Design of a Portable Analyzer to Determine the Net Exchange of CO2 in Rice Field Ecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Design of Portable Analyzer for CO2 Monitoring
2.3. Static Transparent Chamber Design
2.4. Field Management
2.5. Sensor Calibration
2.6. Monitoring and Data Collection
2.7. Data Processing
3. Results
3.1. Diurnal Variations in NEE
3.2. NEE Response to Environmental Factors
4. Discussion
4.1. Diurnal Variation in NEE
4.2. NEE, Reco, and Their Interactions with Environmental Variables
4.3. Comparison with Previous Studies
4.4. Portable Analyzer Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Hour | PPFD Yang et al. [21] | DPS | References | |||
---|---|---|---|---|---|---|
82 | 89 | Chatterjee et al. [11] | Kumar et al. [12] | Neogi et al. [13] | ||
0 | 10 | −0.061 ± 0.09 | 0.143 ± 0.25 | 3.439 | 1.84 | 2.459 |
2 | 10 | −0.069 ± 0.05 | 0.309 ± 0.29 | 1.186 | 1.58 | 2.295 |
4 | 10 | −0.041 ± 0.12 | 0.361 ± 0.39 | 0.593 | 2.91 | 2.459 |
6 | 10 | −0.064 ± 0.03 | 0.171 ± 0.21 | 0.356 | 0.53 | 2.787 |
8 | 200 | −4.148 ± 0.17 | −3.860 ± 0.54 | −1.660 | −5.55 | −4.754 |
10 | 600 | −9.511 ± 0.08 | −9.245 ± 0.54 | −4.387 | −7.93 | −13.607 |
12 | 400 | −6.555 ± 0.53 | −6.777 ± 0.91 | −6.759 | −7.14 | −18.852 |
14 | 300 | −4.710 ± 0.9 | −5.141 ± 0.63 | −5.929 | −7.40 | −20.164 |
16 | 100 | −0.928 ± 0.24 | −1.233 ± 0.77 | −2.016 | −4.36 | −7.213 |
18 | 10 | 0.686 ± 0.89 | - | 1.660 | −0.66 | 1.967 |
20 | 10 | 0.015 ± 0.18 | 0.280 ± 0.28 | 2.253 | 0.40 | 2.459 |
22 | 10 | −0.014 ± 0.04 | 0.247 ± 0.21 | 0.711 | 2.51 | 2.623 |
Hour | PPFD Yang et al. [21] | DPS | References | ||
---|---|---|---|---|---|
102 | Chatterjee et al. [11] | Kumar et al. [12] | Neogi et al. [13] | ||
0 | 10 | −0.034 ± 0.17 | 0.891 | 2.03 | 2.956 |
2 | 10 | −0.041 ± 0.05 | 1.040 | 1.50 | 3.103 |
4 | 10 | −0.036 ± 0.04 | 1.040 | 1.76 | 2.808 |
6 | 10 | 0.318 ± 0.3 | 0.149 | 1.24 | 2.956 |
8 | 200 | −4.997 ± 0.59 | −0.446 | −9.68 | −6.059 |
10 | 600 | −13.626 ± 0.54 | −5.792 | −14.55 | −15.517 |
12 | 400 | −8.829 ± 1.29 | −7.129 | −13.23 | −21.872 |
14 | 300 | −7.336 ± 0.48 | −6.238 | −13.10 | −22.611 |
16 | 100 | −2.123 ± 0.73 | −2.673 | −8.23 | −7.833 |
18 | 10 | 0.171 ± 0.21 | 1.782 | −1.00 | 2.069 |
20 | 10 | 0.110 ± 0.09 | 1.485 | −1.39 | 3.103 |
22 | 10 | 0.282 ± 0.24 | 1.634 | 3.60 | 3.103 |
Hour | PPFD Yang et al. [21] | DPS | References | ||
---|---|---|---|---|---|
111 | Chatterjee et al. [11] | Kumar et al. [12] | Neogi et al. [13] | ||
0 | 10 | 0.081 ± 0.19 | 3.939 | 3.15 | 0.891 |
2 | 10 | 0.194 ± 0.25 | 3.788 | 3.28 | 1.040 |
4 | 10 | 0.313 ± 0.47 | 3.788 | 3.41 | 1.040 |
6 | 10 | 0.290 ± 0.47 | 2.727 | 3.41 | 0.149 |
8 | 200 | −5.550 ± 0.36 | −7.576 | −14.14 | −0.446 |
10 | 600 | −12.901 ± 1.52 | −18.333 | −23.23 | −5.792 |
12 | 400 | −9.720 ± 0.32 | −25.000 | −24.75 | −7.129 |
14 | 300 | −7.202 ± 0.36 | −20.000 | −20.58 | −6.238 |
16 | 100 | −1.881 ± 0.69 | −7.424 | −11.36 | −2.673 |
18 | 10 | 1.003 ± 0.6 | 3.636 | −6.82 | 1.782 |
20 | 10 | 0.069 ± 0.21 | 4.394 | 2.65 | 1.485 |
22 | 10 | 0.321 ± 0.52 | 4.091 | 3.79 | 1.634 |
Hour | PPFD Yang et al. [21] | DPS | References | ||
---|---|---|---|---|---|
126 | Chatterjee et al. [11] | Kumar et al. [12] | Neogi et al. [13] | ||
0 | 10 | −0.084 ± 0.15 | 3.750 | 2.82 | 2.513 |
2 | 10 | −0.065 ± 0.19 | 3.750 | 2.69 | 2.932 |
4 | 10 | 0.059 ± 0.4 | 3.913 | 3.19 | 2.513 |
6 | 10 | 0.097 ± 0.5 | 3.098 | 2.44 | 1.675 |
8 | 200 | −5.021 ± 0.28 | −4.402 | −10.26 | −8.796 |
10 | 600 | −12.489 ± 1.12 | −13.207 | −19.43 | −8.168 |
12 | 400 | −8.468 ± 0.35 | −18.261 | −19.69 | −8.586 |
14 | 300 | −6.330 ± 0.28 | −17.446 | −18.43 | −8.168 |
16 | 100 | −1.899 ± 0.8 | −6.848 | −2.84 | −3.560 |
18 | 10 | 0.218 ± 0.42 | 1.793 | 3.44 | 1.885 |
20 | 10 | 0.074 ± 0.28 | 3.750 | 3.82 | 2.304 |
22 | 10 | 0.069 ± 0.3 | 3.587 | 1.06 | 2.094 |
References
- Change, N.G.C. Carbon Dioxide Concentration|NASA Global Climate Change. Available online: https://climate.nasa.gov/vital-signs/carbon-dioxide (accessed on 29 December 2023).
- Zhang, Y.; Liu, H.; Qi, J.; Feng, P.; Zhang, X.; Liu, D.L.; Marek, G.W.; Srinivasan, R.; Chen, Y. Assessing Impacts of Global Climate Change on Water and Food Security in the Black Soil Region of Northeast China Using an Improved SWAT-CO2 Model. Sci. Total Environ. 2023, 857, 159482. [Google Scholar] [CrossRef] [PubMed]
- Oo, A.Z.; Yamamoto, A.; Ono, K.; Umamageswari, C.; Mano, M.; Vanitha, K.; Elayakumar, P.; Matsuura, S.; Bama, K.S.; Raju, M.; et al. Ecosystem Carbon Dioxide Exchange and Water Use Efficiency in a Triple-Cropping Rice Paddy in Southern India: A Two-Year Field Observation. Sci. Total Environ. 2023, 854, 158541. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Nayak, A.K.; Das, B.S.; Panigrahi, N.; Dasgupta, P.; Mohanty, S.; Kumar, U.; Panneerselvam, P.; Pathak, H. Effects of Water Deficit Stress on Agronomic and Physiological Responses of Rice and Greenhouse Gas Emission from Rice Soil under Elevated Atmospheric CO2. Sci. Total Environ. 2019, 650, 2032–2050. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Kumar, R.; Baruah, K.K.; Hazarika, S.; Karmakar, S.; Bordoloi, N. Greenhouse Gas Emission from Rice Fields: A Review from Indian Context. Environ. Sci. Pollut. Res. 2021, 28, 30551–30572. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/faostat/es/#data/QCL (accessed on 29 December 2023).
- Gao, H.; Liu, Q.; Yan, C.; Wu, Q.; Gong, D.; He, W.; Liu, H.; Wang, J.; Mei, X. Mitigation of Greenhouse Gas Emissions and Improved Yield by Plastic Mulching in Rice Production. Sci. Total Environ. 2023, 880, 162984. [Google Scholar] [CrossRef]
- Liao, B.; Cai, T.; Wu, X.; Luo, Y.; Liao, P.; Zhang, B.; Zhang, Y.; Wei, G.; Hu, R.; Luo, Y.; et al. A Combination of Organic Fertilizers Partially Substitution with Alternate Wet and Dry Irrigation Could Further Reduce Greenhouse Gases Emission in Rice Field. J. Environ. Manag. 2023, 344, 118372. [Google Scholar] [CrossRef]
- Gangopadhyay, S.; Chowdhuri, I.; Das, N.; Pal, S.C.; Mandal, S. The Effects of No-Tillage and Conventional Tillage on Greenhouse Gas Emissions from Paddy Fields with Various Rice Varieties. Soil Tillage Res. 2023, 232, 105772. [Google Scholar] [CrossRef]
- Yang, S.; Sun, X.; Ding, J.; Jiang, Z.; Liu, X.; Xu, J. Effect of Biochar Addition on CO2 Exchange in Paddy Fields under Water-Saving Irrigation in Southeast China. J. Environ. Manag. 2020, 271, 111029. [Google Scholar] [CrossRef]
- Chatterjee, S.; Swain, C.K.; Nayak, A.K.; Chatterjee, D.; Bhattacharyya, P.; Mahapatra, S.S.; Debnath, M.; Tripathi, R.; Guru, P.K.; Dhal, B. Partitioning of Eddy Covariance-Measured Net Ecosystem Exchange of CO2 in Tropical Lowland Paddy. Paddy Water Environ. 2020, 18, 623–636. [Google Scholar] [CrossRef]
- Kumar, A.; Bhatia, A.; Sehgal, V.K.; Tomer, R.; Jain, N.; Pathak, H. Net Ecosystem Exchange of Carbon Dioxide in Rice-Spring Wheat System of Northwestern Indo-Gangetic Plains. Land 2021, 10, 701. [Google Scholar] [CrossRef]
- Neogi, S.; Bhattacharyya, P.; Nayak, A.K. Characterization of Carbon Dioxide Fluxes in Tropical Lowland Flooded Rice Ecology. Paddy Water Environ. 2021, 19, 539–552. [Google Scholar] [CrossRef]
- Klosterhalfen, A.; Chi, J.; Kljun, N.; Lindroth, A.; Laudon, H.; Nilsson, M.B.; Peichl, M. Two-Level Eddy Covariance Measurements Reduce Bias in Land-Atmosphere Exchange Estimates over a Heterogeneous Boreal Forest Landscape. Agric. For. Meteorol. 2023, 339, 109523. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, J.; Guo, C.; Wu, H.; Wang, J.; Zhang, Q.; Xiao, Y.; Qiu, R. Comparing the Eddy Covariance and Gradient Methods for Measuring Water and Heat Fluxes in Paddy Fields. Agric. Water Manag. 2023, 284, 108340. [Google Scholar] [CrossRef]
- Gao, D.; Yao, J.; Yu, S.; Ma, Y.; Li, L.; Gao, Z. Eddy Covariance CO2 Flux Gap Filling for Long Data Gaps: A Novel Framework Based on Machine Learning and Time Series Decomposition. Remote Sens. 2023, 15, 2695. [Google Scholar] [CrossRef]
- Li, J.; Xue, Z.; Li, Y.; Bo, G.; Shen, F.; Gao, X.; Zhang, J.; Tan, T. Real-Time Measurement of Atmospheric CO2, CH4 and N2O above Rice Fields Based on Laser Heterodyne Radiometers (LHR). Agronomy 2023, 13, 373. [Google Scholar] [CrossRef]
- Low-Cost IoT-Enabled Embedded System for Measurement of Environmental Pollutants—ProQuest. Available online: https://www.proquest.com/openview/98d3b4da3c59b80ae4541e3b6eb9ea60/1?pq-origsite=gscholar&cbl=2030013 (accessed on 29 December 2023).
- Rajasekar, P.; Selvi, J.A.V. Sensing and Analysis of Greenhouse Gas Emissions from Rice Fields to the Near Field Atmosphere. Sensors 2022, 22, 4141. [Google Scholar] [CrossRef] [PubMed]
- Coulby, G.; Clear, A.K.; Jones, O.; Godfrey, A. Low-Cost, Multimodal Environmental Monitoring Based on the Internet of Things. Build. Environ. 2021, 203, 108014. [Google Scholar] [CrossRef]
- Yang, S.; Xu, J.; Liu, X.; Zhang, J.; Wang, Y. Variations of Carbon Dioxide Exchange in Paddy Field Ecosystem under Water-Saving Irrigation in Southeast China. Agric. Water Manag. 2016, 166, 42–52. [Google Scholar] [CrossRef]
- Yang, S.; Liu, X.; Liu, X.; Xu, J. Effect of Water Management on Soil Respiration and NEE of Paddy Fields in Southeast China. Paddy Water Environ. 2017, 15, 787–796. [Google Scholar] [CrossRef]
- Pilegaard, K.; Hummelshøj, P.; Jensen, N.O.; Chen, Z. Two Years of Continuous CO2 Eddy-Flux Measurements over a Danish Beech Forest. Agric. For. Meteorol. 2001, 107, 29–41. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Neogi, S.; Roy, K.S.; Dash, P.K.; Nayak, A.K.; Mohapatra, T. Tropical Low Land Rice Ecosystem Is a Net Carbon Sink. Agric. Ecosyst. Environ. 2014, 189, 127–135. [Google Scholar] [CrossRef]
- McMillan, A.M.S.; Goulden, M.L.; Tyler, S.C. Stoichiometry of CH4 and CO2 Flux in a California Rice Paddy. J. Geophys. Res. Biogeosci. 2007, 112, G01008. [Google Scholar] [CrossRef]
- Carbon Dioxide Fluxes over Grassland Ecosystems in the Middle Tianshan Region of China with Eddy Covariance Method. Available online: https://www.researchsquare.com (accessed on 29 December 2023).
- Bao, Y.; Liu, T.; Duan, L.; Tong, X.; Zhang, Y.; Wang, G.; Singh, V.P. Variations and Controlling Factors of Carbon Dioxide and Methane Fluxes in a Meadow-Rice Ecosystem in a Semi-Arid Region. CATENA 2022, 215, 106317. [Google Scholar] [CrossRef]
- Chatterjee, D.; Swain, C.K.; Chatterjee, S.; Bhattacharyya, P.; Tripathi, R.; Lal, B.; Gautam, P.; Shahid, M.; Dash, P.K.; Dhal, B.; et al. Is the Energy Balance in a Tropical Lowland Rice Paddy Perfectly Closed? Atmósfera 2021, 34, 59–78. [Google Scholar] [CrossRef]
- Net Ecosystem CO2 Exchange and Carbon Cycling in Tropical Lowland Flooded Rice Ecosystem|Nutrient Cycling in Agroecosystems. Available online: https://link.springer.com/article/10.1007/s10705-013-9553-1 (accessed on 29 December 2023).
- Chen, C.; Li, D.; Gao, Z.; Tang, J.; Guo, X.; Wang, L.; Wan, B. Seasonal and Interannual Variations of Carbon Exchange over a Rice-Wheat Rotation System on the North China Plain. Adv. Atmos. Sci. 2015, 32, 1365–1380. [Google Scholar] [CrossRef]
- Liu, C.; Wu, Z.; Hu, Z.; Yin, N.; Islam, A.R.M.T.; Wei, Z. Characteristics and Influencing Factors of Carbon Fluxes in Winter Wheat Fields under Elevated CO2 Concentration. Environ. Pollut. 2022, 307, 119480. [Google Scholar] [CrossRef]
- Morales, D. Efecto de altas temperaturas en algunas variables del crecimiento y el intercambio gaseoso en plantas de tomate (Lycopersicon esculentum Mill. CV. AMALIA). Cultiv. Trop. 2006, 27, 45–48. [Google Scholar]
- Li, C.; Li, Z.; Zhang, F.; Lu, Y.; Duan, C.; Xu, Y. Seasonal Dynamics of Carbon Dioxide and Water Fluxes in a Rice-Wheat Rotation System in the Yangtze-Huaihe Region of China. Agric. Water Manag. 2023, 275, 107992. [Google Scholar] [CrossRef]
- Saito, M.; Miyata, A.; Nagai, H.; Yamada, T. Seasonal Variation of Carbon Dioxide Exchange in Rice Paddy Field in Japan. Agric. For. Meteorol. 2005, 135, 93–109. [Google Scholar] [CrossRef]
- LI-7500|Support. Available online: https://www.licor.com/env/support/LI-7500/home.html (accessed on 2 January 2024).
Variables | Value |
---|---|
Texture | Loam |
0.37 | |
pH | 7.96 |
C.I.C | 10.40 |
S.O.M. | 3.65 |
Apparent density | 1.318 |
Real density | 2.74 |
Porosity | 51.89 |
Field capacity | 19.91 |
Wilting point | 13.91 |
CaCO3 | 4.02 |
P | 72.4 |
K+ | 208 |
Total N | 0.21 |
Variables | Value |
---|---|
pH | 8.2 |
σ | 0.67 |
Ca2+ | 4.38 |
Mg2+ | 0.68 |
Na+ | 1.76 |
K+ | 0.17 |
Cl−1 | 1.57 |
CO32− | 0.10 |
HCO32− | 3.01 |
SO42− | 2.13 |
Hour | PPFD Yang et al. [20] | DPS | ||||
---|---|---|---|---|---|---|
82 | 89 | 102 | 111 | 126 | ||
0 | 10 | −0.061 ± 0.09 | 0.143 ± 0.25 | −0.034 ± 0.17 | 0.081 ± 0.19 | −0.084 ± 0.15 |
2 | 10 | −0.069 ± 0.05 | 0.309 ± 0.29 | −0.041 ± 0.05 | 0.194 ± 0.25 | −0.065 ± 0.19 |
4 | 10 | −0.041 ± 0.12 | 0.361 ± 0.39 | −0.036 ± 0.04 | 0.313 ± 0.47 | 0.059 ± 0.4 |
6 | 10 | −0.064 ± 0.03 | 0.171 ± 0.21 | 0.318 ± 0.3 | 0.290 ± 0.47 | 0.097 ± 0.5 |
8 | 200 | −4.148 ± 0.17 | −3.860 ± 0.54 | −4.997 ± 0.59 | −5.550 ± 0.36 | −5.021 ± 0.28 |
10 | 600 | −9.511 ± 0.08 | −9.245 ± 0.54 | −13.626 ± 0.54 | −12.901 ± 1.52 | −12.489 ± 1.12 |
12 | 400 | −6.555 ± 0.53 | −6.777 ± 0.91 | −8.829 ± 1.29 | −9.720 ± 0.32 | −8.468 ± 0.35 |
14 | 300 | −4.710 ± 0.9 | −5.141 ± 0.63 | −7.336 ± 0.48 | −7.202 ± 0.36 | −6.330 ± 0.28 |
16 | 100 | −0.928 ± 0.24 | −1.233 ± 0.77 | −2.123 ± 0.73 | −1.881 ± 0.69 | −1.899 ± 0.8 |
18 | 10 | 0.686 ± 0.89 | - | 0.171 ± 0.21 | 1.003 ± 0.6 | 0.218 ± 0.42 |
20 | 10 | 0.015 ± 0.18 | 0.280 ± 0.28 | 0.110 ± 0.09 | 0.069 ± 0.21 | 0.074 ± 0.28 |
22 | 10 | −0.014 ± 0.04 | 0.247 ± 0.21 | 0.282 ± 0.24 | 0.321 ± 0.52 | 0.069 ± 0.3 |
Site | Köppen–Geiger Climate Classification | Field Management | Soil Texture | Reference |
---|---|---|---|---|
Cuttack, India | Tropical savanna (Aw) | Flood irrigation. Water depth: 8 . | Sandy clay loam | Chatterjee et al. [11] |
Delhi, India | Warm semiarid (Bsh) | Conventional puddling. | Loam | Kumar et al. [12] |
Cuttack, India | Tropical savanna (Aw) | Flood irrigation. Water depth: 7–10 | Sandy clay loam | Neogi et al. [13] |
Lima, Peru | Hot desert (Bwh) | Conventional puddling. Water depth: 5 . | Loam | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonilla-Cordova, M.; Cruz-Villacorta, L.; Echegaray-Cabrera, I.; Ramos-Fernández, L.; Flores del Pino, L. Design of a Portable Analyzer to Determine the Net Exchange of CO2 in Rice Field Ecosystems. Sensors 2024, 24, 402. https://doi.org/10.3390/s24020402
Bonilla-Cordova M, Cruz-Villacorta L, Echegaray-Cabrera I, Ramos-Fernández L, Flores del Pino L. Design of a Portable Analyzer to Determine the Net Exchange of CO2 in Rice Field Ecosystems. Sensors. 2024; 24(2):402. https://doi.org/10.3390/s24020402
Chicago/Turabian StyleBonilla-Cordova, Mirko, Lena Cruz-Villacorta, Ida Echegaray-Cabrera, Lia Ramos-Fernández, and Lisveth Flores del Pino. 2024. "Design of a Portable Analyzer to Determine the Net Exchange of CO2 in Rice Field Ecosystems" Sensors 24, no. 2: 402. https://doi.org/10.3390/s24020402
APA StyleBonilla-Cordova, M., Cruz-Villacorta, L., Echegaray-Cabrera, I., Ramos-Fernández, L., & Flores del Pino, L. (2024). Design of a Portable Analyzer to Determine the Net Exchange of CO2 in Rice Field Ecosystems. Sensors, 24(2), 402. https://doi.org/10.3390/s24020402