Range COP displacement in the ML direction between patients and healthy controls. Similarly, Patients with HFpEF revealed increased sway in the Tandem-Romberg stance by 8.45% (p < 0.001).
- A main effect of the task was noted, indicating that as the level of difficulty increased, the Range of COP sway in the mediolateral axis also increased (COPRANGEX: F (1, 142) = 322.779, p < 0.001, ηp2 = 0.694).
- A Task × Group interaction showed that the difference between the two groups was larger in the bipedal than in the Tandem-Romberg stance (COPRANGEX: F (1, 142) = 9.216, p = 0.003, ηp2 = 0.061). Post hoc analysis revealed larger COP sway in Patients with HFpEF than in controls in the bipedal stance (p < 0.001). In the Tandem-Romberg stance, even if the difference between the two groups was smaller, the difference was still significant (p < 0.001). In particular, the COP Range difference in the ML direction between the two tasks was augmented by 27.27% (p < 0.001) in Patients with HFpEF and by 41.31% (p < 0.001) in healthy controls.
COPRANGE in Anteroposterior Axis
- A main effect of Group in the Range of COP displacement in the anteroposterior (AP) direction (COPRANGEY: F (1, 142) = 26.783, p < 0.001, ηp2 = 0.106) revealed that Patients with HFpEF swayed more in the AP direction compared to healthy participants (group difference in bipedal by 12.45% and in the Tandem-Romberg stance by 4.95%, respectively, Figure 2b).
- Concerning the Task, both groups decreased the COP Range in the AP axis from the bipedal to the Tandem-Romberg stance (COPRANGEY: F (1, 142) = 26.783, p < 0.001, ηp2 = 0.106).
- The statistically significant Task x Group interaction suggests that the difference between the two groups was larger in the bipedal in comparison with the Tandem-Romberg stance (COPRANGEY: F (1, 142) = 6.424, p = 0.012, ηp2 = 0.043).
3.4.2. Standard Deviation of the Center of Pressure Displacement (COPSD)
COPSD in Mediolateral Axis
- A main effect of the Group on the Standard Deviation (SD) of COP displacement in the ML direction (COPSDX: F (1, 142) = 57.845, p < 0.001, ηp2 = 0.289), suggested that Patients with HFpEF deviated more than healthy controls in both tasks in the ML direction (between-group difference 30.3% in the bipedal and 8.48% in the Tandem-Romberg stance) (Figure 3a).
- Both groups increased their Standard Deviation of the COP displacement from bipedal to Tandem-Romberg stance (COPSDX: F (1, 142) = 286.223, p < 0.001, ηp2 = 0.668).
- A Task × Group significant interaction (COPSDX: F (1, 142) = 12.648, p < 0.001, ηp2 = 0.082) indicated that Patients with HFpEF and healthy participants differed more in the bipedal stance rather than in the Tandem-Romberg stance. The difference between the bipedal stance and the Tandem-Romberg stance was amplified in Patients with HFpEF by 28.28% and in healthy subjects by 46.5%, respectively (p < 0.001).
COPSD in Anteroposterior Axis
- In Patients with HFpEF, SD of COP displacement in the AP direction exceeded the SD of healthy participants (COPSDY: F (1, 142) = 28.430, p < 0.001, ηp2 = 0.167), revealing higher instability of Patients with HFpEF in the bipedal stance (Figure 3b).
- A statistically significant main effect of the Task was detected, highlighting that in the bipedal stance, both groups were more variable in the AP direction than in the Tandem-Romberg stance (COPSDY: F (1, 142) = 125. 805, p < 0.001, ηp2 = 0.421).
- A significant Task × Group interaction (COPSDY: F (1, 142) = 5.888, p = 0.017, ηp2 = 0.040) confirmed a greater difference in the bipedal stance than the Tandem-Romberg stance. Particularly, in Patients with HFpEF, COP SD sway in the AP direction decreased by 28.26% in Tandem-Romberg, where the two groups differed by 17.94% (p < 0.001).
3.5. Network Analysis
3.6. Correlations
3.6.1. Correlations between Falls, ABC, and Balance Parameters
3.6.2. Correlations between Strength Parameters, Lean Fat Mass, and ABC and Falls in Patients with HFpEF
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
AP | Anteroposterior Axis |
BMI | Body Mass Index |
BS | Bilateral Stance |
COP | Center of Pressure |
COPX | Center of Pressure X-Mediolateral Axis |
COPY | Center of Pressure Y-Anteroposterior Axis |
HF | Heart Failure |
LVEF | Left Ventricular Ejection Fraction |
ML | Mediolateral Axis |
HFpEF | Heart Failure with Preserved Ejection Fraction |
SD | Standard Deviation |
TRS | Tandem-Romberg Stance |
References
- Bozkurt, B.; Coats, A.J.S.; Tsutsui, H.; Abdelhamid, C.M.; Adamopoulos, S.; Albert, N.; Anker, S.D.; Atherton, J.; Böhm, M.; Butler, J.; et al. Universal definition and classification of heart failure: A report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. Eur. J. Heart Fail. 2021, 23, 352–380. [Google Scholar] [CrossRef] [PubMed]
- Metra, M.; Teerlink, J.R. Heart failure. Lancet 2017, 390, 1981–1995. [Google Scholar] [CrossRef] [PubMed]
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc. Res. 2022, 118, 3272–3287. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Campbell, P.; Rutten, F.H.; Lee, M.M.; Hawkins, N.M.; Petrie, M.C. Heart failure with preserved ejection fraction: Everything the clinician needs to know. Lancet 2024, 403, 1083–1092. [Google Scholar] [CrossRef]
- Dunlay, S.M.; Roger, V.L.; Redfield, M.M. Epidemiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 2017, 14, 591–602. [Google Scholar] [CrossRef]
- Chioncel, O.; Lainscak, M.; Seferovic, P.M.; Anker, S.D.; Crespo-Leiro, M.G.; Harjola, V.; Parissis, J.; Laroche, C.; Piepoli, M.F.; Fonseca, C.; et al. Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: An analysis of the ESC Heart Failure Long-Term Registry. Eur. J. Heart Fail. 2017, 19, 1574–1585. [Google Scholar] [CrossRef]
- Pfeffer, M.A.; Shah, A.M.; Borlaug, B.A. Heart failure with preserved ejection fraction in perspective. Circ. Res. 2019, 124, 1598–1617. [Google Scholar] [CrossRef]
- Chan, M.M.Y.; Lam, C.S.P. How do patients with heart failure with preserved ejection fraction die? Eur. J. Heart Fail. 2013, 15, 604–613. [Google Scholar] [CrossRef]
- Kapłon-Cieślicka, A.; Benson, L.; Chioncel, O.; Crespo-Leiro, M.G.; Coats, A.J.S.; Anker, S.D.; Filippatos, G.; Ruschitzka, F.; Hage, C.; Drożdż, J.; et al. A comprehensive characterization of acute heart failure with preserved versus mildly reduced versus reduced ejection fraction—Insights from the ESC-HFA EORP Heart Failure Long-Term Registry. Eur. J. Heart Fail. 2022, 24, 335–350. [Google Scholar] [CrossRef]
- Guazzi, M.; Wilhelm, M.; Halle, M.; Van Craenenbroeck, E.; Kemps, H.; De Boer, R.A.; Coats, A.J.S.; Lund, L.; Mancini, D.; Borlaug, B.; et al. Exercise testing in heart failure with preserved ejection fraction: An appraisal through diagnosis, pathophysiology and therapy—A clinical consensus statement of the Heart Failure Association and European Association of Preventive Cardiology of the European Society of Cardiology. Eur. J. Heart Fail. 2022, 24, 1327–1345. [Google Scholar] [CrossRef] [PubMed]
- Scandalis, L.; Kitzman, D.W.; Nicklas, B.J.; Lyles, M.; Brubaker, P.; Nelson, M.B.; Gordon, M.; Stone, J.; Bergstrom, J.; Neufer, P.D.; et al. Skeletal muscle mitochondrial respiration and exercise intolerance in patients with heart failure with preserved ejection fraction. JAMA Cardiol. 2023, 8, 575. [Google Scholar] [CrossRef] [PubMed]
- Tucker, W.J.; Angadi, S.S.; Haykowsky, M.J.; Nelson, M.D.; Sarma, S.; Tomczak, C.R. Pathophysiology of Exercise Intolerance and its Treatment with Exercise-Based Cardiac Rehabilitation in Heart Failure with Preserved Ejection Fraction. J. Cardiopulm. Rehabil. Prev. 2020, 40, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.; Parrott, C.F.; Haykowsky, M.J.; Brubaker, P.H.; Ye, F.; Upadhya, B. Skeletal muscle abnormalities in heart failure with preserved ejection fraction. Heart Fail. Rev. 2022, 28, 157–168. [Google Scholar] [CrossRef]
- Haykowsky, M.J.; Kouba, E.J.; Brubaker, P.H.; Nicklas, B.J.; Eggebeen, J.; Kitzman, D.W. Skeletal muscle composition and its relation to exercise intolerance in older patients with heart failure and preserved ejection fraction. Am. J. Cardiol. 2014, 113, 1211–1216. [Google Scholar] [CrossRef]
- Carbone, S.; Billingsley, H.E.; Rodriguez-Miguelez, P.; Kirkman, D.L.; Garten, R.; Franco, R.L.; Lee, D.-C.; Lavie, C.J. Lean mass abnormalities in heart failure: The role of sarcopenia, sarcopenic obesity, and cachexia. Curr. Probl. Cardiol. 2020, 45, 100417. [Google Scholar] [CrossRef]
- Bielecka-Dabrowa, A.; Ebner, N.; Santos, M.R.D.; Ishida, J.; Hasenfuss, G.; Von Haehling, S. Cachexia, muscle wasting, and frailty in cardiovascular disease. Eur. J. Heart Fail. 2020, 22, 2314–2326. [Google Scholar] [CrossRef]
- Konishi, M.; Kagiyama, N.; Kamiya, K.; Saito, H.; Saito, K.; Ogasahara, Y.; Maekawa, E.; Misumi, T.; Kitai, T.; Iwata, K.; et al. Impact of sarcopenia on prognosis in patients with heart failure with reduced and preserved ejection fraction. Eur. J. Prev. Cardiol. 2020, 28, 1022–1029. [Google Scholar] [CrossRef]
- Upadhya, B.; Brubaker, P.H.; Nicklas, B.J.; Houston, D.K.; Haykowsky, M.J.; Kitzman, D.W. Long-term Changes in Body Composition and Exercise Capacity Following Calorie Restriction and Exercise Training in Older Patients with Obesity and Heart Failure with Preserved Ejection Fraction. J. Card. Fail. 2024, in press. [Google Scholar] [CrossRef]
- Ge, Y.; Liu, J.; Zhang, L.; Gao, Y.; Wang, B.; Wang, X.; Li, J.; Zheng, X. Association of lean body mass and fat mass with 1-Year mortality among patients with heart failure. Front. Cardiovasc. Med. 2022, 9, 824628. [Google Scholar] [CrossRef]
- Hasegawa, R.; Islam, M.M.; Lee, N.S.C.; Koizumi, D.; Rogers, M.E.; Takeshima, N. Threshold of lower body muscular strength necessary to perform ADL independently in community-dwelling older adults. Clin. Rehabil. 2008, 22, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.; Bravo, J.; Raimundo, A.; Tomas-Carus, P.; Mendes, F.; Baptista, F. Risk for physical dependence in community-dwelling older adults: The role of fear of falling, falls and fall-related injuries. Int. J. Older People Nurs. 2020, 15, e12310. [Google Scholar] [CrossRef] [PubMed]
- Wearing, J.; Stokes, M.; De Bruin, E.D. Quadriceps muscle strength is a discriminant predictor of dependence in daily activities in nursing home residents. PLoS ONE 2019, 14, e0223016. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Jiang, Z.; Ma, S.; Cheng, R.; Tsai, T.Y.; Wang, H. Sarcopenia in older adults is associated with static postural control, fear of falling and fall risk: A study of Romberg test. Gait Posture 2024, 112, 147–153. [Google Scholar] [CrossRef]
- Manemann, S.M.; Chamberlain, A.M.; Boyd, C.M.; Miller, D.M.; Poe, K.L.; Cheville, A.; Weston, S.A.; Koepsell, E.E.; Jiang, R.; Roger, V.L. Fall risk and outcomes among patients hospitalized with cardiovascular disease in the community. Circ. Cardiovasc. Qual. Outcomes 2018, 11, e004199. [Google Scholar] [CrossRef]
- Florence, C.S.; Bergen, G.; Atherly, A.; Burns, E.; Stevens, J.; Drake, C. Medical costs of fatal and nonfatal falls in older adults. J. Am. Geriatr. Soc. 2018, 66, 693–698. [Google Scholar] [CrossRef]
- Denfeld, Q.E.; Turrise, S.; MacLaughlin, E.J.; Chang, P.-S.; Clair, W.K.; Lewis, E.F.; Forman, D.E.; Goodlin, S.J. Preventing and managing falls in adults with cardiovascular disease: A scientific statement from the American Heart Association. Circ. Cardiovasc. Qual. Outcomes 2022, 15, e000108. [Google Scholar] [CrossRef]
- Denfeld, Q.E.; Goodlin, S.; Abedalweli, R.; Davis, M.R.; Hiatt, S.O.; Lee, C.S.; Winters-Stone, K. Frequency and predictors of falls among adults with heart Failure: A prospective study. J. Card. Fail. 2023, 29, 414–418. [Google Scholar] [CrossRef]
- Merchant, R.A.; Chan, Y.H.; Ling, N.; Denishkrshna, A.; Lim, Z.; Waters, D. Association of physical function and body composition with falls in pre-frail older adults with poor physical performance: A cross-sectional study. Arch. Gerontol. Geriatr. 2023, 109, 104957. [Google Scholar] [CrossRef]
- Haykowsky, M.J.; Brubaker, P.H.; Morgan, T.M.; Kritchevsky, S.; Eggebeen, J.; Kitzman, D.W. Impaired aerobic capacity and physical functional performance in older heart failure patients with preserved ejection fraction: Role of lean body mass. J. Gerontol. Ser. A 2013, 68, 968–975. [Google Scholar] [CrossRef]
- Fulster, S.; Tacke, M.; Sandek, A.; Ebner, N.; Tschope, C.; Doehner, W.; Anker, S.D.; Von Haehling, S. Muscle wasting in patients with chronic heart failure: Results from the studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur. Heart J. 2012, 34, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Springer, J.; Springer, J.; Anker, S.D. Muscle wasting and sarcopenia in heart failure and beyond: Update 2017. ESC Heart Fail. 2017, 4, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Damluji, A.A.; Alfaraidhy, M.; AlHajri, N.; Rohant, N.N.; Kumar, M.; Malouf, C.A.; Bahrainy, S.; Kwak, M.J.; Batchelor, W.B.; Forman, D.E.; et al. Sarcopenia and cardiovascular diseases. Circulation 2023, 147, 1534–1553. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.K.; Willetts, J.L.; Corns, H.L.; Marucci-Wellman, H.R.; Lombardi, D.A.; Courtney, T.K. Falls and Fall-Related Injuries among Community-Dwelling Adults in the United States. PLoS ONE 2016, 11, e0150939. [Google Scholar] [CrossRef]
- Lee, K.; Davis, M.A.; Marcotte, J.E.; Pressler, S.J.; Liang, J.; Gallagher, N.A.; Titler, M.G. Falls in community-dwelling older adults with heart failure: A retrospective cohort study. Heart Lung 2020, 49, 238–250. [Google Scholar] [CrossRef]
- Keller-Ross, M.L.; Larson, M.; Johnson, B.D. Skeletal muscle fatigability in heart failure. Front. Physiol. 2019, 10, 129. [Google Scholar] [CrossRef]
- Nakamura, T.; Kamiya, K.; Hamazaki, N.; Matsuzawa, R.; Nozaki, K.; Ichikawa, T.; Yamashita, M.; Maekawa, E.; Reed, J.L.; Noda, C.; et al. Quadriceps strength and mortality in older patients with heart failure. Can. J. Cardiol. 2021, 37, 476–483. [Google Scholar] [CrossRef]
- Zanotto, T.; Gobbo, S.; Bullo, V.; Vendramin, B.; Roma, E.; Duregon, F.; Bocalini, D.S.; Di Blasio, A.; Cugusi, L.; Furian, L.; et al. Postural balance, muscle strength, and history of falls in end-stage renal disease patients living with a kidney transplant: A cross-sectional study. Gait Posture 2020, 76, 358–363. [Google Scholar] [CrossRef]
- Zanker, J.; Scott, D.; Alajlouni, D.; Kirk, B.; Bird, S.; DeBruin, D.; Vogrin, S.; Bliuc, D.; Tran, T.; Cawthon, P.; et al. Mortality, falls and slow walking speed are predicted by different muscle strength and physical performance measures in women and men. Arch. Gerontol. Geriatr. 2023, 114, 105084. [Google Scholar] [CrossRef]
- Simpkins, C.; Yang, F. Muscle power is more important than strength in preventing falls in community-dwelling older adults. J. Biomech. 2022, 134, 111018. [Google Scholar] [CrossRef]
- De Almeida Nagata, C.; Da Silva Hamu, T.C.D.; Pelicioni, P.H.S.; Durigan, J.L.Q.; Garcia, P.A. Influence of lower limb isokinetic muscle strength and power on the occurrence of falls in community-dwelling older adults: A longitudinal study. PLoS ONE 2024, 19, e0300818. [Google Scholar] [CrossRef] [PubMed]
- Tanriverdi, A.; Kahraman, B.O.; Ozsoy, I.; Acar, S.; Senturk, B.; Ozpelit, E.; Akdeniz, B.; Savci, S. Balance performance in patients with heart failure. Heart Lung 2020, 49, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Cote, K.P.; Brunet, M.E.; Gansneder, B.M.; Shultz, S.J. Effects of Pronated and Supinated Foot Postures on Static and Dynamic Postural Stability. J. Athl. Train. 2005, 40, 41–46. [Google Scholar] [PubMed]
- Ozcan, E.B.; Saglam, M.; Vardar-Yagli, N.; Calik-Kutukcu, E.; Inal-Ince, D.; Altinsoy, M.; Kaya, E.B. Impaired balance and GAIT characteristics in patients with chronic heart failure. Heart Lung Circ. 2022, 31, 832–840. [Google Scholar] [CrossRef]
- Segev, D.; Hellerstein, D.; Carasso, R.; Dunsky, A. The effect of a stability and coordination training programme on balance in older adults with cardiovascular disease: A randomised exploratory study. Eur. J. Cardiovasc. Nurs. 2019, 18, 736–743. [Google Scholar] [CrossRef]
- Vellas, B.J.; Wayne, S.J.; Romero, L.; Baumgartner, R.N.; Rubenstein, L.Z.; Garry, P.J. One-Leg balance is an important predictor of injurious falls in older persons. J. Am. Geriatr. Soc. 1997, 45, 735–738. [Google Scholar] [CrossRef]
- Ulivieri, F.M.; Piodi, L.P.; Grossi, E.; Rinaudo, L.; Messina, C.; Tassi, A.P.; Filopanti, M.; Tirelli, A.; Sardanelli, F. The role of carboxy-terminal cross-linking telopeptide of type I collagen, dual x-ray absorptiometry bone strain and Romberg test in a new osteoporotic fracture risk evaluation: A proposal from an observational study. PLoS ONE 2018, 13, e0190477. [Google Scholar] [CrossRef]
- Lajoie, Y.; Gallagher, S.P. Predicting falls within the elderly community: Comparison of postural sway, reaction time, the Berg balance scale and the Activities-specific Balance Confidence (ABC) scale for comparing fallers and non-fallers. Arch. Gerontol. Geriatr. 2004, 38, 11–26. [Google Scholar] [CrossRef]
- Landers, M.R.; Oscar, S.; Sasaoka, J.; Vaughn, K. Balance confidence and fear of falling avoidance behavior are most predictive of falling in older adults: Prospective analysis. Phys. Ther. 2016, 96, 433–442. [Google Scholar] [CrossRef]
- Myers, A.M.; Fletcher, P.C.; Myers, A.H.; Sherk, W. Discriminative and evaluative properties of the activities-specific Balance confidence (ABC) scale. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 1998, 53, M287–M294. [Google Scholar] [CrossRef]
- Harper, A.R.; Patel, H.C.; Lyon, A.R. Heart failure with preserved ejection fraction. Clin. Med. 2018, 18, s24–s29. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F.; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [PubMed]
- Meyer, K.; Hajric, R.; Westbrook, S.; Haag-Wildi, S.; Holtkamp, R.; Leyk, D.; Schnellbacher, K. Hemodynamic responses during leg press exercise in patients with chronic congestive heart failure. Am. J. Cardiol. 1999, 83, 1537–1543. [Google Scholar] [CrossRef] [PubMed]
- Adsett, J.A.; Bowe, R.; Kelly, R.; Louis, M.; Morris, N.; Hwang, R. A study of the reliability, validity, and physiological changes of Sit-to-Stand tests in people with heart failure. J. Cardiopulm. Rehabil. Prev. 2022, 43, 214–219. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, J.; Meng, S.; Li, J.; Yu, Y.; Zhang, T.; Tsang, R.C.C.; El-Ansary, D.; Han, J.; Jones, A.Y.M. Reliability and validity of sit-to-stand test protocols in patients with coronary artery disease. Front. Cardiovasc. Med. 2022, 9, 841453. [Google Scholar] [CrossRef]
- Jones, C.J.; Rikli, R.E.; Beam, W.C. A 30-s Chair-Stand test as a measure of lower body strength in Community-Residing Older adults. Res. Q. Exerc. Sport 1999, 70, 113–119. [Google Scholar] [CrossRef]
- Mehmet, H.; Yang, A.W.H.; Robinson, S.R. What is the optimal chair stand test protocol for older adults? A systematic review. Disabil. Rehabil. 2019, 42, 2828–2835. [Google Scholar] [CrossRef]
- Powell, L.E.; Myers, A.M. The Activities-specific Balance Confidence (ABC) scale. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 1995, 50, M28–M34. [Google Scholar] [CrossRef]
- World Health Organization. Step Safely: Strategies for Preventing and Managing Falls across the Life-Course; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Amiridis, I.G.; Hatzitaki, V.; Arabatzi, F. Age-induced modifications of static postural control in humans. Neurosci. Lett. 2003, 350, 137–140. [Google Scholar] [CrossRef]
- Stijntjes, M.; Pasma, J.H.; Van Vuuren, M.; Blauw, G.J.; Meskers, C.G.M.; Maier, A.B. Low Cognitive Status Is Associated with a Lower Ability to Maintain Standing Balance in Elderly Outpatients. Gerontology 2014, 61, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Objero, C.N.; Wdowski, M.M.; Hill, M.W. Can arm movements improve postural stability during challenging standing balance tasks? Gait Posture 2019, 74, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.S.; Robin, D.W.; Szurkus, D.C.; Ashmead, D.H.; Peterson, S.W.; Shiavi, R.G. Simultaneous measurement of body center of pressure and center of gravity during upright stance. Part II: Amplitude and frequency data. Gait Posture 1996, 4, 11–20. [Google Scholar] [CrossRef]
- Shafizadeh, M.; Parvinpour, S.; Balali, M.; Shabani, M. Effects of age and task difficulty on postural sway, variability and complexity. Adapt. Behav. 2020, 29, 617–625. [Google Scholar] [CrossRef]
- Winter, D.A.; Prince, F.; Frank, J.S.; Powell, C.; Zabjek, K.F. Unified theory regarding A/P and M/L balance in quiet stance. J. Neurophysiol. 1996, 75, 2334–2343. [Google Scholar] [CrossRef]
- Rougier, P.R.; Marsande, J.; James, M.; Brachet, M. Biomechanical Study of tandem stance in healthy Young Adults: Effects of Weight-Bearing and Limb Dominance. J. Mot. Behav. 2019, 51, 603–609. [Google Scholar] [CrossRef]
- Winter, D.A.; Prince, F.; Stergiou, P.; Powell, C. Medial-lateral and anterior-posterior motor-responses associated with center of pressure changes in quiet standing. Neurosci. Res. Commun. 1993, 12, 141–148. [Google Scholar]
- Doherty, T.J.; Vandervoort, A.A.; Taylor, A.W.; Brown, W.F. Effects of motor unit losses on strength in older men and women. J. Appl. Physiol. 1993, 74, 868–874. [Google Scholar] [CrossRef]
- Sica, R.E.P.; McComas, A.J.; Upton, A.R.M.; Longmire, D. Motor unit estimations in small muscles of the hand. J. Neurol. Neurosurg. Psychiatry 1974, 37, 55–67. [Google Scholar] [CrossRef]
- Harridge, S.D.; Magnusson, G.; Gordon, A. Skeletal muscle contractile characteristics and fatigue resistance in patients with chronic heart failure. Eur. Heart J. 1996, 17, 896–901. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, K.; Liu, H.; Qu, J.; Wang, Y.; Chen, P.; Zhang, T.; Luo, J. The impact of Otago exercise programme on the prevention of falls in older adult: A systematic review. Front. Public Health 2022, 10, 953593. [Google Scholar] [CrossRef] [PubMed]
- Robinovitch, S.N.; Feldman, F.; Yang, Y.; Schonnop, R.; Leung, P.M.; Sarraf, T.; Sims-Gould, J.; Loughin, M. Video capture of the circumstances of falls in elderly people residing in long-term care: An observational study. Lancet 2013, 381, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Benjuya, N.; Melzer, I.; Kaplanski, J. Aging-Induced shifts from a reliance on sensory input to muscle cocontraction during balanced standing. J. Gerontol. Ser. A 2004, 59, M166–M171. [Google Scholar] [CrossRef] [PubMed]
- Piirtola, M.; Era, P. Force Platform Measurements as Predictors of Falls among Older People—A Review. Gerontology 2006, 52, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kurz, I.; Oddsson, L.; Melzer, I. Characteristics of balance control in older persons who fall with injury—A prospective study. J. Electromyogr. Kinesiol. 2013, 23, 814–819. [Google Scholar] [CrossRef]
- Quijoux, F.; Vienne-Jumeau, A.; Bertin-Hugault, F.; Zawieja, P.; Vidal, P.-P.; Ricard, D. Center of pressure displacement characteristics differentiate fall risk in older people: A systematic review with meta-analysis. Ageing Res. Rev. 2020, 62, 101117. [Google Scholar] [CrossRef]
- Wiśniowska-Szurlej, A.; Ćwirlej-Sozańska, A.; Wilmowska-Pietruszyńska, A.; Sozański, B. The use of static posturography Cut-Off scores to identify the risk of falling in older adults. Int. J. Environ. Res. Public Health 2022, 19, 6480. [Google Scholar] [CrossRef]
- Rubega, M.; Formaggio, E.; Di Marco, R.; Bertuccelli, M.; Tortora, S.; Menegatti, E.; Cattelan, M.; Bonato, P.; Masiero, S.; Del Felice, A. Cortical correlates in upright dynamic and static balance in the elderly. Sci. Rep. 2021, 11, 14132. [Google Scholar] [CrossRef]
- Pijnappels, M.; Van Der Burg, J.C.E.; Reeves, N.D.; Van Dieën, J.H. Identification of elderly fallers by muscle strength measures. Eur. J. Appl. Physiol. 2007, 102, 585–592. [Google Scholar] [CrossRef]
- Melzer, I.; Benjuya, N.; Kaplanski, J.; Alexander, N. Association between ankle muscle strength and limit of stability in older adults. Age Ageing 2008, 38, 119–123. [Google Scholar] [CrossRef]
- Song, Q.; Zhang, X.; Mao, M.; Sun, W.; Zhang, C.; Chen, Y.; Li, L. Relationship of proprioception, cutaneous sensitivity, and muscle strength with the balance control among older adults. J. Sport Health Sci. 2021, 10, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Spink, M.J.; Fotoohabadi, M.R.; Wee, E.; Hill, K.D.; Lord, S.R.; Menz, H.B. Foot and ankle strength, range of motion, posture, and deformity are associated with balance and functional ability in older adults. Arch. Phys. Med. Rehabil. 2011, 92, 68–75. [Google Scholar] [CrossRef]
- Paillard, T. Methods and strategies for reconditioning motor output and postural balance in frail older subjects prone to falls. Front. Physiol. 2021, 12, 700723. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, H.N.; Yıldırım, M.; Çelik, A.; Yıldız, S. Predictors of static and dynamic balance control in kidney transplant recipients. In Wiener Klinische Wochenschrift; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar] [CrossRef]
- McLay, R.; O’Hoski, S.; Beauchamp, M.K. Role of muscle strength in balance assessment and treatment in chronic obstructive pulmonary Disease. Cardiopulm. Phys. Ther. J. 2019, 30, 35–43. [Google Scholar] [CrossRef]
- Bijlsma, A.Y.; Pasma, J.H.; Lambers, D.; Stijntjes, M.; Blauw, G.J.; Meskers, C.G.M.; Maier, A.B. Muscle strength rather than muscle mass is associated with standing balance in elderly outpatients. J. Am. Med. Dir. Assoc. 2013, 14, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Tabara, Y.; Okada, Y.; Ochi, M.; Ohyagi, Y.; Igase, M. One-leg standing time is a simple DEmeasure for loss of skeletal muscle mass and fat deposition in muscle: The J-SHIPP study. Aging Clin. Exp. Res. 2024, 36, 7. [Google Scholar] [CrossRef]
- Taglietti, M.; Bela, L.F.D.; Dias, J.M.; Pelegrinelli, A.R.M.; Nogueira, J.F.; Júnior, J.P.B.; Da Silva Carvalho, R.G.; McVeigh, J.G.; Facci, L.M.; Moura, F.A.; et al. Postural sway, balance confidence, and fear of falling in women with knee osteoarthritis in comparison to matched controls. PM R 2016, 9, 774–780. [Google Scholar] [CrossRef]
- Bourke, R.; Doody, P.; Pérez, S.; Moloney, D.; Lipsitz, L.A.; Kenny, R.A. Cardiovascular Disorders and Falls among Older Adults: A Systematic Review and Meta-Analysis. J. Gerontol. Ser. A 2023, 79, glad221. [Google Scholar] [CrossRef]
- Jansen, S.; Bhangu, J.; De Rooij, S.; Daams, J.; Kenny, R.A.; Van Der Velde, N. The Association of Cardiovascular Disorders and Falls: A Systematic review. J. Am. Med. Dir. Assoc. 2016, 17, 193–199. [Google Scholar] [CrossRef]
- Van Ancum, J.M.; Pijnappels, M.; Jonkman, N.H.; Scheerman, K.; Verlaan, S.; Meskers, C.G.M.; Maier, A.B. Muscle mass and muscle strength are associated with pre- and post-hospitalization falls in older male inpatients: A longitudinal cohort study. BMC Geriatr. 2018, 18, 116. [Google Scholar] [CrossRef]
- Scott, D.; Sanders, K.M.; Aitken, D.; Hayes, A.; Ebeling, P.R.; Jones, G. Sarcopenic obesity and dynapenic obesity: 5-year associations with falls risk in middle-aged and older adults. Obesity 2014, 22, 1568–1574. [Google Scholar] [CrossRef]
- Ozdemir, H.Y.; Ozel, C.B.; Dural, M.; Yalvac, H.E.; Al, A.; Murat, S.; Mert, G.O.; Cavusoglu, Y. The 6-minute walk test and fall risk in patients with heart failure: A cross-sectional study. Heart Lung 2023, 64, 80–85. [Google Scholar] [CrossRef]
Characteristics | Patients with HFpEF (n = 72) Mean ± SD | Healthy Controls (n = 72) Mean ± SD | p-Value |
---|---|---|---|
Age (years) | 66.0 ± 11.6 | 65.3 ± 9.5 | NS |
Height (cm) | 167.2 ± 10.7 | 168.1 ± 12.3 | NS |
Weight (kg) | 83.4 ± 16.3 | 84.1 ± 10.0 | NS |
Body Mass Index (kg/cm2) | 29.7 ± 4.5 | 28.4 ± 5.1 | NS |
Gender (female %) | 45.8 | 58.3 | NS |
Lean Fat Mass (%) | 63.2 ± 8.4 | 70.5 ± 9.3 | <0.001 |
Lean Fat Mass (kg) | 52.0 ± 12.1 | 57.3 ± 11.4 | 0.038 |
Free Fat Mass Index (kg/cm2) | 18.0 ± 2.3 | 19.4 ± 1.8 | 0.005 |
Systolic Blood Pressure (mmHg) | 124.5 ± 12.9 | 123.7 ± 6.2 | NS |
Diastolic Blood Pressure (mmHg) | 71.7 ± 8.6 | 76.4 ± 8.2 | NS |
New York Heart Association Class (n) | |||
I | 26.40% | - | - |
II | 62.50% | - | - |
III | 11.10% | - | - |
Left Ventricular (LV) Indices | |||
LV Ejection Fraction (%) | 56.0 ± 4.2 | 61.0 ± 5.3 | <0.001 |
Ε/A ratio | 2.1 ± 0.3 | 1.1 ± 0.8 | <0.001 |
Ε/Ε′ av ratio | 17.0 ± 3.1 | 7.4 ± 2.9 | <0.001 |
Ε′ av (m/s) | 0.07 ± 0.02 | 0.12 ± 0.03 | <0.001 |
Medication | |||
Beta-blockers | 58.60% | - | - |
Anticoagulants/antiplatelet | 78.60% | - | - |
Statins | 55.70% | - | - |
ACE inhibitors/ARBs | 54.30% | - | - |
Diuretics | 24.30% | - | - |
Functional Strength Tests | Patients with HFpEF (n = 72) Mean ± SD | Healthy Controls (n = 72) Mean ± SD | p-Value |
---|---|---|---|
30 s Chair Stand Test (rep) | 11.9 ± 3.6 | 18.4 ± 3.1 | <0.001 |
Dyno Strength Test-Leg Press (kg) | 47.3 ± 23.0 | 72.0 ± 36.8 | <0.001 |
Baseline Leg Dynamometer (kg) | 61.5 ± 31.8 | 78.0 ± 35.0 | 0.020 |
Patients with HFpEF (n = 72) Mean ± SD | Healthy Controls (n = 72) Mean ± SD | p-Value | |
---|---|---|---|
Number of falls | 0.96 ± 1.28 | 0.26 ± 0.44 | <0.01 |
% Fallers | 41.7% | 31.9% | <0.001 |
Balance Confidence | |||
ABC Scale Score | 71.0 ± 16.9 | 86.3 ± 11.2 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teloudi, A.; Anifanti, M.; Chatzinikolaou, K.; Grouios, G.; Hatzitaki, V.; Chouvarda, I.; Kouidi, E. Assessing Static Balance, Balance Confidence, and Fall Rate in Patients with Heart Failure and Preserved Ejection Fraction: A Comprehensive Analysis. Sensors 2024, 24, 6423. https://doi.org/10.3390/s24196423
Teloudi A, Anifanti M, Chatzinikolaou K, Grouios G, Hatzitaki V, Chouvarda I, Kouidi E. Assessing Static Balance, Balance Confidence, and Fall Rate in Patients with Heart Failure and Preserved Ejection Fraction: A Comprehensive Analysis. Sensors. 2024; 24(19):6423. https://doi.org/10.3390/s24196423
Chicago/Turabian StyleTeloudi, Andriana, Maria Anifanti, Konstantinos Chatzinikolaou, George Grouios, Vassilia Hatzitaki, Ioanna Chouvarda, and Evangelia Kouidi. 2024. "Assessing Static Balance, Balance Confidence, and Fall Rate in Patients with Heart Failure and Preserved Ejection Fraction: A Comprehensive Analysis" Sensors 24, no. 19: 6423. https://doi.org/10.3390/s24196423
APA StyleTeloudi, A., Anifanti, M., Chatzinikolaou, K., Grouios, G., Hatzitaki, V., Chouvarda, I., & Kouidi, E. (2024). Assessing Static Balance, Balance Confidence, and Fall Rate in Patients with Heart Failure and Preserved Ejection Fraction: A Comprehensive Analysis. Sensors, 24(19), 6423. https://doi.org/10.3390/s24196423