Voltammetric Evaluation of Diclofenac Tablets Samples through Carbon Black-Based Electrodes
Abstract
:1. Introduction
2. Results and Discussions
2.1. Evaluation of PH Effects on Analytical Performance
2.2. Electrochemical Behavior of DIC in PGE
2.3. Effect of CB+IL on the PGE Performance
2.4. Quantitative Determination of DIC in Pharmaceutical Samples
2.5. Accelerated Stability Test of DIC in Pharmaceutical Samples
2.6. Interference Study
3. Materials and Methods
3.1. Reagents, Samples, and Solutions
3.2. PGE Preparation
3.3. CB+IL/PGE Preparation
3.4. Electroanalytical Assays
3.5. Determination of DIC in Tablets
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Laveti, D.; Kumar, M.; Hemalatha, R.; Sistla, R.; Naidu, V.G.; Talla, V.; Verma, V.; Kaur, N.; Nagpal, R. Anti-inflammatory treatments for chronic diseases: A review. Inflamm. Allergy Drug Targets 2013, 12, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Agência Nacional de Vigilância Sanitária. Farmacopeia Brasileira, 5th ed.; Agência Nacional de Vigilância Sanitária: Anvisa, Brazil, 2010; Volume 2, pp. 904–907. [Google Scholar]
- Alizadeh, N.; Keyhanian, F. Sensitive and selective spectrophotometric assay of piroxicam in pure form, capsule and human blood serum samples via ion-pair complex formation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 130, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, W.F.; Semaan, F.S.; Almeida, V.G.K.; Ritta, A.G.S.L.; Aucélio, R.Q. Voltametrias: Uma Breve Revisão Sobre os Conceitos. Rev. Virtual Química 2013, 5, 516–537. [Google Scholar]
- Rahi, A.; Karimian, K.; Heli, H. Nanostructured materials in electroanalysis of pharmaceuticals. Anal. Biochem. 2016, 497, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Kurbanoglu, S.; Ozkan, S.A. Electrochemical carbon based nanosensors: A promising tool in pharmaceutical and biomedical analysis. J. Pharm. Biomed. Anal. 2018, 147, 439–457. [Google Scholar] [CrossRef] [PubMed]
- Macêdo, I.Y.L.; Alecrim, M.F.; Garcia, L.F.; Souza, A.R.; Santos, W.T.P.; Gil, E.S.; Cubillana-Aguilera, L.M.; Palacios-Santander, J.M. Differential pulse voltammetric determination of piroxicam on lanthanide ferric oxide nanoparticles-carbon paste modified electrode. Curr. Pharm. Anal. 2017, 13, 1–6. [Google Scholar]
- Shalauddin, M.; Akhter, S.; Basirun, W.J.; Bagheri, S.; Anuar, N.S.; Johan, M.R. Hybrid nanocellulose/f-MWCNTs nanocomposite for the electrochemical sensing of diclofenac sodium in pharmaceutical drugs and biological fluids. Electrochim. Acta 2019, 304, 323–333. [Google Scholar] [CrossRef]
- Nemcova, L.; Barek, J.; Zima, J. A voltammetric comparison of the properties of carbon paste electrodes containing glassy carbon microparticles of various sizes. J. Electroanal. Chem. 2012, 675, 18–24. [Google Scholar] [CrossRef]
- Özcan, A.; İlkbaş, S.; Özcan, A.A. Development of a disposable and low-cost electrochemical sensor for dopamine detection based on poly(pyrrole-3-carboxylic acid)-modified electrochemically over-oxidized pencil graphite electrode. Talanta 2017, 165, 489–495. [Google Scholar] [CrossRef]
- Dede, E.; Saglam, O.; Dilgin, Y. Sensitive Voltammetric Determination of Niclosamide at a disposable pencil graphite electrode. Electrochim. Acta 2014, 127, 20–26. [Google Scholar] [CrossRef]
- Özcan, A.; Şahin, Y. A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens. Bioelectron. 2010, 25, 2497–2502. [Google Scholar] [CrossRef] [PubMed]
- Macêdo, I.Y.L.; Gil, E.S. Pencil and Paper Electrodes for Pharmaceutical Analyses. J. Anal. Pharm. Res. 2017, 4, 0092. [Google Scholar]
- Dilgin, D.G.; Karakaya, S. Differential pulse voltammetric determination of acyclovir in pharmaceutical preparations using a pencil graphite electrode. Mater. Sci. Eng. C 2016, 63, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Lira, G.Y.; Álvarez-Romero, G.A.; Zamora-Suárez, A.; Palomar-Pardavé, M.; Rojas-Hernández, A.; Rodríguez-Ávila, J.A.; Páez-Hernández, M.E. New insights on diclofenac electrochemistry using graphite as working electrode. J. Electroanal. Chem. 2017, 794, 182–188. [Google Scholar] [CrossRef]
- Cinti, S.; Colozza, N.; Cacciotti, I.; Moscone, D.; Polomshnov, M.; Sowade, E.; Baumann, R.R.; Arduini, F. Electroanalysis moves towards paper-based printed electronics: Carbon black nanomodified inkjet-printed sensor for ascorbic acid detection as a case study. Sens. Actuators B Chem. 2018, 265, 155–160. [Google Scholar] [CrossRef]
- Deroco, P.B.; Rocha-Filho, R.C.; Fatibello-Filho, O. A new and simple method for the simultaneous determination of amoxicillin and nimesulide using carbon black within a dihexadecylphosphate film as electrochemical sensor. Talanta 2018, 179, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.A.; Moraes, F.C.; Janegitz, B.C.; Fatibello-filho, O.; Lu, R.W. electrochemical biosensors based on nanostructured carbon black: A review. J. Nanomat. 2017, 2017, 1–14. [Google Scholar] [CrossRef]
- Cinti, S.; Mazzaracchio, V.; Cacciotti, I.; Moscone, D.; Arduini, F. Carbon black-modified electrodes screen-printed onto paper towel, waxed paper and parafilm M®. Sensors 2017, 17, 2267. [Google Scholar] [CrossRef] [PubMed]
- Della Pelle, F.; Vázquez, L.; Del Carlo, M.; Sergi, M.; Compagnone, D.; Escarpa, A. Press-Printed Conductive carbon black nanoparticle films for molecular detection at the microscale. Chem. A Eur. J. 2016, 22, 12761–12766. [Google Scholar] [CrossRef] [PubMed]
- Maria-Hormigos, R.; Jurado-Sanchez, B.; Vazquez, L.; Escarpa, A. Carbon allotrope nanomaterials based catalytic micromotors. Chem. Mater. 2016, 28, 8962–8970. [Google Scholar] [CrossRef]
- Kestens, V.; Coleman, V.A.; de Temmerman, P.J.; Minelli, C.; Woehlecke, H.; Roebben, G. Improved metrological traceability of particle size values measured with line-start incremental centrifugal liquid sedimentation. Langmuir 2017, 33, 8213–8224. [Google Scholar] [CrossRef] [PubMed]
- Gil, E.S.; Couto, R.O. Flavonoid electrochemistry. A review on the electroanalytical applications. Braz. J. Pharmacog. 2013, 23, 542–558. [Google Scholar] [CrossRef]
- Wong, A.; Santos, A.M.; Fatibello-Filho, O. Simultaneous determination of paracetamol and levofloxacin using a glassy carbon electrode modified with carbon black, silver nanoparticles and PEDOT:PSS film. Sens. Actuators B 2018, 255, 2264–2273. [Google Scholar] [CrossRef]
- Silva, T.A.; Fatibello-Filho, O. Square-wave adsorptive anodic stripping voltammetric determination of ramipril using an electrochemical sensor based on nanostructured carbon black. Anal. Met. 2017, 32, 1–8. [Google Scholar] [CrossRef]
- Afkhami, A.; Bahiraei, A.; Madrakian, T. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium. Mater. Sci. Eng. C 2016, 59, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Goodarzian, M.; Khalilzade, M.A.; Karimi, F.; Gupta, V.K.; Keyvanfard, M.; Bagheri, H.; Fouladgar, M. Square wave voltammetric determination of diclofenac in liquid phase using a novel ionic liquid multiwall carbon nanotubes paste electrode. J. Mol. Liq. 2014, 197, 114–119. [Google Scholar] [CrossRef]
- Vicentini, F.C.; Raymundo-Pereira, P.A.; Janegitz, B.C.; Machado, S.A.S.; Fatibello-Filho, O. Nanostructured carbon black for simultaneous sensing in biological fluids. Sens. Actuators B Chem. 2016, 227, 610–618. [Google Scholar] [CrossRef]
- Yilmaz, B.; Ciltas, U. Determination of diclofenac in pharmaceutical preparations by voltammetry and gas chromatography methods. J. Pharm. Anal. 2015, 5, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Lira, G.Y.; Gutiérrez-Salgado, J.M.; Rojas-Hernández, A.; Rodríguez-Ávila, J.A.; Páez-Hernández, M.E.; Álvarez-Romero, G.A. Artificial neural network for the voltamperometric quantification of diclofenac in presence of other nonsteroidal anti-inflammatory drugs and some commercial excipients. J. Electroanal. Chem. 2017, 801, 527–535. [Google Scholar] [CrossRef]
- Ambrosi, A.; Antiochia, R.; Campanella, L.; Dragone, R.; Lavagnini, I. Electrochemical determination of pharmaceuticals in spiked water samples. J. Hazard. Mater. 2005, 122, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Manea, F.; Ilhos, M.; Remes, A.; Burtica, G.; Schoonman, E. Electrochemical determination of diclofenac sodium in aqueous solution on Cu-doped zeolite-expanded graphite-epoxy electrode. Electroanalysis 2010, 22, 2058–2063. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Izadi, M.; Karimi-Maleh, H. Sensitive voltammetric determination of diclofenac using room-temperature ionic liquid-modified carbon nanotubes paste electrode. Ionics 2013, 19, 137–144. [Google Scholar] [CrossRef]
- Razmi, H.; Sarhang-Zadeh, K.; Mohammad-Rezaei, R. Electrochemical behavior and voltammetric determination of diclofenac at a multi-walled carbon nanotube-ionic liquid composite modified carbon ceramic electrode. Anal. Lett. 2013, 46, 1885–1896. [Google Scholar] [CrossRef]
- Motoc, S.; Manea, F.; Orha, C.; Pop, A. Enhanced Electrochemical response of diclofenac at a fullerene–carbon nanofiber paste electrode. Sensors 2019, 19, 1332. [Google Scholar] [CrossRef] [PubMed]
Sample | Labeled (mg) | DPV-PGE (mg) | DPV-CB+IL/PGE (mg) | HPLC (mg) | UV-Vis Spectrometry (mg) |
---|---|---|---|---|---|
DIC tablets 1 | 70 | 68.9 ± 3.5 | 69.6 ± 2.8 | 69.6 ± 2.1 | 68.7 ± 3.1 |
DIC tablets 2 | 70 | 69.1 ± 3.4 | 69.0 ± 2.9 | 69.8 ± 2.2 | 68.8 ± 3.0 |
Electrode | Method | LOD (µmol L−1) | LOQ (µmol L−1) | Reference |
---|---|---|---|---|
CB+IL/PGE | DPV | 0.08 | 0.28 | Our work |
Platinum Disk | LSV | 5.4 | 16.2 | [29] |
IL/CNTPE | SWV | 0.09 | - | [27] |
CPE-MWCT | DPV | 0.74 | 3.49 | [30] |
Carbon paste/CNT’s | DPV | 0.9 | 2.96 | [31] |
CuZEGEg | DPV | 0.3 | - | [32] |
IL/CNTPE | DPV | 0.2 | - | [33] |
MWCNT-IL | DPV | 0.0003 | - | [34] |
F–CNF | SWV | 0.0001 | - | [35] |
t Student * | ANOVA * | ||
---|---|---|---|
t value | −0.7513 | F value | 0.1796 |
Prob. > t | 0.4863 | Prob. > F | 0.6806 |
Found Recovery (% ± RSD) | |||
---|---|---|---|
Lot | Months | Voltammetry | Chromatography |
A | 0′ | 99.9% ± 2.0% | 100.2% ± 0.72% |
3′ | 100.5% ± 2.2% | 100.4% ± 1.2% | |
6′ | 101.3% ± 1.5% | 100.9% ± 1.0% | |
B | 0′ | 101.4% ± 2.1% | 102.0% ± 1.0% |
3′ | 100.7% ± 2.3% | 101.2% ± 1.5% | |
6′ | 100.9% ± 1.8% | 101.6% ± 1.1% | |
C | 0′ | 101.9% ± 2.1% | 101.7% ± 1.2% |
3′ | 100.7% ± 2.7% | 101.0% ± 1.6% | |
6′ | 101.2% ± 1.9% | 101.6% ± 0.89% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Cunha, C.E.P.; Rodrigues, E.S.B.; Fernandes Alecrim, M.; Thomaz, D.V.; Macêdo, I.Y.L.; Garcia, L.F.; de Oliveira Neto, J.R.; Moreno, E.K.G.; Ballaminut, N.; de Souza Gil, E. Voltammetric Evaluation of Diclofenac Tablets Samples through Carbon Black-Based Electrodes. Pharmaceuticals 2019, 12, 83. https://doi.org/10.3390/ph12020083
da Cunha CEP, Rodrigues ESB, Fernandes Alecrim M, Thomaz DV, Macêdo IYL, Garcia LF, de Oliveira Neto JR, Moreno EKG, Ballaminut N, de Souza Gil E. Voltammetric Evaluation of Diclofenac Tablets Samples through Carbon Black-Based Electrodes. Pharmaceuticals. 2019; 12(2):83. https://doi.org/10.3390/ph12020083
Chicago/Turabian Styleda Cunha, Carlos Eduardo Peixoto, Edson Silvio Batista Rodrigues, Morgana Fernandes Alecrim, Douglas Vieira Thomaz, Isaac Yves Lopes Macêdo, Luane Ferreira Garcia, Jerônimo Raimundo de Oliveira Neto, Emily Kussmaul Gonçalves Moreno, Nara Ballaminut, and Eric de Souza Gil. 2019. "Voltammetric Evaluation of Diclofenac Tablets Samples through Carbon Black-Based Electrodes" Pharmaceuticals 12, no. 2: 83. https://doi.org/10.3390/ph12020083
APA Styleda Cunha, C. E. P., Rodrigues, E. S. B., Fernandes Alecrim, M., Thomaz, D. V., Macêdo, I. Y. L., Garcia, L. F., de Oliveira Neto, J. R., Moreno, E. K. G., Ballaminut, N., & de Souza Gil, E. (2019). Voltammetric Evaluation of Diclofenac Tablets Samples through Carbon Black-Based Electrodes. Pharmaceuticals, 12(2), 83. https://doi.org/10.3390/ph12020083