Modulation of the Immune Response by Deferasirox in Myelodysplastic Syndrome Patients
Abstract
:1. Introduction
2. Results
2.1. Effect of Iron Overload on Gene Expression Regulation in MDS Patients
2.2. Effect of Iron Chelation on Gene Expression Regulation in MDS Patients Treated with DFX
2.3. Validation of the Array Data by RT-qPCR
3. Discussion
4. Materials and Methods
4.1. Patients and Samples
4.2. Cell Separation and RNA Extraction
4.3. Cytogenetic Analysis
4.4. Gene Expression Profiling
4.5. Mutational Screening
4.6. Real-Time Quantitative PCR
4.7. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hellström-Lindberg, E. Management of anemia associated with myelodysplastic syndrome. Semin. Hematol. 2005, 42, S10–S13. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M.; Gore, S.D.; Zeidan, A.M. Iron chelation therapy in myelodysplastic syndromes: Where do we stand? Expert Rev. Hematol. 2013, 6, 397–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Yang, N.; Meng, S.; Zhang, Y.; Zhang, H.; Zhang, W. Iron chelation therapy for myelodysplastic syndrome: A systematic review and meta-analysis. Clin. Exp. Med. 2020, 20, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Vreugdenhil, G.; Smeets, M.; Feelders, R.A.; van Eijk, H.G. Iron chelators may enhance erythropoiesis by increasing iron delivery to haematopoietic tissue and erythropoietin response in iron-loading anaemia. Acta Haematol. 1993, 89, 57–60. [Google Scholar] [CrossRef]
- Kamihara, Y.; Takada, K.; Sato, T.; Kawano, Y.; Murase, K.; Arihara, Y.; Kikuchi, S.; Hayasaka, N.; Usami, M.; Iyama, S.; et al. The iron chelator deferasirox induces apoptosis by targeting oncogenic Pyk2/β-catenin signaling in human multiple myeloma. Oncotarget 2016, 7, 64330–64341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lui, G.Y.; Kovacevic, Z.; Richardson, V.; Merlot, A.M.; Kalinowski, D.S.; Richardson, D.R. Targeting cancer by binding iron: Dissecting cellular signalling pathways. Oncotarget 2015, 6, 18748–18779. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, A.; Mifsud, N.A.; Bird, R.; Forsyth, C.; Szer, J.; Tam, C.; Kellner, S.; Grigg, A.; Motum, P.; Bentley, M.; et al. The oral iron chelator deferasirox inhibits NF-κB mediated gene expression without impacting on proximal activation: Implications for myelodysplasia and aplastic anaemia. Br. J. Haematol. 2015, 168, 576–582. [Google Scholar] [CrossRef]
- Sánchez, J.; Lumbreras, E.; Díez-Campelo, M.; González, T.; López, D.A.; Abáigar, M.; Del Rey, M.; Martín, A.Á.; de Paz, R.; Erquiaga, S.; et al. Genome-wide transcriptomics leads to the identification of deregulated genes after deferasirox therapy in low-risk MDS patients. Pharm. J. 2020, 20, 664–671. [Google Scholar] [CrossRef]
- Ohyashiki, J.H.; Kobayashi, C.; Hamamura, R.; Okabe, S.; Tauchi, T.; Ohyashiki, K. The oral iron chelator deferasirox represses signaling through the mTOR in myeloid leukemia cells by enhancing expression of REDD1. Cancer Sci. 2009, 10, 970–977. [Google Scholar] [CrossRef]
- Leitch, H.A.; Gattermann, N. Hematologic improvement with iron chelation therapy in myelodysplastic syndromes: Clinical data, potential mechanisms, and outstanding questions. Crit. Rev. Oncol. Hematol. 2019, 141, 54–72. [Google Scholar] [CrossRef]
- Messa, E.; Carturan, S.; Maffè, C.; Pautasso, M.; Bracco, E.; Roetto, A.; Messa, F.; Arruga, F.; Defilippi, I.; Rosso, V.; et al. Deferasirox is a powerful NF-kappaB inhibitor in myelodysplastic cells and in leukemia cell lines acting independently from cell iron deprivation by chelation and reactive oxygen species scavenging. Haematologica 2010, 95, 1308–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeifhofer-Obermair, C.; Tymoszuk, P.; Petzer, V.; Weiss, G.; Nairz, M. Iron in the Tumor Microenvironment-Connecting the Dots. Front. Oncol. 2018, 8, 549. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Sheng, X.; Chang, Z.; Wu, Q.; Wang, S.; Xuan, Z.; Li, D.; Wu, Y.; Shang, Y.; Kong, X.; et al. Iron metabolism regulates p53 signaling through direct heme-p53 interaction and modulation of p53 localization, stability, and function. Cell Rep. 2014, 7, 180–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, S.X.; Richardson, D.R. The effect of potent iron chelators on the regulation of p53: Examination of the expression, localization and DNA-binding activity of p53 and the transactivation of WAF1. Carcinogenesis 2003, 24, 1601–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Lin, J.C.; Piluso, L.G.; Dhahbi, J.M.; Bobadilla, S.; Spindler, S.; Liu, X. Phosphorylation of p53 by TAF1 inactivates p53-dependent transcription in the DNA damage response. Mol. Cell. 2014, 53, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Pellagatti, A.; Marafioti, T.; Paterson, J.C.; Malcovati, L.; Della Porta, M.G.; Jädersten, M.; Pushkaran, B.; George, T.I.; Arber, D.A.; Killick, S.; et al. Marked downregulation of the granulopoiesis regulator LEF1 is associated with disease progression in the myelodysplastic syndromes. Br. J. Haematol. 2009, 146, 86–90. [Google Scholar] [CrossRef]
- Toma, A.; Fenaux, P.; Dreyfus, F.; Cordonnier, C. Infections in myelodysplastic syndromes. Haematologica 2012, 97, 1459–1470. [Google Scholar] [CrossRef]
- Wong, C.A.C.; Wong, S.A.Y.; Leitch, H.A. Iron overload in lower international prognostic scoring system risk patients with myelodysplastic syndrome receiving red blood cell transfusions: Relation to infections and possible benefit of iron chelation therapy. Leuk. Res. 2018, 67, 75–81. [Google Scholar] [CrossRef]
- Walter, P.; Ron, D. The unfolded protein response: From stress pathway to homeostatic regulation. Science 2011, 334, 1081–1086. [Google Scholar] [CrossRef] [Green Version]
- Brissot, E.; Bernard, D.G.; Loréal, O.; Brissot, P.; Troadec, M.B. Too much iron: A masked foe for leukemias. Blood Rev. 2020, 39, 100617. [Google Scholar] [CrossRef]
- Befus, A.D.; Mowat, C.; Gilchrist, M.; Hu, J.; Solomon, S.; Bateman, A. Neutrophil defensins induce histamine secretion from mast cells: Mechanisms of action. J. Immunol. 1999, 163, 947–953. [Google Scholar] [PubMed]
- Territo, M.C.; Ganz, T.; Selsted, M.E.; Lehrer, R.I. Monocyte-chemotactic activity of defensins from human neutrophils. J. Clin. Investig. 1989, 84, 2017–2020. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Chen, Q.; Chertov, O.; Oppenheim, J.J. Human neutrophil defensins selectively chemoattract naïve T and immature dendritic cells. J. Leukoc. Biol. 2000, 68, 9–14. [Google Scholar] [PubMed]
- Chertov, O.; Michiel, D.F.; Xu, L.; Wang, J.M.; Tani, K.; Murphy, W.J.; Longo, D.L.; Taub, D.D.; Oppenheim, J.J. Identification of defensin-1, defensin-2 and CAP37/azurocidin as T cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J. Biol. Chem. 1996, 271, 2935–2940. [Google Scholar] [CrossRef] [Green Version]
- Miles, K.; Clarke, D.J.; Lu, W.; Sibinska, Z.; Beaumont, P.E.; Davidson, D.J.; Barr, T.A.; Campopiano, D.J.; Gray, M. Dying and necrotic neutrophils are anti-inflammatory secondary to the release of alpha-defensins. J. Immunol. 2009, 183, 2122–2132. [Google Scholar] [CrossRef]
- Brook, M.; Tomlinson, G.H.; Miles, K.; Smith, R.W.; Rossi, A.G.; Hiemstra, P.S.; van′t Wout, E.F.; Dean, J.L.; Gray, N.K.; Lu, W.; et al. Neutrophil-derived alpha defensins control inflammation by inhibiting macrophage mRNA translation. Proc. Natl. Acad. Sci. USA. 2016, 113, 4350–4355. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.K.; Wong, C.C.; Li, Z.J.; Zhang, L.; Ren, S.X.; Cho, C.H. Cathelicidins in inflammation and tissue repair: Potential therapeutic applications for gastrointestinal disorders. Acta Pharmacol. Sin. 2010, 31, 1118–1122. [Google Scholar] [CrossRef]
- Parlato, M.; Souza-Fonseca-Guimaraes, F.; Philippart, F.; Misset, B.; Captain Study Group; Adib-Conquy, M.; Cavaillon, J.M. CD24-triggered caspase-dependent apoptosis via mitochondrial membrane depolarization and reactive oxygen species production of human neutrophils is impaired in sepsis. J. Immunol. 2014, 192, 2449–2459. [Google Scholar] [CrossRef] [Green Version]
- Kolaczkowska, E.; Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 2013, 13, 159–175. [Google Scholar] [CrossRef]
- Nakashige, T.G.; Zhang, B.; Krebs, C.; Nolan, E.M. Human calprotectin is an iron-sequestering host-defense protein. Nat. Chem. Biol. 2015, 11, 765–771. [Google Scholar] [CrossRef] [Green Version]
- Imamura, T.; Morimoto, A.; Takanashi, M.; Hibi, S.; Sugimoto, T.; Ishii, E.; Imashuku, S. Frequent co-expression of HoxA9 and Meis1 genes in infant acute lymphoblastic leukaemia with MLL rearrangement. Br. J. Haemat. 2002, 119, 119–121. [Google Scholar] [CrossRef]
- Nemeth, M.J.; Curtis, D.J.; Kirby, M.R.; Garrett-Beal, L.J.; Seidel, N.E.; Cline, A.P.; Bodine, D.M. Hmgb3: An HMG-box family member expressed in primitive hematopoietic cells that inhibits myeloid and B-cell differentiation. Blood 2003, 102, 1298–1306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Brand, N.J.; Chen, A.; Chen, S.J.; Tong, J.H.; Wang, Z.Y.; Waxman, S.; Zelent, A. Fusion between a novel Krüppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J. 1993, 12, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
- McConnell, M.J.; Chevallier, N.; Berkofsky-Fessler, W.; Giltnane, J.M.; Malani, R.B.; Staudt, L.M.; Licht, J.D. Growth suppression by acute promyelocytic leukemia-associated protein PLZF is mediated by repression of c-myc expression. Mol. Cell Biol. 2003, 23, 9375–9388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belickova, M.; Vesela, J.; Jonasova, A.; Pejsova, B.; Votavova, H.; Merkerova, M.D.; Zemanova, Z.; Brezinova, J.; Mikulenkova, D.; Lauermannova, M.; et al. TP53 mutation variant allele frequency is a potential predictor for clinical outcome of patients with lower-risk myelodysplastic syndromes. Oncotarget 2016, 7, 36266–36279. [Google Scholar] [CrossRef] [Green Version]
Hallmark Gene Set | NES | p-Value | FDR |
---|---|---|---|
TNFA SIGNALING VIA NF-κB | 1.98 | <0.001 | 0.001 |
INTERFERON ALPHA RESPONSE | 1.79 | 0.002 | 0.015 |
INTERFERON GAMMA RESPONSE | 1.76 | <0.001 | 0.014 |
PANCREAS BETA CELLS | −1.65 | 0.024 | 0.181 |
MITOTIC SPINDLE | −1.56 | 0.008 | 0.186 |
UNFOLDED PROTEIN RESPONSE | −1.55 | 0.014 | 0.138 |
Hallmark Gene Set | NES | p-Value | FDR |
---|---|---|---|
HEME METABOLISM | 2.43 | <0.001 | <0.001 |
XENOBIOTIC METABOLISM | 2.03 | <0.001 | <0.001 |
EPITHELIAL MESENCHYMAL TRANSITION | 1.93 | 0.001 | 0.001 |
INTERFERON ALPHA RESPONSE | −1.92 | <0.001 | 0.002 |
MYC TARGETS V2 | −1.52 | 0.026 | 0.096 |
TNFA SIGNALING VIA NF-κB | −1.42 | 0.035 | 0.131 |
Parameter | Group A | Group B | Group C | p-Value a |
---|---|---|---|---|
Total, n | 10 | 14 | 23 | |
Age (y), median (range) | 63 (28–75) | 70 (59–87) | 70 (30–82) | 0.12 |
Sex | 0.74 | |||
Male (%) | 4 (40) | 8 (57) | 13 (57) | |
Female (%) | 6 (60) | 6 (43) | 10 (43) | |
Bone marrow blasts (%), median (range) | 1.8 (0.2–12) | 3.0 (0–8) | 1.8 (0.4–6) | 0.49 |
Hemoglobin (g/L), median (range) | 82 (51–91) | 89 (52–107) | 84 (62–104) | 0.09 |
Platelet count (×109/L), median (range) | 277 (71–766) | 225 (33–1051) | 158 (11–734) | 0.17 |
ANC (×109/L), median (range) | 1.8 (1.0–4.3) | 3.1 (0.43–12.8) | 2.3 (0.4–4.9) | 0.24 |
Diagnosis, n | 0.54 | |||
MDS-RS | 2 | 2 | 1 | |
MDS del(5q) | 4 | 5 | 9 | |
MDS-MLD | 3 | 6 | 13 | |
MDS-EB | 1 | 1 | 0 | |
IPSS category | 0.56 | |||
Low | 4 | 7 | 8 | |
Intermediate 1 | 5 | 5 | 14 | |
Intermediate 2 | 1 | 2 | ||
IPSS-R category | 0.57 | |||
Very low/low | 8 | 7 | 14 | |
Intermediate | 1 | 6 | 8 | |
High | 1 | 1 | 1 | |
Cytogenetics b | 0.51 | |||
Very good/good (n) | 8 | 9 | 19 | |
Intermediate (n) | 2 | 4 | 4 | |
Poor (n) | 0 | 1 | 0 | |
Number of mutations, average (range) | 1.3 (0–6) | 1.0 (0–4) | 1.1 (0–4) | 0.88 |
Ferritin (ng/mL) | 281 (162–616) | 1579 (715–6889) | 1309 (359–3572) | <0.00 |
Duration of therapy at collection (months), median (range) | 14 (3.5–47.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Votavova, H.; Urbanova, Z.; Kundrat, D.; Dostalova Merkerova, M.; Vostry, M.; Hruba, M.; Cermak, J.; Belickova, M. Modulation of the Immune Response by Deferasirox in Myelodysplastic Syndrome Patients. Pharmaceuticals 2021, 14, 41. https://doi.org/10.3390/ph14010041
Votavova H, Urbanova Z, Kundrat D, Dostalova Merkerova M, Vostry M, Hruba M, Cermak J, Belickova M. Modulation of the Immune Response by Deferasirox in Myelodysplastic Syndrome Patients. Pharmaceuticals. 2021; 14(1):41. https://doi.org/10.3390/ph14010041
Chicago/Turabian StyleVotavova, Hana, Zuzana Urbanova, David Kundrat, Michaela Dostalova Merkerova, Martin Vostry, Monika Hruba, Jaroslav Cermak, and Monika Belickova. 2021. "Modulation of the Immune Response by Deferasirox in Myelodysplastic Syndrome Patients" Pharmaceuticals 14, no. 1: 41. https://doi.org/10.3390/ph14010041
APA StyleVotavova, H., Urbanova, Z., Kundrat, D., Dostalova Merkerova, M., Vostry, M., Hruba, M., Cermak, J., & Belickova, M. (2021). Modulation of the Immune Response by Deferasirox in Myelodysplastic Syndrome Patients. Pharmaceuticals, 14(1), 41. https://doi.org/10.3390/ph14010041