Biofilm Inhibition and Eradication Properties of Medicinal Plant Essential Oils against Methicillin-Resistant Staphylococcus aureus Clinical Isolates
Abstract
:1. Introduction
2. Results
2.1. Distribution of the MRSA Isolates
2.2. Chemical Composition of the Essential Oils
2.3. Antibacterial Activity of Essential Oils against MRSA
2.3.1. Disc Diffusion
2.3.2. Determination of MIC and MBC
2.4. Biofilm Formation
2.5. Biofilm Inhibition Activity of Essentials Oils
2.6. Biofilm Eradication Activity of Essentials Oils
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Medicinal Plants Essential Oils
4.3. Gas Chromatography—Mass Spectrometry Analysis
4.4. Antibacterial Activity of Essential Oils
4.4.1. Disc Diffusion
4.4.2. Minimum Inhibitory Concentration and Minimum Bactericidal Concentration
4.5. Biofilm Formation
4.6. Biofilm Inhibition
4.7. Biofilm Eradication
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gordon, R.J.; Lowy, F.D. Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin. Infect. Dis. 2008, 46, S350–S359. [Google Scholar] [PubMed] [Green Version]
- Melzer, M.; Welch, C. Tirty-day mortality in UK patients with community-onset and hospital-acquired methicillin susceptible Staphylococcus aureus bacteraemia. J. Hosp. Infect. 2013, 84, 143–150. [Google Scholar] [PubMed]
- Doebbeling, B. The epidemiology of methicillin-resistant Staphylococcus aureus colonisation and infection. J. Chemother. 1995, 7, 99–103. [Google Scholar] [PubMed]
- Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol. 2004, 2, 95–108. [Google Scholar] [PubMed]
- Römling, U.; Balsalobre, C. Biofilm infections, their resilience to therapy and innovative treatment strategies. J. Intern. Med. 2012, 272, 541–561. [Google Scholar] [PubMed]
- Simoes, M.; Bennett, R.N.; Rosa, E.A.S. Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Nat. Prod. Rep. 2009, 26, 746–757. [Google Scholar] [PubMed]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322. [Google Scholar]
- Stewart, P.S. Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol. 2002, 292, 107–113. [Google Scholar]
- Ebadollahi, A.; Ziaee, M.; Palla, F. Essential oils extracted from different species of the Lamiaceae plant family as prospective bioagents against several detrimental pests. Molecules 2020, 25, 1556. [Google Scholar]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar]
- Rota, M.C.; Herrera, A.; Martinez, R.M.; Sotomayor, J.A.; Jordan, M.J. Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis, and Thymus hyemalis essential oils. Food Control 2008, 19, 681–687. [Google Scholar]
- Moumni, S.; Elaissi, A.; Trabelsi, A.; Merghni, A.; Chraief, I.; Jelassi, B.; Chemli, R.; Ferchichi, S. Correlation between chemical composition and antibacterial activity of some Lamiaceae species essential oils from Tunisia. BMC Complement Med. Ther. 2020, 20, 103. [Google Scholar]
- Lagha, R.; Ben Abdallah, F.; AL-Sarhan, B.O.; Al-Sodany, Y. Antibacterial and Biofilm Inhibitory Activity of Medicinal Plant Essential Oils against Escherichia coli Isolated from UTI Patients. Molecules 2019, 23, 1161. [Google Scholar]
- Nostro, A.; Blanco, A.R.; Cannatelli, M.A.; Enea, V.; Flamini, G.; Morelli, I.; Roccaro, A.S.; Alonzo, V. Susceptibility of methicillin-resistant staphylococci to oregano essential oil, carvacrol and thymol. FEMS Microbiol. Lett. 2004, 230, 191–195. [Google Scholar]
- Brady, A.; Loughlin, R.; Gilpin, D.; Kearney, P.; Tunney, M. In vitro activity of tea-tree oil against clinical skin isolates of methicillin-resistant and -sensitive Staphylococcus aureus and coagulase-negative staphylococci. J. Med. Microbiol. 2006, 55, 1375–1380. [Google Scholar] [PubMed] [Green Version]
- Jia, P.; Xue, Y.J.; Duan, X.J.; Shao, S.H. Effect of cinnamaldehyde on biofilm formation and sarA expression by methicillin-resistant Staphylococcus aureus. Lett. Appl. Microbiol. 2011, 53, 409–416. [Google Scholar] [PubMed]
- Cáceres, M.; Hidalgo, W.; Stashenko, E.; Torres, R.; Ortiz, C. Essential Oils of Aromatic Plants with Antibacterial, Anti-Biofilm and Anti-Quorum Sensing Activities against Pathogenic Bacteria. Antibiotics 2020, 9, 147. [Google Scholar]
- Huma, J.; Fohad, M.H.; Iqbal, A. Antibacterial and antibiofilm activity of some Essential oils and compounds against clinical strains of Staphylococcus aureus. J. Biomed. 2014, 1, 65–71. [Google Scholar]
- Nazzaro, F.; Fratianni, F.; de Martino, L.; Coppola, R.; de Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar]
- Tiwari, B.K.; Valdramidis, V.P.; O’Donnel, C.P.; Muthukumarappan, K.; Bourke, P.; Cullen, P.J. Application of natural antimicrobials for food preservation. J. Food Chem. 2009, 57, 5987–6000. [Google Scholar]
- Chen, C.J.; Huang, Y.C. New epidemiology of Staphylococcus aureus infection in Asia. Clin. Microbiol. Infect. 2014, 20, 605–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ippolito, G.; Leone, S.; Lauria, F.N.; Nicastri, E.; Wenzel, R.P. Methicillin-resistant Staphylococcus aureus: The superbug. Int. J. Infect. Dis. 2010, 14, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Sit, P.S.; The, C.S.; Idris, N.; Sam, I.C.; Syed Omar, S.F.; Sulaiman, H.; Thong, K.L.; Kamarulzaman, A.; Ponnampalavana, S. Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) infection and the molecular characteristics of MRSA bacteraemia over a two-year period in a tertiary teaching hospital in Malaysia. BMC Infect. Dis. 2017, 17, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Sganga, G.; Tascini, C.; Sozio, E.; Carlini, M.; Chirletti, P.; Cortese, F.; Gattuso, R.; Granone, P.; Pempinello, C.; Sartelli, M.; et al. Focus on the prophylaxis, epidemiology and therapy of methicillin-resistant Staphylococcus aureus surgical site infections and a position paper on associated risk factors: The perspective of an Italian group of surgeons. World J. Emerg. Surg. 2016, 11, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Akanbi, B.O.; Mbe, J.U. Occurrence of methicillin and vancomycin resistant Staphylococcus aureus in University of Abuja Teaching Hospital, Abuja, Nigeria. Afr. J. Clin. Exp. Microbiol. 2013, 14, 10–13. [Google Scholar] [CrossRef]
- Ghebremedhin, B.; Olugbosi, M.O.; Raji, A.M.; Layer, F.; Bakare, R.A.; König, B.; König, W. Emergence of a community-associated methicillin-resistant Staphylococcus aureus strain with a unique resistance profile in Southwest Nigeria. J. Clin. Microbiol. 2009, 47, 2975–2980. [Google Scholar] [CrossRef] [Green Version]
- Watkins, R.R.; Holubar, M.; David, M.Z. Antimicrobial resistance in methicillin-resistant Staphylococcus aureus to newer antimicrobial agents. Antimicrob. Agents. Chemother. 2019, 63, e01216-19. [Google Scholar] [CrossRef]
- Hammer, K.; Carson, C.; Riley, T. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 1999, 86, 985–990. [Google Scholar] [CrossRef] [Green Version]
- Pattnaik, S.; Subramanyam, V.R.; Bapaji, M.; Kole, C.R. Antibacterial and antifungal activity of aromatic constituents of essential oils. Microbios 1997, 89, 39–46. [Google Scholar] [PubMed]
- Ouedrhiria, W.; Mounyr, B.; Harkib, H.; Mojac, S.; Grechea, H. Synergistic antimicrobial activity of two binary combinations of marjoram, lavender, and wild thyme essential oils. Int. J. Food Prop. 2017, 12, 3149–3158. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, N.A.; Hammer, K.A.; Riley, T.V.; Van Belkum, A.; Carson, C.F. Effect of habituation to tea tree (Melaleuca alternifolia) oil on the subsequent susceptibility of Staphylococcus spp. to antimicrobials, triclosan, tea tree oil, terpinen-4-ol and carvacrol. Int. J. Antimicrob. Agents 2013, 41, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, L.; Figueiredo, P.; Souza, H.; Sousa, A.; Andrade-Júnior, F.; Medeiros, D.; Nóbrega, J.; Silva, D.; Martins, E.; Barbosa-Filho, J.; et al. Terpinen-4-ol as an Antibacterial and Antibiofilm Agent against Staphylococcus aureus. Int. J. Mol. Sci. 2020, 21, 4531. [Google Scholar] [CrossRef]
- Leite, A.M.; Lima, E.O.; Souza, E.L.; Diniz, M.F.F.M.; Trajano, V.N.; Medeiros, I.A. Inhibitory effect of β-pinene, α-pinene and eugenol on the growth of potential infectious endocarditis causing gram-positive bacteria. Braz. J. Pharm. Sci. 2007, 43, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Nissen, L.; Zatta, A.; Stefanini, I.; Grandi, S.; Sgorbati, B.; Biavati, B.; Monti, A. Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis sativa L.). Fitoterapia. 2010, 81, 413–419. [Google Scholar] [CrossRef]
- Gachkar, L.; Yadegari, D.; Rezaei, M.B.; Taghizadeh, M.; Astaneh, S.A.; Rasooli, I. Chemical and biological characteristics of Cuminum cyminum and Rosmarinus officinalis essential oils. Food Chem. 2007, 102, 898–904. [Google Scholar] [CrossRef]
- Utegenova, G.A.; Pallister, K.B.; Kushnarenko, S.V.; Özek, G.; Özek, T.; Abidkulova, K.T.; Kirpotina, L.N.; Schepetkin, I.A.; Quinn, M.T.; Voyich, J.M. Chemical Composition and Antibacterial Activity of Essential Oils from Ferula L. Species against Methicillin-Resistant Staphylococcus aureus. Molecules 2018, 23, 1679. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, Z.W.; Yin, Z.Q.; Wei, Q.; Jia, R.Y.; Zhou, L.J.; Xu, J.; Song, X.; Zhou, Y.; Du, Y.H.; et al. Antibacterial activity of leaf essential oil and its constituents from Cinnamomum longepaniculatum. Int. J. Clin. Exp. Med. 2014, 7, 1721–1727. [Google Scholar] [PubMed]
- Santoyo, S.; Cavero, S.; Jaime, L.; Ibanez, E.; Senorans, F.J.; Reglero, G. Chemical composition and antimicrobial activity of Rosmarinus officinalis L. essential oil obtained via supercritical fluidextraction. J. Food Protect. 2005, 68, 790–795. [Google Scholar] [CrossRef] [PubMed]
- Paharik, A.E.; Horswill, A.R. The Staphylococcal Bioflm: Adhesins, Regulation, and Host Response. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Tenke, P.; Kovacs, B.; Jackel, M.; Nagy, E. The role of biofilm infection in urology. World J. Urol. 2006, 24, 13–20. [Google Scholar] [CrossRef]
- Bose, S.K.; Chauhan, M.; Dhingra, N.; Chhibber, S.; Harjai, K. Terpinen-4-ol attenuates quorum sensing regulated virulence factors and biofilm formation in Pseudomonas aeruginosa. Future Microbiol. 2020, 15, 127–142. [Google Scholar] [CrossRef]
- Bordini, E.A.F.; Toron, C.C.; Francisconi, R.S.; Magalhães, F.A.C.; Huacho, P.M.M.; Bedran, T.L.; Pratavieira, S.; Spolidorio, L.C.; Spolidorio, D.P. Antimicrobial effects of terpinen-4-ol against oral pathogens and its capacity for the modulation of gene expression. Biofouling 2018, 34, 815–825. [Google Scholar] [CrossRef] [PubMed]
- Maquera-Huacho, P.M.; Tonon, C.C.; Correia, M.F.; Francisconi, R.S.; Bordini, E.A.F.; Marcantonio, É.; Spolidorio, D.M.P. In vitro antibacterial and cytotoxic activities of carvacrol and terpinen-4-ol against biofilm formation on titanium implant surfaces. Biofouling 2018, 34, 699–709. [Google Scholar] [CrossRef] [Green Version]
- Nostro, A.; Roccaro, A.S.; Bisignano, G.; Marino, A.; Cannatelli, M.A.; Pizzimenti, F.C.; Cioni, P.L.; Procopio, F.; Blanco, A.R. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J. Med. Microbiol. 2007, 56, 519–523. [Google Scholar] [CrossRef]
- Karpanen, T.J.; Worthington, T.; Hendry, E.R.; Conway, B.R.; Lambert, P.A. Antimicrobial efficacy of chlorhexidine digluconate alone and in combination with eucalyptus oil, tea tree oil and thymol against planktonic and biofilm cultures of Staphylococcus epidermidis. J. Antimicrob. Chemother. 2008, 62, 1031–1036. [Google Scholar] [CrossRef]
- Hendry, E.R.; Worthington, T.; Conway, B.R.; Lambert, P.A. Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures. J. Antimicrob. Chemother. 2009, 64, 1219–1225. [Google Scholar] [CrossRef]
- Nuryastuti, T.; van der Mei, H.C.; Busscher, H.J.; Iravati, S.; Aman, A.T.; Krom, B.P. Effect of cinnamon oil on icaA expression and biofilm formation by Staphylococcus epidermidis. Appl. Environ. Microbiol. 2009, 75, 6850–6855. [Google Scholar] [CrossRef] [Green Version]
- Ceylan, O.; Uğur, A.; Saraç, N.; Ozcan, F.; Baygar, T. The in vitro antibiofilm activity of Rosmarinus officinalis L. essential oil against multiple antibiotic resistant Pseudomonas sp. and Staphylococcus sp. J. Food Agric. Environ. 2014, 12, 82–86. [Google Scholar]
- Murray, P.; Jorgenson, J.H.; Pfaller, M.A.M.; Yolken, R.H. Manual of Clinical Microbiology, 8th ed.; ASM Press: Washington, DC, USA, 2003. [Google Scholar]
- Andrews, J.M.; Howe, R.A. BSAC standardized disc susceptibility testing method (version 10). J. Antimicrob. Chemother. 2011, 66, 2726–2757. [Google Scholar] [CrossRef] [Green Version]
- Gooréa, S.G.; Ouattara, Z.A.; Yapi, A.T.; Békro, Y.A.; Bighelli, A.; Paoli, M.; Tomi, F. Chemical composition of the leaf oil of Artabotrys jollyanus from Côte d’Ivoire. Rev. Bras. Farmacogn. 2017, 27, 414–418. [Google Scholar] [CrossRef]
- Bagamboula, C.; Uyttendaele, M.; Debevere, J. Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. J. Food microbiol. 2004, 21, 33–42. [Google Scholar] [CrossRef]
- El-Deeb, B.; Elhariry, H.; Mostafa, N.Y. Antimicrobial Activity of Silver and Gold Nanoparticles Biosynthesized Using Ginger Extract. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 1085. [Google Scholar]
- Gulluce, M.; Sahin, F.; Sokmen, M. Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. Food Chem. 2007, 103, 1449–1456. [Google Scholar] [CrossRef]
- Oulkheir, S.; Aghrouch, M.; El Mourabit, F.; Dalha, F.; Graich, H.; Amouch, F.; Ouzaid, K.; Moukale, A.; Chadli, S. Antibacterial Activity of Essential Oils Extracts from Cinnamon, Thyme, Clove and Geranium against a Gram Negative and Gram-Positive Pathogenic Bacteria. J. Dis. Med. Plants 2017, 3, 1–5. [Google Scholar]
- Ben Abdallah, F.; Chaieb, K.; Zmantar, T.; Kallel, H.; Bakhrouf, A. Adherence assays and Slime production of Vibrio alginolyticus and Vibrio parahaemolyticus. Braz. J. Microbiol. 2009, 40, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, S.; Shah, R.; Bhave, M.; Palombo, E.A. Inhibitory activity of yarrow essential oil on Listeria planktonic cells and biofilms. J. Food Control 2013, 29, 125–130. [Google Scholar] [CrossRef]
Components | O. majorana (%) [13] | T. zygis (%) [13] | R. officinalis (%) |
---|---|---|---|
α-Pinene | 0.46 | 3.6 | 37.7 |
Sabinene | 8 | 0.84 | |
β-Pinene | 1.4 | 0.33 | 1.1 |
β-Myrcene | 1.1 | 8.6 | |
α-phellandrene | 0.30 | 0.48 | |
Limonene | 3.5 | 2.6 | 4.1 |
Terpinen-4-ol | 25.9 | 11.7 | |
Bornyl acetate | 0.07 | 9.1 | |
β-Caryophyllene | 2.3 | 1.6 | |
α-Thujene | 0.33 | 0.21 | |
Camphene | 0.03 | 0.74 | 7.3 |
α-Terpinene | 7.7 | 4.2 | |
p-Cymene | 3.4 | 2.2 | |
1,8-Cineole | 0.15 | 4.7 | |
γ-Terpinene | 16.9 | 7.6 | |
Terpinolene | 1.7 | 2 | |
Linalool | 10.9 | 39.7 | 1.8 |
Borneol | 1.9 | 5.5 | |
α-Terpineol | 2.5 | 1.7 | |
Camphor | 0.22 | 5.2 | |
α-Humulene | 0.05 | ||
cis and trans-thujan-4-ol | 2.2–2.3 | 0.88–2.2 | |
cis and trans piperitol | 0.13–0.18 | 0.13–0.08 | |
Linalyl acetate | 7 | 0.5 | |
Carvacrol | 0.03 | 0.08 | |
Thymol | 0.05 | 0.52 | |
Bicyclogermacrene | 0.41 | 0.16 | |
Cis and trans-p-menth-2-en-1-ol | 0.59–0.32 | 0.37–0.25 | |
Caryophyllene oxide | 0.04 | ||
Ocimene | 0.07 | ||
Spathulenol | 0.01 | ||
cis-Dihydrocarvone | 0.17 | ||
trans-Dihydrocarvone | 0.2 | ||
Verbenone | 5.4 |
Essential Oils | Inhibitory Action | ||||
---|---|---|---|---|---|
Strong n (%) | Complete n (%) | Partial n (%) | Slight n (%) | No Action n (%) | |
O. majorana | 16 (53.33%) | 11 (36.66%) | 3 (10%) | ||
T. zygis | 24 (80%) | 6 (20%) | |||
R. officinalis | 5 (16.66%) | 5 (16.66%) | 6 (20%) | 14 (46.66%) |
Isolates | Specimen | OD570 ± SD | Biofilm Formation |
---|---|---|---|
1 | Burn | 0.24 ± 0.026 | low-grade positive |
2 | Blood | 2.609 ± 0.088 | highly positive |
3 | SST | 3.635 ± 0.052 | highly positive |
4 | SST | 1.437 ± 0.074 | highly positive |
5 | Nasal | 1.175 ± 0.03 | highly positive |
6 | SSI | 0.147 ± 0.028 | low-grade positive |
7 | SST | 0.135 ± 0.031 | low-grade positive |
8 | Burn | 1.971 ± 0.049 | highly positive |
9 | Nasal | 0.19 ± 0.079 | low-grade positive |
10 | Nasal | 1.378 ± 0.06 | highly positive |
11 | SST | 0.194 ± 0.075 | low-grade positive |
12 | SST | 1.554 ± 0.086 | highly positive |
13 | SST | 0.305 ± 0.021 | low-grade positive |
14 | Nasal | 2.157 ± 0.071 | highly positive |
15 | Nasal | 0.045 ± 0.007 | Negative |
16 | SST | 0.198 ± 0.078 | low-grade positive |
17 | SSI | 0.87 ± 0.023 | low-grade positive |
18 | Nasal | 0.221 ± 0.048 | low-grade positive |
19 | Burn | 0.428 ± 0.068 | low-grade positive |
20 | Nasal | 0.745 ± 0.018 | low-grade positive |
21 | Nasal | 0.319 ± 0.012 | low-grade positive |
22 | SST | 0.233 ± 0.087 | low-grade positive |
23 | SST | 0.788 ± 0.027 | low-grade positive |
24 | SSI | 0.642 ± 0.028 | low-grade positive |
25 | SST | 1.836 ± 0.038 | highly positive |
26 | Burn | 2.696 ± 0.054 | highly positive |
27 | SST | 0.418 ± 0.056 | low-grade positive |
28 | Burn | 0.438 ± 0.067 | low-grade positive |
29 | SSI | 0.113 ± 0.045 | low-grade positive |
30 | SST | 2.308 ± 0.039 | highly positive |
ATCC 25923 | 3.36 ± 0.098 | highly positive |
Isolates | Control OD570 ± SD | O. majorana OD570 ± SD | Inhibition (%) | T. zygis OD570 ± SD | Inhibition (%) | R. officinalis OD570 ± SD | Inhibition (%) |
---|---|---|---|---|---|---|---|
1 | 0.24 ± 0.026 | 0.061 ± 0.004 * | 74.58 | 0.112 ± 0.015 | 53.33 | 0.238 ± 0.028 | 0 |
2 | 2.609 ± 0.088 | 2.603 ± 0.093 | 0 | 2.61 ± 0.019 | 0 | 2.595 ± 0.098 | 0 |
3 | 3.635 ± 0.052 | 2.701 ± 0.082 | 25.69 | 3.658 ± 0.01 | 0 | 2.744 ± 0.066 | 24.51 |
4 | 1.437 ± 0.074 | 0.131 ± 0.038 ** | 90.88 | 0.965 ± 0.022 ** | 32.84 | 0.728 ± 0.084 ** | 49.33 |
5 | 1.175 ± 0.03 | 0.048 ± 0.006 *** | 95.91 | 0.1 ± 0.038 ** | 91.48 | 0.051 ± 0.004 *** | 95.65 |
6 | 0.147 ± 0.028 | 0.03 ± 0.008 * | 79.59 | 0.124 ± 0.043 | 15.64 | 0.132 ± 0.023 | 10.20 |
7 | 0.135 ± 0.031 | 0.114 ± 0.023 | 15.55 | 0.136 ± 0.073 | 0 | 0.134 ± 0.011 | 0 |
8 | 1.971 ± 0.049 | 0.105 ± 0.018 ** | 94.67 | 0.239 ± 0.088 ** | 87.87 | 0.346 ± 0.018 ** | 82.44 |
9 | 0.19 ± 0.079 | 0.049 ± 0.009 * | 74.21 | 0.138 ± 0.043 | 27.36 | 0.146 ± 0.093 | 23.15 |
10 | 1.378 ± 0.06 | 1.387 ± 0.038 | 0 | 1.369 ± 0.054 | 0 | 0.828 ± 0.082 ** | 39.91 |
11 | 0.194 ± 0.075 | 0.02 ± 0.005 * | 89.69 | 0.142 ± 0.058 | 26.80 | 0.111 ± 0.044 | 42.78 |
12 | 1.554 ± 0.086 | 0.162 ± 0.077 ** | 89.57 | 0.22 ± 0.077 ** | 85.84 | 0.17 ± 0.023 ** | 89.06 |
13 | 0.305 ± 0.021 | 0.027 ± 0.006 * | 91.14 | 0.303 ± 0.032 | 0 | 0.301 ± 0.069 | 0 |
14 | 2.157 ± 0.071 | 1.935 ± 0.014 | 10.29 | 2.154 ± 0.04 | 0 | 1.724 ± 0.092 | 20.07 |
16 | 0.198 ± 0.078 | 0.038 ± 0.009 * | 80.80 | 0.072 ± 0.008 * | 63.63 | 0.053 ± 0.006 * | 73.23 |
17 | 0.87 ± 0.023 | 0.043 ± 0.017 * | 95.05 | 0.124 ± 0.089 | 85.74 | 0.16 ± 0.026 | 81.60 |
18 | 0.221 ± 0.048 | 0.105 ± 0.028 | 52.48 | 0.142 ± 0.037 | 35.74 | 0.122 ± 0.038 | 44.79 |
19 | 0.428 ± 0.068 | 0.053 ± 0.039 | 87.61 | 0.095 ± 0.002 * | 77.80 | 0.226 ± 0.077 | 47.19 |
20 | 0.745 ± 0.018 | 0.055 ± 0.033 * | 92.61 | 0.11 ± 0.082 | 85.23 | 0.562 ± 0.065 | 24.56 |
21 | 0.319 ± 0.012 | 0.072 ± 0.013 * | 77.42 | 0.317 ± 0.075 | 0 | 0.085 ± 0.004 * | 73.35 |
22 | 0.233 ± 0.087 | 0.231 ± 0.032 | 0 | 0.131 ± 0.012 | 43.77 | 0.089 ± 0.003 * | 61.80 |
23 | 0.788 ± 0.027 | 0.554 ± 0.065 | 29.69 | 0.696 ± 0.028 | 11.67 | 0.465 ± 0.073 | 40.98 |
24 | 0.642 ± 0.028 | 0.192 ± 0.013 | 70.09 | 0.639 ± 0.087 | 0 | 0.241 ± 0.053 | 62.461 |
25 | 1.836 ± 0.038 | 1.325 ± 0.078 | 27.83 | 1.84 ± 0.042 | 0 | 1.821 ± 0.096 | 0 |
26 | 2.696 ± 0.054 | 2.196 ± 0.04 | 18.54 | 2.206 ± 0.07 | 18.17 | 2.012 ± 0.014 | 25.37 |
27 | 0.418 ± 0.056 | 0.254 ± 0.068 | 39.23 | 0.415 ± 0.069 | 0 | 0.065 ± 0.008 * | 84.44 |
28 | 0.438 ± 0.067 | 0.034 ± 0.005 * | 92.23 | 0.217 ± 0.016 | 50.45 | 0.069 ± 0.002 * | 84.24 |
29 | 0.113 ± 0.045 | 0.11 ± 0.022 | 0 | 0.016 ± 0.006 * | 85.84 | 0.114 ± 0.032 | 0 |
30 | 2.308 ± 0.039 | 1.533 ± 0.055 | 33.57 | 2.306 ± 0.086 | 0 | 0.907 ± 0.048 ** | 60.70 |
ATCC 25922 | 3.36 ± 0.098 | 1.838 ± 0.066 | 45.29 | 3.352 ± 0.014 | 0 | 3.345 ± 0.029 | 0 |
Isolates | Control OD570 ± SD | O. majorana OD570 ± SD | Eradication (%) | T. zygis OD570 ± SD | Eradication (%) | R. officinalis OD570 ± SD | Eradication (%) |
---|---|---|---|---|---|---|---|
1 | 0.418 ± 0.024 | 0.417 ± 0.015 | 0 | 0.415 ± 0.019 | 0 | 0.413 ± 0.021 | 0 |
2 | 3.13 ± 0.096 | 1.754 ± 0.055 | 43.96 | 1.626 ± 0.06 | 48.05 | 2.709 ± 0.084 | 13.45 |
3 | 4.362 ± 0.086 | 2.92 ± 0.071 | 33.05 | 3.468 ± 0.091 | 20.49 | 2.15 ± 0.079 | 50.71 |
4 | 1.939 ± 0.078 | 1.941 ± 0.069 | 0 | 1.931 ± 0.074 | 0 | 1.115 ± 0.063 | 42.49 |
5 | 1.41 ± 0.088 | 0.237 ± 0.025 ** | 83.19 | 0.079 ± 0.008 *** | 94.39 | 0.103 ± 0.011 ** | 92.69 |
6 | 0.176 ± 0.016 | 0.078 ± 0.005 * | 55.68 | 0.061 ± 0.004 * | 65.34 | 0.131 ± 0.018 | 25.56 |
7 | 0.189 ± 0.012 | 0.185 ± 0.013 | 0 | 0.191 ± 0.015 | 0 | 0.186 ± 0.015 | 0 |
8 | 2.465 ± 0.083 | 0.37 ± 0.045 ** | 84.98 | 2.153 ± 0.079 | 12.65 | 1.143 ± 0.059 | 53.63 |
9 | 0.304 ± 0.056 | 0.308 ± 0.021 | 0 | 0.309 ± 0.022 | 0 | 0.302 ± 0.024 | 0 |
10 | 1.722 ± 0.066 | 0.386 ± 0.027 ** | 77.58 | 1.074 ± 0.055 | 37.63 | 0.174 ± 0.014 ** | 89.89 |
11 | 0.269 ± 0.013 | 0.262 ± 0.016 | 0 | 0.265 ± 0.025 | 0 | 0.271 ± 0.02 | 0 |
12 | 2.334 ± 0.073 | 0.687 ± 0.032 ** | 70.56 | 1.356 ± 0.058 | 41.90 | 2.328 ± 0.026 | 0 |
13 | 0.433 ± 0.026 | 0.431 ± 0.026 | 0 | 0.436 ± 0.031 | 0 | 0.43 ± 0.032 | 0 |
14 | 2.617 ± 0.078 | 0.052 ± 0.003 *** | 98.01 | 2.614 ± 0.082 | 0 | 2.609 ± 0.079 | 0 |
16 | 0.286 ± 0.034 | 0.287 ± 0.02 | 0 | 0.281 ± 0.015 | 0 | 0.288 ± 0.019 | 0 |
17 | 1.249 ± 0.028 | 1.247 ± 0.063 | 0 | 1.241 ± 0.068 | 0 | 1.244 ± 0.064 | 0 |
18 | 0.298 ± 0.011 | 0.292 ± 0.018 | 0 | 0.294 ± 0.016 | 0 | 0.296 ± 0.023 | 0 |
19 | 0.676 ± 0.026 | 0.679 ± 0.039 | 0 | 0.671 ± 0.029 | 0 | 0.674 ± 0.038 | 0 |
20 | 0.894 ± 0.045 | 0.448 ± 0.028 | 49.88 | 0.613 ± 0.036 | 31.43 | 0.584 ± 0.034 | 34.67 |
21 | 0.516 ± 0.068 | 0.514 ± 0.04 | 0 | 0.513 ± 0.031 | 0 | 0.517 ± 0.041 | 0 |
22 | 0.319 ± 0.022 | 0.313 ± 0.024 | 0 | 0.317 ± 0.024 | 0 | 0.314 ± 0.021 | 0 |
23 | 1.194 ± 0.039 | 1.19 ± 0.052 | 0 | 1.195 ± 0.057 | 0 | 1.192 ± 0.051 | 0 |
24 | 0.808 ± 0.027 | 0.801 ± 0.048 | 0 | 0.805 ± 0.044 | 0 | 0.81 ± 0.046 | 0 |
25 | 2.249 ± 0.069 | 2.245 ± 0.069 | 0 | 1.824 ± 0.072 | 18.89 | 1.806 ± 0.058 | 19.69 |
26 | 3.396 ± 0.094 | 1.674 ± 0.049 | 50.70 | 1.785 ± 0.058 | 47.43 | 2.025 ± 0.06 | 40.37 |
27 | 0.568 ± 0.021 | 0.561 ± 0.034 | 0 | 0.567 ± 0.039 | 0 | 0.564 ± 0.039 | 0 |
28 | 0.535 ± 0.019 | 0.437 ± 0.025 | 18.31 | 0.337 ± 0.03 | 37 | 0.081 ± 0.006 * | 84.85 |
29 | 0.133 ± 0.011 | 0.134 ± 0.019 | 0 | 0.136 ± 0.026 | 0 | 0.132 ± 0.011 | 0 |
30 | 2.989 ± 0.083 | 0.348 ± 0.023 ** | 88.35 | 1.342 ± 0.056 | 55.10 | 1.756 ± 0.053 | 41.25 |
ATCC 25922 | 4.32 ± 0.098 | 2.796 ± 0.085 | 35.27 | 1.972 ± 0.068 | 54.35 | 2.577 ± 0.087 | 40.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Abdallah, F.; Lagha, R.; Gaber, A. Biofilm Inhibition and Eradication Properties of Medicinal Plant Essential Oils against Methicillin-Resistant Staphylococcus aureus Clinical Isolates. Pharmaceuticals 2020, 13, 369. https://doi.org/10.3390/ph13110369
Ben Abdallah F, Lagha R, Gaber A. Biofilm Inhibition and Eradication Properties of Medicinal Plant Essential Oils against Methicillin-Resistant Staphylococcus aureus Clinical Isolates. Pharmaceuticals. 2020; 13(11):369. https://doi.org/10.3390/ph13110369
Chicago/Turabian StyleBen Abdallah, Fethi, Rihab Lagha, and Ahmed Gaber. 2020. "Biofilm Inhibition and Eradication Properties of Medicinal Plant Essential Oils against Methicillin-Resistant Staphylococcus aureus Clinical Isolates" Pharmaceuticals 13, no. 11: 369. https://doi.org/10.3390/ph13110369
APA StyleBen Abdallah, F., Lagha, R., & Gaber, A. (2020). Biofilm Inhibition and Eradication Properties of Medicinal Plant Essential Oils against Methicillin-Resistant Staphylococcus aureus Clinical Isolates. Pharmaceuticals, 13(11), 369. https://doi.org/10.3390/ph13110369