Enhancing Lessons on the Internet of Things in Science, Technology, Engineering, and Medical Education with a Remote Lab
Abstract
:1. Introduction
1.1. Background
1.2. Aims, Objectives, and Goals
2. From Techno-Educational Requirements towards Deployment of Lab
3. Architecture Definition and Development
3.1. Architecture Definition
3.2. Lab’s Development
4. IoTRemoteLab’s Evaluation
4.1. Overview of Results from Questionnaires Answered by Students
4.2. Students’ Insights-Based Deployment Guided by Lecturers’ Requirements
5. Discussion
5.1. Overview
5.2. Strengths and Limitations
5.2.1. Strengths
5.2.2. Limitations
5.2.3. Differences with Prior Research
5.3. Future Perspectives
5.3.1. Data-Driven Learning: Optimizing Education with Analytics
5.3.2. Implementation Perspective
5.3.3. Impact on Education
5.3.4. IoTRemoteLab from Education to Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | artificial intelligence |
API | application programming interface |
DTS | digital twinning simulator |
EIT | European Institute of Innovation & Technology |
GenAI | generative artificial intelligence |
HEI | higher education institution |
HIT | Holon Institute of Technology, Israel |
HMI | human–machine interfaces |
IoT | Internet of Things |
KG | knowledge graph |
LLM | large language model |
PBL | problem-based learning |
STEM | science, technology, engineering, and medicine |
UI | user interface |
VR | virtual reality |
TEL | technology-enhanced learning |
References
- Ashton, K. That “Internet of Things” Thing: In the Real World Things Matter More than Ideas. RFID Journal. 2009. Available online: http://www.rfidjournal.com/articles/view?4986 (accessed on 1 October 2024).
- Kumar, S.; Tiwari, P.; Zymbler, M. Internet of Things Is a Revolutionary Approach for Future Technology Enhancement: A Review. J. Big Data 2019, 6, 111. [Google Scholar] [CrossRef]
- Sorri, K.; Mustafee, N.; Seppänen, M. Revisiting IoT Definitions: A Framework towards Comprehensive Use. Technol. Forecast. Soc. Chang. 2022, 179, 121623. [Google Scholar] [CrossRef]
- Gijbels, D.; Dochy, F.; Van Den Bossche, P.; Segers, M. Effects of Problem-Based Learning: A Meta-Analysis From the Angle of Assessment. Rev. Educ. Res. 2005, 75, 27–61. [Google Scholar] [CrossRef]
- Chen, J.; Kolmos, A.; Du, X. Forms of Implementation and Challenges of PBL in Engineering Education: A Review of Literature. Eur. J. Eng. Educ. 2021, 46, 90–115. [Google Scholar] [CrossRef]
- Benis, A. Healthcare Informatics Project-Based Learning: An Example of a Technology Management Graduation Project Focusing on Veterinary Medicine. Stud. Health Technol. Inform. 2018, 255, 267–271. [Google Scholar]
- Benis, A. Problem and Project-Based Learning in the Fields of Health Informatics and Digital Health. 2021; pp. 34–51. Available online: https://www.researchgate.net/publication/351273996_Problem_and_Project-Based_Learning_in_the_fields_of_Health_Informatics_and_Digital_Health (accessed on 1 October 2024).
- Kirkwood, A.; Price, L. Technology-Enhanced Learning and Teaching in Higher Education: What Is ‘Enhanced’ and How Do We Know? A Critical Literature Review. Learn. Media Technol. 2014, 39, 6–36. [Google Scholar] [CrossRef]
- Almulla, M.A. The Effectiveness of the Project-Based Learning (PBL) Approach as a Way to Engage Students in Learning. SAGE Open 2020, 10, 215824402093870. [Google Scholar] [CrossRef]
- Nurhidayah, I.J.; Wibowo, F.C.; Astra, I.M. Project Based Learning (PjBL) Learning Model in Science Learning: Literature Review. J. Phys. Conf. Ser. 2021, 2019, 012043. [Google Scholar] [CrossRef]
- Heradio, R.; De La Torre, L.; Dormido, S. Virtual and Remote Labs in Control Education: A Survey. Annu. Rev. Control 2016, 42, 1–10. [Google Scholar] [CrossRef]
- Van Den Beemt, A.; Groothuijsen, S.; Ozkan, L.; Hendrix, W. Remote Labs in Higher Engineering Education: Engaging Students with Active Learning Pedagogy. J. Comput. High. Educ. 2023, 35, 320–340. [Google Scholar] [CrossRef]
- Callaghan, M.J.; Harkin, J.; McGinnity, M.; Maguire, L. Paradigms in Remote Experimentation. Int. J. Online Biomed. Eng. IJOE 2007, 3, 3,5–14. [Google Scholar] [CrossRef]
- De La Torre, L.; Heradio, R.; Jara, C.A.; Sanchez, J.; Dormido, S.; Torres, F.; Candelas, F.A. Providing Collaborative Support to Virtual and Remote Laboratories. IEEE Trans. Learn. Technol. 2013, 6, 312–323. [Google Scholar] [CrossRef]
- Mircea, M.; Stoica, M.; Ghilic-Micu, B. Investigating the Impact of the Internet of Things in Higher Education Environment. IEEE Access 2021, 9, 33396–33409. [Google Scholar] [CrossRef]
- Benis, A.; Amador Nelke, S.; Winokur, M. Training the Next Industrial Engineers and Managers about Industry 4.0: A Case Study about Challenges and Opportunities in the COVID-19 Era. Sensors 2021, 21, 2905. [Google Scholar] [CrossRef] [PubMed]
- Rosli, M.S.; Saleh, N.S. Technology Enhanced Learning Acceptance among University Students during COVID-19: Integrating the Full Spectrum of Self-Determination Theory and Self-Efficacy into the Technology Acceptance Model. Curr. Psychol. 2023, 42, 18212–18231. [Google Scholar] [CrossRef]
- Alkhaldi, T.; Pranata, I.; Athauda, R.I. A Review of Contemporary Virtual and Remote Laboratory Implementations: Observations and Findings. J. Comput. Educ. 2016, 3, 329–351. [Google Scholar] [CrossRef]
- Bashir, A.; Bashir, S.; Rana, K.; Lambert, P.; Vernallis, A. Post-COVID-19 Adaptations; the Shifts Towards Online Learning, Hybrid Course Delivery and the Implications for Biosciences Courses in the Higher Education Setting. Front. Educ. 2021, 6, 711619. [Google Scholar] [CrossRef]
- Tsang, J.; So, M.; Chong, A.; Lam, B.; Chu, A. Higher Education during the Pandemic: The Predictive Factors of Learning Effectiveness in COVID-19 Online Learning. Educ. Sci. 2021, 11, 446. [Google Scholar] [CrossRef]
- Daniela, L. Smart Pedagogy as a Driving Wheel for Technology-Enhanced Learning. Technol. Knowl. Learn. 2021, 26, 711–718. [Google Scholar] [CrossRef]
- Manoharan, A. Four Ways AI Could Revolutionize Education Technology. Forbes, 18 April 2024. Available online: https://www.forbes.com/councils/forbestechcouncil/2024/04/18/four-ways-ai-could-revolutionize-education-technology/ (accessed on 1 October 2024).
- Romero, C.; Ventura, S. Educational Data Mining: A Review of the State of the Art. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2010, 40, 601–618. [Google Scholar] [CrossRef]
- Baker, R.; Siemens, G. Educational Data Mining and Learning Analytics. In The Cambridge Handbook of the Learning Sciences; Sawyer, R.K., Ed.; Cambridge University Press: Cambridge, UK, 2014; pp. 253–272. ISBN 978-1-139-51952-6. [Google Scholar]
- Namoun, A.; Alshanqiti, A. Predicting Student Performance Using Data Mining and Learning Analytics Techniques: A Systematic Literature Review. Appl. Sci. 2020, 11, 237. [Google Scholar] [CrossRef]
- Zhang, Y.; Yun, Y.; An, R.; Cui, J.; Dai, H.; Shang, X. Educational Data Mining Techniques for Student Performance Prediction: Method Review and Comparison Analysis. Front. Psychol. 2021, 12, 698490. [Google Scholar] [CrossRef] [PubMed]
- Andreotta, A.J.; Kirkham, N.; Rizzi, M. AI, Big Data, and the Future of Consent. AI Soc. 2022, 37, 1715–1728. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.F.; Han, H.; Alam, M.M.; Rehmat, M.K.; Irshad, M.; Arraño-Muñoz, M.; Ariza-Montes, A. Impact of Artificial Intelligence on Human Loss in Decision Making, Laziness and Safety in Education. Humanit. Soc. Sci. Commun. 2023, 10, 311. [Google Scholar] [CrossRef]
- Grassini, S. Shaping the Future of Education: Exploring the Potential and Consequences of AI and ChatGPT in Educational Settings. Educ. Sci. 2023, 13, 692. [Google Scholar] [CrossRef]
- Kamalov, F.; Santandreu Calonge, D.; Gurrib, I. New Era of Artificial Intelligence in Education: Towards a Sustainable Multifaceted Revolution. Sustainability 2023, 15, 12451. [Google Scholar] [CrossRef]
- Post, L.S.; Guo, P.; Saab, N.; Admiraal, W. Effects of Remote Labs on Cognitive, Behavioral, and Affective Learning Outcomes in Higher Education. Comput. Educ. 2019, 140, 103596. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Qadri, M.A.; Suman, R. Understanding the Role of Digital Technologies in Education: A Review. Sustain. Oper. Comput. 2022, 3, 275–285. [Google Scholar] [CrossRef]
- Benis, A.; Notea, A.; Barkan, R. Risk and Disaster Management: From Planning and Expertise to Smart, Intelligent, and Adaptive Systems. In Proceedings of the Building Continents of Knowledge in Oceans of Data: The Future of Co-Created eHealth–Proceedings of MIE 2018, Medical Informatics Europe, Gothenburg, Sweden, 24–26 April 2018; Ugon, A., Karlsson, D., Klein, G.O., Moen, A., Eds.; IOS Press: Amsterdam, The Netherlands, 2018; Volume 247, pp. 286–290. [Google Scholar]
- Benis, A.; Tamburis, O. The Need for Green and Responsible Medical Informatics and Digital Health: Looking Forward with One Digital Health. Yearb. Med. Inform. 2023, 32, 7–9. [Google Scholar] [CrossRef]
- Grosjean, J.; Dufour, F.; Benis, A.; Januel, J.-M.; Staccini, P.; Darmoni, S.J. Digital Health Education for the Future: The SaNuRN (Santé Numérique Rouen-Nice) Consortium’s Journey. JMIR Med. Educ. 2024, 10, e53997. [Google Scholar] [CrossRef] [PubMed]
- Bahill, A.T.; Dean, F.F. The Requirements Discovery Process. INCOSE Int. Symp. 1997, 7, 340–347. [Google Scholar] [CrossRef]
- Amador Nelke, S.; Winokur, M. Introducing IoT Subjects to an Existing Curriculum. IEEE Des. Test 2020, 37, 24–30. [Google Scholar] [CrossRef]
- Purwaningsih, E.; Sari, A.M.; Yuliati, L.; Masjkur, K.; Kurniawan, B.R.; Zahiri, M.A. Improving the Problem-Solving Skills through the Development of Teaching Materials with STEM-PjBL (Science, Technology, Engineering, and Mathematics-Project Based Learning) Model Integrated with TPACK (Technological Pedagogical Content Knowledge). J. Phys. Conf. Ser. 2020, 1481, 012133. [Google Scholar] [CrossRef]
- García-Zubía, J. Remote Laboratories: Empowering STEM Education with Technology; World Scientific: Singapore, 2021; ISBN 978-1-78634-942-2. [Google Scholar]
- IoTRemoteLab. Vimeo; Holon, Israel. 2024. Available online: https://vimeo.com/994422593/ce99c1e5e8 (accessed on 1 October 2024).
- Vasileiou, K.; Barnett, J.; Thorpe, S.; Young, T. Characterising and Justifying Sample Size Sufficiency in Interview-Based Studies: Systematic Analysis of Qualitative Health Research over a 15-Year Period. BMC Med. Res. Methodol. 2018, 18, 148. [Google Scholar] [CrossRef]
- Hennink, M.; Kaiser, B.N. Sample Sizes for Saturation in Qualitative Research: A Systematic Review of Empirical Tests. Soc. Sci. Med. 2022, 292, 114523. [Google Scholar] [CrossRef]
- Rosienkiewicz, M.; Helman, J.; Cholewa, M.; Molasy, M.; Górecka, A.; Kohen-Vacs, D.; Winokur, M.; Amador Nelke, S.; Levi, A.; Gómez-González, J.F.; et al. Enhancing Technology-Focused Entrepreneurship in Higher Education Institutions Ecosystem: Implementing Innovation Models in International Projects. Educ. Sci. 2024, 14, 797. [Google Scholar] [CrossRef]
- Hussein, R.; Guo, M.; Amarante, P.; Rodriguez-Gil, L.; Orduña, P. Digital Twinning and Remote Engineering for Immersive Embedded Systems Education. In Proceedings of the 2023 IEEE Frontiers in Education Conference (FIE), College Station, TX, USA, 18 October 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–8. [Google Scholar]
- McGowan, V.C.; Bell, P. Engineering Education as the Development of Critical Sociotechnical Literacy. Sci. Educ. 2020, 29, 981–1005. [Google Scholar] [CrossRef]
- Tembrevilla, G.; Phillion, A.; Zeadin, M. Experiential Learning in Engineering Education: A Systematic Literature Review. J. Eng. Educ. 2024, 113, 195–218. [Google Scholar] [CrossRef]
- Al-Ansi, A.M.; Jaboob, M.; Garad, A.; Al-Ansi, A. Analyzing Augmented Reality (AR) and Virtual Reality (VR) Recent Development in Education. Soc. Sci. Humanit. Open 2023, 8, 100532. [Google Scholar] [CrossRef]
- Marougkas, A.; Troussas, C.; Krouska, A.; Sgouropoulou, C. Virtual Reality in Education: A Review of Learning Theories, Approaches and Methodologies for the Last Decade. Electronics 2023, 12, 2832. [Google Scholar] [CrossRef]
- Oje, A.V.; Hunsu, N.J.; May, D. Virtual Reality Assisted Engineering Education: A Multimedia Learning Perspective. Comput. Educ. X Real. 2023, 3, 100033. [Google Scholar] [CrossRef]
- Caramelli, D.; Salley, D.; Henson, A.; Camarasa, G.A.; Sharabi, S.; Keenan, G.; Cronin, L. Networking Chemical Robots for Reaction Multitasking. Nat. Commun. 2018, 9, 3406. [Google Scholar] [CrossRef] [PubMed]
- Schmidgall, S.; Kim, J.W.; Krieger, A. Robots Learning to Imitate Surgeons—Challenges and Possibilities. Nat. Rev. Urol. 2024, 21, 451–452. [Google Scholar] [CrossRef] [PubMed]
- Skilton, R.A.; Bourne, R.A.; Amara, Z.; Horvath, R.; Jin, J.; Scully, M.J.; Streng, E.; Tang, S.L.Y.; Summers, P.A.; Wang, J.; et al. Remote-Controlled Experiments with Cloud Chemistry. Nat. Chem. 2015, 7, 1–5. [Google Scholar] [CrossRef]
- Fitzpatrick, D.E.; Maujean, T.; Evans, A.C.; Ley, S.V. Across-the-World Automated Optimization and Continuous-Flow Synthesis of Pharmaceutical Agents Operating Through a Cloud-Based Server. Angew. Chem. Int. Ed. 2018, 57, 15128–15132. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Liu, R.; Tu, Y.; Li, Y.; Cheng, J.; He, T.; Zhu, X. Autonomous Discovery of Optically Active Chiral Inorganic Perovskite Nanocrystals through an Intelligent Cloud Lab. Nat. Commun. 2020, 11, 2046. [Google Scholar] [CrossRef]
- Strieth-Kalthoff, F.; Hao, H.; Rathore, V.; Derasp, J.; Gaudin, T.; Angello, N.H.; Seifrid, M.; Trushina, E.; Guy, M.; Liu, J.; et al. Delocalized, Asynchronous, Closed-Loop Discovery of Organic Laser Emitters. Science 2024, 384, eadk9227. [Google Scholar] [CrossRef]
- Boiko, D.A.; MacKnight, R.; Kline, B.; Gomes, G. Autonomous Chemical Research with Large Language Models. Nature 2023, 624, 570–578. [Google Scholar] [CrossRef]
- Bai, J.; Mosbach, S.; Taylor, C.J.; Karan, D.; Lee, K.F.; Rihm, S.D.; Akroyd, J.; Lapkin, A.A.; Kraft, M. A Dynamic Knowledge Graph Approach to Distributed Self-Driving Laboratories. Nat. Commun. 2024, 15, 462. [Google Scholar] [CrossRef]
# | Question | Not Agree (1–3) | Agree (4–5) | Median | MAD |
---|---|---|---|---|---|
1 | How do you assess the efficiency and convenience of conducting experiments in the IoT laboratory using the characterized environment? | 2 | 10 | 4.5 | 0.5 |
2 | Is categorizing lesson plans into lectures and experiments within the IoT lab appropriately done? | 0 | 12 | 5.0 | 0.0 |
3 | To what extent does a user interface that doesn’t necessitate coding for an embedded system enhance the efficiency of laboratory experiments? | 8 | 4 | 3.0 | 1.0 |
4 | Do you believe the process of comprehending and gaining knowledge about using the environment and conducting experiments is adequate? | 5 | 7 | 4.0 | 1.0 |
5 | How closely does the lecture process using the environment align with your ideal approach to an IoT course? | 4 | 8 | 4.0 | 0.0 |
6 | Rate the environment’s compatibility with your learning experience. | 1 | 11 | 5.0 | 0.5 |
7 | Is access to all course materials (including experimental results, history, and study materials) convenient and suitable? | 2 | 10 | 4.5 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amador Nelke, S.; Kohen-Vacs, D.; Khomyakov, M.; Rosienkiewicz, M.; Helman, J.; Cholewa, M.; Molasy, M.; Górecka, A.; Gómez-González, J.-F.; Bourgain, M.; et al. Enhancing Lessons on the Internet of Things in Science, Technology, Engineering, and Medical Education with a Remote Lab. Sensors 2024, 24, 6424. https://doi.org/10.3390/s24196424
Amador Nelke S, Kohen-Vacs D, Khomyakov M, Rosienkiewicz M, Helman J, Cholewa M, Molasy M, Górecka A, Gómez-González J-F, Bourgain M, et al. Enhancing Lessons on the Internet of Things in Science, Technology, Engineering, and Medical Education with a Remote Lab. Sensors. 2024; 24(19):6424. https://doi.org/10.3390/s24196424
Chicago/Turabian StyleAmador Nelke, Sofia, Dan Kohen-Vacs, Michael Khomyakov, Maria Rosienkiewicz, Joanna Helman, Mariusz Cholewa, Mateusz Molasy, Anna Górecka, José-Francisco Gómez-González, Maxime Bourgain, and et al. 2024. "Enhancing Lessons on the Internet of Things in Science, Technology, Engineering, and Medical Education with a Remote Lab" Sensors 24, no. 19: 6424. https://doi.org/10.3390/s24196424
APA StyleAmador Nelke, S., Kohen-Vacs, D., Khomyakov, M., Rosienkiewicz, M., Helman, J., Cholewa, M., Molasy, M., Górecka, A., Gómez-González, J. -F., Bourgain, M., Sagar, A., Berselli, G., Blank, D., Winokur, M., & Benis, A. (2024). Enhancing Lessons on the Internet of Things in Science, Technology, Engineering, and Medical Education with a Remote Lab. Sensors, 24(19), 6424. https://doi.org/10.3390/s24196424