Frontal Impact Energy Absorbers for Passenger Cars
Abstract
:1. Introduction
2. Description of Energy-Absorbing Structures
3. Research Methods
3.1. Test Rig
3.2. Description of the Structures Tested
- The length of the working part should be 130–140 mm;
- The cross-section of the working element should preferably be rectangular and have dimensions of ca. 120 × 60 mm (it is determined by the shape and size of longitudinals in modern vehicles) (Figure 5);
- Cuboid form.
3.3. Methodology
4. Test Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polska ma Jedyną Szansę, aby Stać się Europejską Potęgą w Sektorze Nowej Mobilności. Available online: https://pspa.com.pl/2023/informacja/polska-ma-jedyna-szanse-aby-stac-sie-europejska-potega-w-sektorze-nowej-mobilnosci/ (accessed on 13 February 2024).
- Jaździk-Osmólska, A. Wycena Kosztów Wypadków i Kolizji Drogowych na Sieci Dróg w Polsce na Koniec 2021, z Wyodrębnieniem Średnich Kosztów Społeczno-Ekonomicznych Wypadków na Transeuropejskiej Sieci Transportowej; Krajowa Rada Bezpieczeństwa Ruchu Drogowego: Warszawa, Poland, 2022. [Google Scholar]
- World Health Organization. Global Status Report on Road Safety 2023; World Health Organization: Genewa, Switzerland, 2023. [Google Scholar]
- Komenda Główna Policji Biuro Ruchu Drogowego. Wypadki Drogowe w Polsce w 2022 Roku; Komenda Główna Policji Biuro Ruchu Drogowego: Warszawa, Poland, 2023. [Google Scholar]
- Wicher, J. Bezpieczeństwo Samochodów i Ruchu Drogowego; Wydawnictwa Komunikacji i Łączności: Warsaw, Poland, 2004. [Google Scholar]
- Jackowski, J.; Łęgiewicz, J.; Wieczorek, M. Samochody Osobowe i Pochodne; WKŁ: Warsaw, Poland, 2011. [Google Scholar]
- Khatri, N.A.; Shaikh, H.; Maher, Z.A.; Shah, A.; Ahmed, S.F. A Review on Optimization of Vehicle Frontal Crashworthiness for Passenger Safety. Int. J. Eng. Technol. 2018, 7, 1–4. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, F.; Xing, Y.; Wang, H.; Liu, R. Research on Mechanical Properties of Origami Aluminum Honeycomb for Automobile Energy Absorbing Box. Materials 2023, 16, 141. [Google Scholar] [CrossRef] [PubMed]
- Juntikka, R.; Hallström, S. Selection of Energy Absorbing Materials for Automotive. Head Impact Countermeasures. Cell. Polym. 2004, 23, 263–297. [Google Scholar] [CrossRef]
- Gidlewski, M.; Jackowski, J.; Posuniak, P. Review and Analysis of Technical Designs of Rear Underrun Protective Devices (RUPDs) in Terms of Regulatory Compliance. Sensors 2022, 22, 2645. [Google Scholar] [CrossRef] [PubMed]
- Mudassir, M.; Tarlochan, F.; Mansour, M.A. Nature-Inspired Cellular Structure Design for Electric Vehicle Battery Compartment: Application to Crashworthiness. Appl. Sci. 2020, 10, 4532. [Google Scholar] [CrossRef]
- Tarlochan, F. Sandwich Structures for Energy Absorption Applications: A Review. Materials 2021, 14, 4731. [Google Scholar] [CrossRef] [PubMed]
- Ciampaglia, A.; Patruno, L.; Ciardiello, R. Design of a Lightweight Origami Composite Crash Box: Experimental and Numerical Study on the Absorbed Energy in Frontal Impacts. J. Compos. Sci. 2024, 8, 224. [Google Scholar] [CrossRef]
- Pirmohammad, S.; Marzdashti, S.E. Crushing behavior of new designed multi-cell members subjected to axial and oblique quasi-static loads. Thin-Walled Struct. 2016, 108, 291–304. [Google Scholar] [CrossRef]
- Santosa, S.; Wierzbicki, T. Crash behavior of box columns filled with aluminum honeycomb or foam. Comput. Struct. 1998, 68, 343–367. [Google Scholar] [CrossRef]
- Ahmad, Z.; Thambiratnam, D. Dynamic computer simulation and energy absorption of foam-filled conical tubes under axial impact loading. Comput. Struct. 2009, 87, 186–197. [Google Scholar] [CrossRef]
- Jackowski, J.; Posuniak, P.; Zielonka, K.; Jurecki, R. Experimental Testing of Energy-Absorbing Structures Used to Enhance the Crashworthiness of the Vehicles. Energies 2023, 16, 2183. [Google Scholar] [CrossRef]
- Jackowski, J.; Posuniak, P.; Rożnowicz, Z. Experimental testing of selected energy absorbers in the context of their use in rear underrun protective devices. In IOP Conference Series: Materials Science and Engineering; Institute of Physics Publishing Ltd.: Bristol, UK, 2022; Volume 1247, p. 012023. [Google Scholar] [CrossRef]
- Lu, G.; Yu, T. Energy Absorption of Structures and Materials; Woodhead Publishing Limited: Cambridge, UK, 2003; ISBN 1-85573-688-8. [Google Scholar]
- Abdulqadir, S.F.; Tarlochan, F. Composite Hat Structure Design for Vehicle Safety: Potential Application to B-Pillar and Door Intrusion Beam. Materials 2022, 15, 1084. [Google Scholar] [CrossRef] [PubMed]
- Seitzberger, M.; Rammerstorfer, F.G.; Degischer, H.P.; Gradinger, R. Crushing of axially compressed steel tubes filled with aluminium foam. Acta Mech. 1997, 125, 93–105. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, P.; Lu, M.; Lai, X. Crashworthiness study for multi-cell composite filling structures. Int. J. Crashworthiness 2018, 23, 32–46. [Google Scholar] [CrossRef]
- Rogala, M.; Gajewski, J.; Ferdynus, M. The Effect of Geometrical Non-Linearity on the Crashworthiness of Thin-Walled Conical Energy-Absorbers. Materials 2020, 13, 4857. [Google Scholar] [CrossRef] [PubMed]
Year | Accidents | Fatalities | Injured | |||
---|---|---|---|---|---|---|
Total | % | Total | % | Total | % | |
2022 | 2161 | 10.1 | 373 | 19.7 | 3132 | 12.7 |
2021 | 2489 | 10.9 | 433 | 19.3 | 3587 | 13.6 |
2020 | 2329 | 9.9 | 415 | 16.7 | 3277 | 12.4 |
2019 | 2938 | 9.7 | 585 | 20.1 | 4405 | 12.4 |
2018 | 3104 | 9.8 | 510 | 17.8 | 4676 | 12.5 |
2017 | 3172 | 9.7 | 507 | 17.9 | 4940 | 12.5 |
2016 | 3186 | 9.5 | 590 | 19.6 | 5002 | 12.3 |
2015 | 3049 | 9.2 | 511 | 17.4 | 4837 | 12.7 |
Description | Labelling | Dimensions | |||
---|---|---|---|---|---|
Width [mm] | Height [mm] | Length [mm] | Mass [g] | ||
Glass-fibre-reinforced polyphenylene sulphide (PPS) absorber | WS-PPS | 60 | 110 | 140 | 227 |
Glass-fibre-reinforced polyetherimide (PEI) absorber | WS-PEI | 60 | 110 | 140 | 240 |
Glass-fibre-polyamide 6 (PA 6) absorber | WS-PA6 | 60 | 110 | 140 | 247 |
Glass-fibre-polyamide 6 (PA 6) absorber, with 85% of fibres running in one direction | WS-PA6-85% | 60 | 110 | 140 | 239 |
Absorber Type | Parameter | 10 km/h | 16 km/h | 20 km/h | 24 km/h |
---|---|---|---|---|---|
WS-PPS | k | 0.18 | 0.11 | 0.07 | 0.06 |
% of energy | 3.2% | 1.2% | 0.5% | 0.3% | |
WS-PEI | k | 0.29 * | 0.12 | 0.11 * | 0.08 |
% of energy | 8.1% * | 1.5% | 1.1% * | 0.7% | |
WS-PA6 | k | 0.13 | 0.09 | 0.07 | 0.06 |
% of energy | 1.6% | 0.9% | 0.5% | 0.3% | |
WS-PA6-85% | k | 0.14 | 0.09 | 0.06 | 0.05 |
% of energy | 2.0% | 0.8% | 0.4% | 0.3% |
Absorbed Energy [J] | PCF [kN] | SEA [kJ/kg] | MCF [kJ/m] | CLE | |
---|---|---|---|---|---|
WS-PPS | 6469 | 85 | 28.50 | 46.21 | 0.54 |
WS-PEI | 6353 | 136 | 26.47 | 45.38 | 0.33 |
WS-PA6 | 6228 | 101 | 25.21 | 44.48 | 0.44 |
WS-PA6-85% | 5902 | 108 | 24.69 | 42.16 | 0.39 |
UWWA | 4099 | 94 | 4.01 | 27.29 | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dąbrowski, F.; Grzejszczyk, Z.; Rzymkowski, C.; Wiśniewski, P. Frontal Impact Energy Absorbers for Passenger Cars. Sensors 2024, 24, 6563. https://doi.org/10.3390/s24206563
Dąbrowski F, Grzejszczyk Z, Rzymkowski C, Wiśniewski P. Frontal Impact Energy Absorbers for Passenger Cars. Sensors. 2024; 24(20):6563. https://doi.org/10.3390/s24206563
Chicago/Turabian StyleDąbrowski, Filip, Zuzanna Grzejszczyk, Cezary Rzymkowski, and Piotr Wiśniewski. 2024. "Frontal Impact Energy Absorbers for Passenger Cars" Sensors 24, no. 20: 6563. https://doi.org/10.3390/s24206563
APA StyleDąbrowski, F., Grzejszczyk, Z., Rzymkowski, C., & Wiśniewski, P. (2024). Frontal Impact Energy Absorbers for Passenger Cars. Sensors, 24(20), 6563. https://doi.org/10.3390/s24206563