Layer-by-Layer Immobilization of DNA Aptamers on Ag-Incorporated Co-Succinate Metal–Organic Framework for Hg(II) Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Synthesis of Co-Succinate and Ag@Co-Succinate
2.3. Characterization Techniques
2.4. Immobilization of DNA Aptamers on Ag@Co-Succinate
2.5. Preparation of the Aptasensors and Their Electrochemical Characterization
3. Results Discussion
3.1. MOFs Characterizations
3.1.1. Structural, Spectroscopic, and Morphological Characterizations
3.1.2. Electrochemical Characterizations of the Aptasensors
3.2. Electrochemical Sensing Responses of Aptasensors
3.3. Cross-Reactivity Obtained by LbL Immobilization of Aptamers
3.4. DPV Response for Hg(II), Calibration Curve and Repeatability
3.5. Binding mechanism of DNA Aptamers and Hg (II)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patil, S.S.; Deore, K.B.; Narwade, V.N.; Peng, W.P.; Hianik, T.; Shirsat, M.D. Ultrasensitive and Selective Electrochemical Sensor Based on Yttrium Benzenetricarboxylate Porous Coordination Polymer (Y-BTC) for Detection of Pb2+ from Bio-Analytes. ECS J. Solid State Sci. Technol. 2023, 12, 057002. [Google Scholar] [CrossRef]
- Sayyad, P.W.; Sontakke, K.S.; Farooqui, A.A.; Shirsat, S.M.; Tsai, M.-L.; Shirsat, M.D. A novel three-dimensional electrochemical Cd (II) biosensor based on l-glutathione capped poly (3, 4-ethylenedioxythiophene): Polystyrene sulfonate/carboxylated multiwall CNT network. J. Sci. Adv. Mater. Devices 2022, 7, 100504. [Google Scholar] [CrossRef]
- Atchudan, R.; Perumal, S.; Edison, T.N.J.I.; Sundramoorthy, A.K.; Vinodh, R.; Sangaraju, S.; Kishore, S.C.; Lee, Y.R. Natural Nitrogen-Doped Carbon Dots Obtained from Hydrothermal Carbonization of Chebulic Myrobalan and Their Sensing Ability toward Heavy Metal Ions. Sensors 2023, 23, 787. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, F. The impact of cognitive aversion toward mercury on public attitude toward the construction of mercury wastes landfill site. J. Mater. Cycles Waste Manag. 2023, 25, 2642–2653. [Google Scholar] [CrossRef]
- Chuai, X.; Yang, Q.; Zhang, T.; Xiao, R.; Cui, X.; Yang, J.; Zhang, T.; Chen, X.; Xiong, Z.; Zhao, Y.; et al. Migration and control of mercury in hazardous chemical waste incineration. Fuel 2023, 334, 126706. [Google Scholar] [CrossRef]
- Bodkhe, G.A.; Hedau, B.S.; Deshmukh, M.A.; Patil, H.K.; Shirsat, S.M.; Phase, D.M.; Pandey, K.K.; Shirsat, M.D. Detection of Pb (II): Au Nanoparticle Incorporated CuBTC MOFs. Front. Chem. 2020, 8, 803. [Google Scholar] [CrossRef]
- Narwade, V.N.; Rahane, G.K.; Bogle, K.A.; Tsai, M.-L.; Rondiya, S.R.; Shirsat, M.D. Bifunctional Supercapacitor and Photocatalytic Properties of Cuboid Ni-TMA MOF Synthesized Using a Facile Hydrothermal Approach. J. Electron. Mater. 2023, 53, 16–29. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, Y.; Li, S.; Hu, G. A Nitro Functionalized MOF with Multi-Enzyme Mimetic Activities for the Colorimetric Sensing of Glucose at Neutral pH. Sensors 2023, 23, 6277. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, N.; Li, L.; Liu, T.; Zhang, Y.; Tang, J.; Guo, J.; Su, S. Synthesis of Graphene Oxide-Coupled CoNi Bimetallic MOF Nanocomposites for the Simultaneous Analysis of Catechol and Hydroquinone. Sensors 2023, 23, 6957. [Google Scholar] [CrossRef]
- Tan, G.; Wang, S.; Yu, J.; Chen, J.; Liao, D.; Liu, M.; Nezamzadeh-Ejhieh, A.; Pan, Y.; Liu, J. Detection mechanism and the outlook of metal-organic frameworks for the detection of hazardous substances in milk. Food Chem. 2024, 430, 136934. [Google Scholar] [CrossRef]
- Liu, X.; Yang, H.; Diao, Y.; He, Q.; Lu, C.; Singh, A.; Kumar, A.; Liu, J.; Lan, Q. Recent advances in the electrochemical applications of Ni-based metal organic frameworks (Ni-MOFs) and their derivatives. Chemosphere 2022, 307, 135729. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Rao, C.; Tan, X.; Ling, Y.; Singh, A.; Kumar, A.; Li, B.; Liu, J. Cobalt-seamed C-methylpyrogallol [4] arene nanocapsules-derived magnetic carbon cubes as advanced adsorbent toward drug contaminant removal. Chem. Eng. J. 2022, 433, 133857. [Google Scholar] [CrossRef]
- Deore, K.B.; Narwade, V.N.; Patil, S.S.; Rondiya, S.R.; Bogle, K.A.; Tsai, M.-L.; Hianik, T.; Shirsat, M.D. Fabrication of 3D bi-functional binder-free electrode by hydrothermal growth of MIL-101 (Fe) framework on nickel foam: A supersensitive electrochemical sensor and highly stable supercapacitor. J. Alloys Compd. 2023, 958, 170412. [Google Scholar] [CrossRef]
- Dzikaras, M.; Barauskas, D.; Pelenis, D.; Vanagas, G.; Mikolajūnas, M.; Shi, J.; Baltrusaitis, J.; Viržonis, D. Design of Zeolitic Imidazolate Framework-8-Functionalized Capacitive Micromachined Ultrasound Transducer Gravimetric Sensors for Gas and Hydrocarbon Vapor Detection. Sensors 2023, 23, 8827. [Google Scholar] [CrossRef] [PubMed]
- Castro, K.R.; Setti, G.O.; de Oliveira, T.R.; Rodrigues-Jesus, M.J.; Botosso, V.F.; de Araujo, A.P.P.; Durigon, E.L.; Ferreira, L.C.; Faria, R.C. Electrochemical magneto-immunoassay for detection of zika virus antibody in human serum. Talanta 2023, 256, 124277. [Google Scholar] [CrossRef]
- Tavassoli, M.; Khezerlou, A.; Khalilzadeh, B.; Ehsani, A.; Kazemian, H. Aptamer-modified metal organic frameworks for measurement of food contaminants: A review. Mikrochim. Acta 2023, 190, 371. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Liu, X.; Li, Y.; Yu, D.; Gao, Q.; Chen, L. Dual-ratiometric electrochemical aptasensor based on carbon nanohorns/anthraquinone-2-carboxylic acid/Au nanoparticles for simultaneous detection of malathion and omethoate. Talanta 2023, 253, 123966. [Google Scholar] [CrossRef]
- Griem, P.; von Vultée, C.; Panthel, K.; Best, S.L.; Sadler, P.J.; Shaw III, C.F. T cell cross-reactivity to heavy metals: Identical cryptic peptides may be presented from protein exposed to different metals. Eur. J. Immunol. 1998, 28, 1941–1947. [Google Scholar] [CrossRef]
- Feng, L.; Li, H.; Niu, L.-Y.; Guan, Y.-S.; Duan, C.-F.; Guan, Y.-F.; Tung, C.-H.; Yang, Q.-Z. A fluorometric paper-based sensor array for the discrimination of heavy-metal ions. Talanta 2013, 108, 103–108. [Google Scholar] [CrossRef]
- Ariga, K.; Nakanishi, T.; Michinobu, T. Immobilization of biomaterials to nano-assembled films (self-assembled monolayers, Langmuir-Blodgett films, and layer-by-layer assemblies) and their related functions. Int. J. Nanosci. Nanotechnol. 2006, 6, 2278–2301. [Google Scholar] [CrossRef]
- Goda, T.; Higashi, D.; Matsumoto, A.; Hoshi, T.; Sawaguchi, T.; Miyahara, Y. Dual aptamer-immobilized surfaces for improved affinity through multiple target binding in potentiometric thrombin biosensing. Biosens. Bioelectron. 2015, 73, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Hianik, T.; Ostatná, V.; Sonlajtnerova, M.; Grman, I. Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin. Bioelectrochemistry 2007, 70, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Hianik, T.; Wang, J. Electrochemical aptasensors–recent achievements and perspectives. Electroanalysis 2009, 21, 1223–1235. [Google Scholar] [CrossRef]
- Gandotra, R.; Kuo, F.-C.; Lee, M.S.; Lee, G.-B. A Paper-Based Dual Aptamer Assay on an Integrated Microfluidic System for Detection of HNP 1 as a Biomarker for Periprosthetic Joint Infections. In Proceedings of the IEEE 36th International Conference on Micro Electro Mechanical Systems, Munich, Germany, 15–19 January 2023; pp. 1001–1004. [Google Scholar] [CrossRef]
- Liu, S.; Bilal, M.; Rizwan, K.; Gul, I.; Rasheed, T.; Iqbal, H.M. Smart chemistry of enzyme immobilization using various support matrices—A review. Int. J. Biol. Macromol. 2021, 190, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Shamsipur, M.; Farzin, L.; Tabrizi, M.A.; Sheibani, S. Functionalized Fe3O4/graphene oxide nanocomposites with hairpin aptamers for the separation and preconcentration of trace Pb2+ from biological samples prior to determination by ICP MS. Mater. Sci. Eng. C 2017, 77, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Nurani, D.; Butar, B.; Krisnandi, Y. Synthesis and characterization of metal organic framework using succinic acid ligand with cobalt and iron metals as methylene blue dye adsorbent. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Bali, Indonesia, 6–7 November 2019; p. 012055. [Google Scholar] [CrossRef]
- Mehta, B.; Chhajlani, M.; Shrivastava, B. Green synthesis of silver nanoparticles and their characterization by XRD. In Proceedings of the Journal of Physics: Conference Series, Ujjain, India, 7–8 November 2016; p. 012050. [Google Scholar] [CrossRef]
- Shameli, K.; Ahmad, M.B.; Zamanian, A.; Sangpour, P.; Shabanzadeh, P.; Abdollahi, Y.; Zargar, M. Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. Int. J. Nanomed. 2012, 7, 5603–5610. [Google Scholar] [CrossRef] [PubMed]
- Ingle, N.; Sayyad, P.; Bodkhe, G.; Mahadik, M.; AL-Gahouari, T.; Shirsat, S.; Shirsat, M.D. ChemFET Sensor: Nanorods of nickel-substituted Metal–Organic framework for detection of SO2. Appl. Phys. A 2020, 126, 723. [Google Scholar] [CrossRef]
- Nagarjuna, R.; Saifullah, M.S.; Ganesan, R. Oxygen insensitive thiol–ene photo-click chemistry for direct imprint lithography of oxides. RSC Adv. 2018, 8, 11403–11411. [Google Scholar] [CrossRef]
- Itoh, N.; Shirono, K.; Fujimoto, T. Baseline Assessment for the Consistency of Raman Shifts Acquired with 26 Different Raman Systems and Necessity of a Standardized Calibration Protocol. Anal. Sci. 2019, 35, 571–576. [Google Scholar] [CrossRef]
- Takenaka, T. Infrared and Raman Spectra of TCNQ and TCNQ-d4 Cry-stals (Commemoration Issue Dedicated to Professor Rempei Gotoh On the Occasion of his Retirement). Bull. Inst. Chem. Res. Kyoto Univ. 1969, 47, 387–400. Available online: https://cir.nii.ac.jp/crid/1050001202175269248 (accessed on 20 November 2023).
- Park, T.; Lee, S.; Seong, G.H.; Choo, J.; Lee, E.K.; Kim, Y.S.; Ji, W.H.; Hwang, S.Y.; Gweon, D.-G.; Lee, S. Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: Confocal surface-enhanced Raman spectroscopic study. Lab. Chip 2005, 5, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Perumal, S. Mono-And Multivalent Interactions between Thiol and Amine Ligands with Noble Metal Nanoparticles. Ph.D. Thesis, Freie Universität Berlin, Berlin, Germany, 2012. [Google Scholar] [CrossRef]
- Caragheorgheopol, A.; Chechik, V. Mechanistic aspects of ligand exchange in Au nanoparticles. Phys. Chem. Chem. Phys. 2008, 10, 5029–5041. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.; Kushwah, V.; Gaur, M.; Bhadauria, S.; Berlina, A.N.; Zherdev, A.V.; Dzantiev, B. Electrochemical aptamer biosensor for As3+ based on apta deep trapped Ag-Au alloy nanoparticles-impregnated glassy carbon electrode. Int. J. Environ. Anal. Chem. 2020, 100, 623–634. [Google Scholar] [CrossRef]
- Yadav, R.; Berlina, A.N.; Zherdev, A.V.; Gaur, M.; Dzantiev, B. Rapid and selective electrochemical detection of Pb2+ ions using aptamer-conjugated alloy nanoparticles. SN Appl. Sci. 2020, 2, 2077. [Google Scholar] [CrossRef]
- Lin, Y.-W.; Liu, C.-W.; Chang, H.-T. Fluorescence detection of mercury (II) and lead (II) ions using aptamer/reporter conjugates. Talanta 2011, 84, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, B.; Qi, Y.; Jin, Y. Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe. Anal. Bioanal. Chem. 2009, 393, 2051–2057. [Google Scholar] [CrossRef]
- Tan, D.; He, Y.; Xing, X.; Zhao, Y.; Tang, H.; Pang, D. Aptamer functionalized gold nanoparticles based fluorescent probe for the detection of mercury (II) ion in aqueous solution. Talanta 2013, 113, 26–30. [Google Scholar] [CrossRef]
- Tao, Z.; Zhou, Y.; Duan, N.; Wang, Z. A colorimetric aptamer sensor based on the enhanced peroxidase activity of functionalized graphene/Fe3O4-AuNPs for detection of lead (II) ions. Catalysts 2020, 10, 600. [Google Scholar] [CrossRef]
- Lu, Y.; Zhong, J.; Yao, G.; Huang, Q. A label-free SERS approach to quantitative and selective detection of mercury (II) based on DNA aptamer-modified SiO2@ Au core/shell nanoparticles. Sens. Actuators B Chem. 2018, 258, 365–372. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, D.; Liu, Y.; Zhan, X.; Lu, Y.; Zhou, P.; Zhang, D. An electrochemical aptasensor for Pb2+ detection based on metal–organic-framework-derived hybrid carbon. Biosensors 2020, 11, 1. [Google Scholar] [CrossRef]
Materials for Aptamer Immobilization | HMI Detected | Range of Detection | LOD | Ref. |
---|---|---|---|---|
Ag-Au alloy NPs | AS(III) | 0.01–10 µg/L | 3 ng/L | [37] |
Ag-Au alloy NPs | Pb(II) | 0.01–10 µg/L | 0.8 µM | [38] |
T33/TOTO-3 | Pb(II) Hg(II) | 3–50 nM 25–500 nM | 1 nM 10 nM | [39] |
Au nanoparticles | Hg(II) | 1 nM–100 µM | 0.6 nM | [40] |
Au nanoparticles | Hg(II) | 0.02–1 µM | 16 nM | [41] |
Graphene/Fe3O4-AuNP | Pb(II) | 1–300 ng/mL | 0.63 ng/mL | [42] |
SiO2@AuNPs | Hg(II) | 10 nM–1 mM | 10 nM | [43] |
ZIF-8 MOF | Pb(II) | 0.1–10 µg/L | 0.096 µg/L | [44] |
Ag@Co-Succinate | Hg(II) | 0.7–10 nM | 0.3 nM | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, S.S.; Narwade, V.N.; Sontakke, K.S.; Hianik, T.; Shirsat, M.D. Layer-by-Layer Immobilization of DNA Aptamers on Ag-Incorporated Co-Succinate Metal–Organic Framework for Hg(II) Detection. Sensors 2024, 24, 346. https://doi.org/10.3390/s24020346
Patil SS, Narwade VN, Sontakke KS, Hianik T, Shirsat MD. Layer-by-Layer Immobilization of DNA Aptamers on Ag-Incorporated Co-Succinate Metal–Organic Framework for Hg(II) Detection. Sensors. 2024; 24(2):346. https://doi.org/10.3390/s24020346
Chicago/Turabian StylePatil, Shubham S., Vijaykiran N. Narwade, Kiran S. Sontakke, Tibor Hianik, and Mahendra D. Shirsat. 2024. "Layer-by-Layer Immobilization of DNA Aptamers on Ag-Incorporated Co-Succinate Metal–Organic Framework for Hg(II) Detection" Sensors 24, no. 2: 346. https://doi.org/10.3390/s24020346
APA StylePatil, S. S., Narwade, V. N., Sontakke, K. S., Hianik, T., & Shirsat, M. D. (2024). Layer-by-Layer Immobilization of DNA Aptamers on Ag-Incorporated Co-Succinate Metal–Organic Framework for Hg(II) Detection. Sensors, 24(2), 346. https://doi.org/10.3390/s24020346