Multi-Target Approach of Murraya koenigii Leaves in Treating Neurodegenerative Diseases
Abstract
:1. Introduction
2. Phytochemistry of Murraya koenigii
3. Phytochemicals of Murraya koenigii and Their Role in Neurodegenerative Diseases
4. Clinical Studies
5. Toxicity of Murraya koenigii Leaves
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alzheimer’s Association Report. 2020 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2020, 16, 391–460. [CrossRef] [PubMed]
- Prince, M.; Guerchet, M.; Prina, M. World Alzheimer Report 2013; Alzheimer’s Disease International: London, UK, 2013. [Google Scholar]
- Dorsey, E.R.; Constantinescu, R.; Thompson, J.P.; Biglan, K.M.; Holloway, R.G.; Kieburtz, K.; Marshall, F.J.; Ravina, B.M.; Schifitto, G.; Siderowf, A.; et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 2007, 68, 384–386. [Google Scholar] [CrossRef] [PubMed]
- Hodjat, M.; Rahmani, S.; Khan, F.; Niaz, K.; Navaei–Nigjeh, M.; Nejad, S.M.; Abdollahi, M. Environmental toxicants, incidence of degenerative diseases, and therapies from the epigenetic point of view. Archiv. Toxicol. 2017, 91, 2577–2597. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef] [Green Version]
- Abushouk, A.I.; Negida, A.; Ahmed, H.; Abdel-Daim, M.M. Neuroprotective mechanisms of plant extracts against MPTP induced neurotoxicity: Future applications in Parkinson’s disease. Biomed. Pharmacother. 2017, 85, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Lin, Q.; Liang, Y. Plant-derived antioxidants protect the nervous system from aging by inhibiting oxidative stress. Front. Aging Neurosci. 2020, 12, 209. [Google Scholar] [CrossRef] [PubMed]
- Hussain, G.; Rasul, A.; Anwar, H.; Aziz, N.; Razzaq, A.; Wei, W.; Ali, M.; Li, J.; Li, X. Role of plant derived alkaloids and their mechanism in neurodegenerative disorders. Intern. J. Biol. Sci. 2018, 14, 341–357. [Google Scholar] [CrossRef] [Green Version]
- Prasansuklab, A.; Brimson, J.M.; Tencomnao, T. Potential Thai medicinal plants for NDss: A review focusing on the anti-glutamate toxicity effect. J. Tradit. Complement. Med. 2020, 10, 301–308. [Google Scholar] [CrossRef]
- Witter, S.; Witter, R.; Vilu, R.; Samoson, A. Medical plants and nutraceuticals for amyloid-β fibrillation inhibition. J. Alzheimers Dis. Rep. 2018, 2, 239–252. [Google Scholar] [CrossRef] [Green Version]
- Mittal, J. Curry Leaf (Murraya koenigii): A Spice with Medicinal Property. MOJ Biol. Med. 2017, 2, 236–256. [Google Scholar] [CrossRef] [Green Version]
- Husna, F.; Suyatna, F.D.; Arozal, W.; Poerwaningsih, E.H. Anti-diabetic potential of Murraya koenigii (L.) and its antioxidant capacity in nicotinamide-streptozotocin induced diabetic rats. Drug Res. 2018, 68, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Kesari, A.N.; Kesari, S.; Singh, S.K.; Gupta, R.K.; Watal, G. Studies on the glycemic and lipidemic effect of Murraya koenigii in experimental animals. J. Ethnopharm. 2007, 112, 305–311. [Google Scholar] [CrossRef]
- Lawal, H.; Atiku, M.K.; Khelpai, D.G.; Wannang, N.N. Hypoglycaemic and hypolipidaemic effects of the aqueous leaf extract of Murraya koenigii in normal and alloxan–diabetic rats. Niger. J. Physiol. Sci. 2008, 23, 37–40. [Google Scholar] [CrossRef] [Green Version]
- Phatak, R.S.; Khanwelkar, C.C.; Matule, S.M.; Datkhile, K.D.; Hendre, A.S. Antihyperlipidemic activity of Murraya koenigii leaves methanolic and aqueous extracts on serum lipid profile of high fat-fructose fed rats. Pharmacog. J. 2019, 11, 836–841. [Google Scholar] [CrossRef] [Green Version]
- Mahipal, P.; Pawar, R.S. Nephroprotective effect of Murraya koenigii on cyclophosphamide induced nephrotoxicity in rats. Asian Pac. J. Trop. Med. 2017, 10, 808–812. [Google Scholar] [CrossRef] [PubMed]
- Yankuzo, H.; Ahmed, Q.U.; Santosa, R.I.; Akter, S.F.; Talib, N.A. Beneficial effect of the leaves of Murraya koenigii (Linn.) Spreng (Rutaceae) on diabetes-induced renal damage in vivo. J. Ethnopharmacol. 2011, 135, 88–94. [Google Scholar] [CrossRef]
- Desai, S.N.; Patel, D.K.; Devkar, R.V.; Patel, P.V.; Ramachandran, A.V. Hepatoprotective potential of polyphenol rich extract of Murraya koenigii L.: An in vivo study. Food Chem. Toxicol. 2012, 50, 310–314. [Google Scholar] [CrossRef]
- Sathaye, S.; Bagul, Y.; Gupta, S.; Kaur, H.; Redkar, R. Hepatoprotective effects of aqueous leaf extract and crude isolates of Murraya koenigii against in vitro ethanol-induced hepatotoxicity model. Exp. Toxicol. Pathol. 2011, 63, 587–591. [Google Scholar] [CrossRef]
- Firdaus, S.B.; Ghosha, D.; Chattyopadhyay, A.; Duttaa, M.; Paul, S.; Janac, J.; Basua, A.; Bosea, G.; Lahiri, H.; Banerjee, B.; et al. Protective effect of antioxidant rich aqueous curry leaf (Murraya koenigii) extract against gastro-toxic effects of piroxicam in male Wistar rats. Toxicol. Rep. 2014, 1, 987–1003. [Google Scholar] [CrossRef] [Green Version]
- Kadam, S.H.; Dombe, S.; Naikwadi, P. Cardiovascular effects of aqueous extract of Murraya koenigii on isolated perfused frog heart preparation. J. Pharm. Res. 2011, 4, 462–463. [Google Scholar]
- Sandamali, J.A.; Hewawasam, R.P.; Jayatilaka, K.A.; Mudduwa, L.K. Cardioprotective potential of Murraya koenigii (L.) Spreng. leaf extract against doxorubicin-induced cardiotoxicity in rat. Evid.-Based Complement. Altern. Med. 2020, 2020, 6023737. [Google Scholar] [CrossRef] [Green Version]
- Ambreen, G.; Siddiq, A.; Hussain, K.; Hussain, A.S.; Naz, Z. Repeatedly heated mix vegetable oils induced atherosclerosis and effects of Murraya koenigii. BMC Complement. Med. Ther. 2020, 20, 222. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Chang, W.; Wang, C.; Mehendale, S.R.; Li, J.; Ambihaipahar, R.; et. al. Curry leaf (Murraya koenigii Spreng.) reduces blood cholesterol and glucose levels in ob/ob mice. Am. J. Chin. Med. 2006, 34, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Prakash, J. Studies on Indian green leafy vegetables for their antioxidant activity. Plant Foods Hum. Nutr. 2009, 64, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, M.P.; Pallaiyan, B.B.; Selvaraj, N. Chemical composition, antibacterial and antioxidant profile of essential oil from Murraya koenigii (L.) leaves. Avicenna J. Phytomed. 2014, 4, 200–214. [Google Scholar] [PubMed]
- Gupta, S.; George, M.; Singhal, M.; Sharma, G.N.; Garg, V. Leaves extract of Murraya koenigii Linn for anti-inflammatory and analgesic activity in animal models. J. Adv. Pharm. Technol. Res. 2010, 1, 68. [Google Scholar]
- Khurana, A.; Sikha, M.S.; Ramesh, K.; Venkatesh, P.; Godugu, C. Modulation of cerulein-induced pancreatic inflammation by hydroalcoholic extract of curry leaf (Murraya koenigii). Phytother. Res. 2019, 33, 1510–1525. [Google Scholar] [CrossRef]
- Muthumani, P.; Venkatraman, S.; Ramseshu, K.V.; Meera, R.; Devi, P.; Kameswari, B. Pharmacological studies of anticancer, anti-inflammatory activities of Murraya koenigii (Linn) Spreng in experimental animals. J. Pharm. Sci. Res. 2009, 1, 137–141. [Google Scholar]
- Pokala, N.; Sayeli, V. Evaluation of antipyretic activity of alcoholic extract of Murraya koenigii leaves in rabbits. Int. J. Basic Clin. Pharmacol. 2019, 8, 1577. [Google Scholar] [CrossRef]
- Adebajo, A.C.; Ayoola, O.F.; Iwalewa, E.O.; Akindahunsi, A.A.; Omisore, N.O.; Adewunmi, C.O.; Adenowo, T.K. Anti-trichomonal, biochemical and toxicological activities of methanolic extract and some carbazole alkaloids isolated from the leaves of Murraya koenigii growing in Nigeria. Phytomedicine 2006, 13, 246–254. [Google Scholar] [CrossRef]
- Ningappa, M.B.; Dhananjaya, B.L.; Dinesha, R.; Harsha, R.; Srinivas, L. Potent antibacterial property of APC protein from curry leaves (Murraya koenigii L.). Food Chem. 2010, 118, 747–750. [Google Scholar] [CrossRef]
- Thi Nguyen, T.; Diep, T.T.; Hoang, V.; Mai Vo, T.H.; Duus, F.; Ngoc Le, T. Investigation of curry leaf essential oils of Murraya koenigii Spreng. growing in the South of Vietnam. J. Essent. Oil-Bear. Plants 2012, 15, 1021–1029. [Google Scholar] [CrossRef]
- Tripathi, Y.; Anjum, N.; Rana, A. Chemical composition and in vitro antifungal and antioxidant activities of essential oil from Murraya koenigii (L.) Spreng. Leaves. Asian J. Biomed. Pharm. Sci. 2018, 8, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Dutta, D.; Satyavarapu, E.M.; Yadav, P.K.; Mandal, C.; Kar, S.; Mandal, C. Mahanine exerts in vitro and in vivo antileishmanial activity by modulation of redox homeostasis. Sci. Rep. 2017, 7, 4141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandal, S.; Nayak, A.; Kar, M.; Banerjee, S.K.; Das, A.; Upadhyay, S.N.; Singh, R.K.; Banerji, A.; Banerji, J. Antidiarrhoeal activity of carbazole alkaloids from Murraya koenigii Spreng (Rutaceae) seeds. Fitoterapia 2010, 81, 72–74. [Google Scholar] [CrossRef] [PubMed]
- Nagappan, T.; Segaran, T.C.; Wahid, M.E.; Ramasamy, P.; Vairappan, C.S. Efficacy of carbazole alkaloids, essential oil and extract of Murraya koenigii in enhancing subcutaneous wound healing in rats. Molecules 2012, 17, 14449–14463. [Google Scholar] [CrossRef] [Green Version]
- Tembhurne, S.V.; Sakarkar, D.M. Anti-obesity and hypoglycemic effect of ethanolic extract of Murraya koenigii (L.) leaves in high fatty diet rats. Asian Pac. J. Trop. Dis. 2012, 2, S166–S168. [Google Scholar] [CrossRef]
- Amna, U.; Halimatussakdiah, P.W.; Saidi, N.; Nasution, R. Evaluation of cytotoxic activity from Temurui (Murraya koenigii [Linn.] Spreng) leaf extracts against HeLa cell line using MTT assay. J. Adv. Pharm. Technol. Res. 2019, 10, 51–55. [Google Scholar] [CrossRef]
- Sanaye, M.; Pagare, N. Evaluation of antioxidant effect and anticancer activity against human glioblastoma (U373MG) cell lines of Murraya Koenigii. Pharmacog. J. 2016, 8, 220–225. [Google Scholar] [CrossRef] [Green Version]
- Yeap, S.K.; Abu, N.; Mohamad, N.E.; Beh, B.K.; Ho, W.Y.; Ebrahimi, S.; Yusof, H.M.; Ky, H.; Tan, S.W.; Alitheen, N.B. Chemopreventive and immunomodulatory effects of Murraya koenigii aqueous extract on 4T1 breast cancer cell-challenged mice. BMC Complement. Altern. Med. 2015, 4, 306. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.; Bandyopadhyay, T.K.; Bhattacharyya, A. Immunomodulatory effect of leaf extract of Murraya koenigii in diabetic mice. Immunopharmacol. Immunotoxicol. 2011, 33, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.S.; Wakade, A.S.; Juvekar, A.R. Immunomodulatory activity of methanolic extract of Murraya koenigii (L) Spreng. Leaves. Indian J. Exp. Biol. 2008, 46, 505–509. [Google Scholar] [PubMed]
- Ito, C.; Itoigawa, M.; Nakao, K.; Murata, T.; Tsuboi, M.; Kaneda, N.; Furukawa, H. Induction of apoptosis by carbazole alkaloids isolated from Murraya koenigii. Phytomedicine 2006, 13, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, K.; Samanta, S.K.; Tripathi, R.; Mallick, A.; Chandra, S.; Pal, B.C.; Shaha, C.; Mandal, C. Apoptotic effects of mahanine on human leukemic cells were mediated through crosstalk between Apo-1/Fas signaling and the Bid protein and via mitochondrial pathways. Biochem. Pharmacol. 2010, 79, 361–372. [Google Scholar] [CrossRef]
- Chen, M.; Yin, X.; Lu, C.; Chen, X.; Ba, H.; Cai, J.; Sun, J. Mahanine induces apoptosis, cell cycle arrest, inhibition of cell migration, invasion and PI3K/AKT/mTOR signalling pathway in glioma cells and inhibits tumor growth in vivo. Chem. Biol. Interact. 2019, 299, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Noolu, B.; Ajumeera, R.; Chauhan, A.; Nagalla, B.; Manchala, R.; Ismail, A. Murraya koenigii leaf extract inhibits proteasome activity and induces cell death in breast cancer cells. BMC Complement. Altern. Med. 2013, 13, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samanta, S.K.; Kandimalla, R.; Gogoi, B.; Dutta, K.N.; Choudhury, P.; Deb, P.K.; et. al. Phytochemical portfolio and anticancer activity of Murraya koenigii and its primary active component, mahanine. Pharmacol. Res. 2018, 129, 227–236. [Google Scholar] [CrossRef]
- Biswas, A.; Bhattacharya, S.; Dasgupta, S.; Kundu, R.; Roy, S.S.; Pal, B.C.; Bhattacharya, S. Insulin resistance due to lipid-induced signaling defects could be prevented by mahanine. Mol. Cell. Biochem. 2010, 336, 97–107. [Google Scholar] [CrossRef]
- Igara, C.E.; Omoboyowa, D.A.; Ahuchaogu, A.A.; Orji, N.U.; Ndukwe, M.K. Phytochemical and nutritional profile of Murraya koenigii (Linn) Spreng leaf. J. Pharmacog. Phytochem. 2016, 5, 7–9. [Google Scholar]
- Bhandari, P.R. Curry leaf (Murraya koenigii) or cure leaf: Review of its curative properties. J. Med. Nutr. Nutraceut. 2012, 1, 92–97. [Google Scholar] [CrossRef]
- Balakrishnan, R.; Vijayraja, D.; Jo, S.-H.; Ganesan, P.; Su-Kim, I.; Choi, D.-K. Medicinal profile, phytochemistry, and pharmacological activities of Murraya koenigii and its primary bioactive compounds. Antioxidants 2020, 9, 101. [Google Scholar] [CrossRef] [Green Version]
- Wei, R.; Ma, Q.; Zhong, G.; Su, Y.; Yang, J.; Wang, A.; Ji, T.; Guo, H.; Wang, M.; Jiang, P.; et al. Structural characterization, hepatoprotective and antihyperlipidemic activities of alkaloid derivatives from Murraya koenigii. Phytochem. Lett. 2020, 35, 135–140. [Google Scholar] [CrossRef]
- Abeysinghe, D.T.; Alwis, D.D.; Kumara, K.A.; Chandrika, U.G. Nutritive importance and therapeutics uses of three different varieties (Murraya koenigii, Micromelum minutum, and Clausena indica) of curry leaves: An updated review. Evid.-Based Complement. Altern. Med. 2021, 2021, 5523252. [Google Scholar] [CrossRef]
- Rana, V.S.; Juyal, J.P.; Blazquez, M.A. Chemical constituents of the volatile oil of Murraya koenigii leaves. Int. J. Aromather. 2004, 14, 23–25. [Google Scholar] [CrossRef]
- Nagappan, T.; Ramasamy, P.; Vairappan, C.S. Chemotaxonomical markers in essential oil of Murraya koenigii. Nat. Prod. Commun. 2012, 7, 1375–1378. [Google Scholar] [CrossRef] [Green Version]
- Rao, B.R. Curry Leaf (Murraya koenigii) Oils. In Essential Oils in Food Preservation, Flavor and Safety; Academic Press: Cambridge, MA, USA, 2016; pp. 385–394. [Google Scholar]
- Reddy, B.M.; Dhanapal, C.K.; Lakshmi, B.V.S. Anti-Alzheimer’s Activity of aqueous extract of leaves of Murraya koenigii in Aluminium chloride Induced Neurotoxicity in rats. Res. J. Pharm. Technol. 2019, 12, 1927–1934. [Google Scholar] [CrossRef]
- Gill, N.S.; Sharma, B. Study on antioxidant potential of Murraya koenigii leaves in wistar rats. Pak. J. Biol. Sci. 2013, 17, 126–129. [Google Scholar] [CrossRef]
- Rehana, D.; Mahendiran, D.; Kumar, R.S.; Rahiman, A.K. In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bioprocess Biosyst. Eng. 2017, 40, 943–957. [Google Scholar] [CrossRef]
- Reddy, M.B.; Dhanapal, C.K.; Lakshmi, B.V. Anti-Parkinson activity of aqueous extract of leaves of Murraya koenigii against paraquat-induced Parkinsonism in Wistar rats. Asian J. Pharm. Clin. Res. 2020, 13, 150–153. [Google Scholar]
- Azzubaid, M.S.; Al-Ani, I.M. Mnemonic and histopathological assessment of the neuroprotective effects of Murraya koenigii leaves extract in rats with partial global cerebral Ischaemia. IIUM Med. J. Malays. 2019, 18, 77–86. [Google Scholar] [CrossRef]
- Vasudevan, M.; Parle, M.; Sengottuvelu, S.; Shanmugapriya, T. Nootropic potential of Murraya koenigii leaves in rats. Orient. Phar. Exp. Med. 2008, 8, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Vasudevan, M.; Parle, M. Antiamnesic potential of Murraya koenigii leaves. Phytother. Res. 2009, 23, 308–316. [Google Scholar] [CrossRef]
- Mani, V.; Ramasamy, K.; Ahmad, A.; Parle, M.; Shah, S.A.A.; Majeed, A.B.A. Protective effects of total alkaloidal extract from Murraya koenigii leaves on experimentally induced dementia. Food Chem. Toxicol. 2012, 50, 1036–1044. [Google Scholar] [CrossRef]
- Mani, V.; Ramasamy, K.; Ahmad, A.; Wahab, S.N.; Jaafar, S.M.; Kek, T.L.; Salleh, M.; Majeed, A. Effects of the total alkaloidal extract of Murraya koenigii leaf on oxidative stress and cholinergic transmission in aged mice. Phytother. Res. 2013, 27, 46–53. [Google Scholar] [CrossRef]
- Azahan, N.; Mani, V.; Ramasamy, K.; Lim, S.; Alhowail, A.; Sajid, S.; Majeed, A. Neuroprotective potential of mahanimbine against lipopolysaccharides (LPS)-induced neuronal deficits on SK-N-SH cells and antioxidant potentials in ICR mice brain. J. Pharm. Res. Int. 2019, 31, 1–11. [Google Scholar] [CrossRef]
- Azahan, N.; Mani, V.; Ramasamy, K.; Lim, S.; James, R.; Alsharidah, M.; Alhowail, A.; Majeed, A. Mahanimbine-induced neuroprotection via cholinergic system and attenuated amyloidogenesis as well as neuroinflammation in lipopolysaccharides-induced mice. Pharmacog. Mag. 2020, 16, 57–63. [Google Scholar]
- Kumar, N.S.; Mukherjee, P.; Bhadra, S.; Saha, B.; Pla, B. Aceylcholinesterase inhibitory potential of a carbazole alkaloid, mahanimbine, from Murraya koenigii. Phytother. Res. 2010, 24, 629–631. [Google Scholar] [CrossRef]
- Balakrishnan, R.; Elangovan, N.; Mohankumar, T.; Nataraj, J.; Manivasagam, T.; Thenmozhi, A.J.; Essa, M.; Akbar, M.; Khan, M.S. Isolongifolene attenuates rotenone-induced mitochondrial dysfunction, oxidative stress and apoptosis. Front. Biosci. 2018, 10, 248–261. [Google Scholar]
- Balakrishnan, R.; Tamilselvam, K.; Sulthana, A.; Mohankumar, T.; Manimaran, D.; Elangovan, N. Isolongifolene attenuates oxidative stress and behavioral impairment in rotenone-induced rat model of Parkinson’s disease. Int. J. Nutr. Pharmacol. Neurol. Dis. 2018, 8, 53–58. [Google Scholar]
- Rangasamy, K.; Namasivayam, E. In vitro antioxidant and free radical scavenging activity of isolongifolene. Asian J. Biol. Sci. 2014, 7, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Nataraj, J.; Manivasagam, T.; Thenmozhi, A.J.; Essa, M.M. Neurotrophic effect of asiatic acid, a triterpene of Centella asiatica against chronic 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropyridine hydrochloride/probenecid mouse model of Parkinson’s disease: The role of MAPK, PI3K-Akt-GSK3β and mTOR signalling pathways. Neurochem. Res. 2017, 42, 1354–1365. [Google Scholar]
- Parekh, D.B.; Ziegler, W.; Parker, P.J. Multiple pathways control protein kinase C phosphorylation. EMBO J. 2000, 19, 496–503. [Google Scholar] [CrossRef] [Green Version]
- Wills, J.; Jones, J.; Haggerty, T.; Duka, V.; Joyce, J.N.; Sidhu, A. Elevated tauopathy and alpha-synuclein pathology in postmortem Parkinson’s disease brains with and without dementia. Exp. Neurol. 2010, 225, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Takahashi, Y.; Cheng, E.; Liu, J.; Terranova, P.F.; Zhao, B.; Thrasher, J.B.; Wang, H.; Li, B. GSK-3β promotes cell survival by modulating Bif-1-dependent autophagy and cell death. J. Cell Sci. 2010, 123, 861–870. [Google Scholar] [CrossRef] [Green Version]
- King, T.D.; Clodfelder-Miller, B.; Barksdale, K.A.; Bijur, G.N. Unregulated mitochondrial GSK3β activity results in NADH: Ubiquinone oxidoreductase deficiency. Neurotox. Res. 2008, 14, 367–382. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, J.U.; Bhuiyan, M.N.; Yusuf, M. Chemical composition of the leaf essential oils of Murraya koenigii (L.) Spreng and Murraya paniculata (L.) Jack. Bangladesh J. Pharmacol. 2008, 3, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Dhopeshwarkar, A.; Mackie, K. CB2 cannabinoid receptors as a therapeutic target—What does the future hold? Mol. Pharmacol. 2014, 86, 430–437. [Google Scholar] [CrossRef] [Green Version]
- Cassano, T.; Calcagnini, S.; Pace, L.; De Marco, F.; Romano, A.; Gaetani, S. Cannabinoid receptor 2 signaling in neurodegenerative disorders: From pathogenesis to a promising therapeutic target. Front. Neurosci. 2017, 11, 30. [Google Scholar] [CrossRef] [Green Version]
- Patel, K.D.; Davison, J.S.; Pittman, Q.J.; Sharkey, K.A. Cannabinoid CB2 receptors in health and disease. Curr. Med. Chem. 2010, 17, 1394–1410. [Google Scholar] [CrossRef]
- Centonze, D.; Bari, M.; Rossi, S.; Prosperetti, C.; Furlan, R.; Fezza, F.; De Chiara, V.; Battistini, L.; Bernardi, G.; Bernardini, S.; et al. The endocannabinoid system was dysregulated in multiple sclerosis and in experimental autoimmune encephalomyelitis. Brain 2007, 130, 2543–2553. [Google Scholar] [CrossRef] [Green Version]
- Di Filippo, M.; Pini, L.A.; Pelliccioli, G.P.; Calabresi, P.; Sarchielli, P. Abnormalities in the cerebrospinal fluid levels of endocannabinoids in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2008, 79, 1224–1229. [Google Scholar] [CrossRef]
- Benito, C.; Romero, J.P.; Tolón, R.M.; Clemente, D.; Docagne, F.; Hillard, C.J.; Guaza, C.; Romero, J. Cannabinoid CB1 and CB2 receptors and fatty acid amide hydrolase were specific markers of plaque cell subtypes in human multiple sclerosis. J. Neurosci. 2007, 27, 2396–2402. [Google Scholar] [CrossRef] [Green Version]
- Yiangou, Y.; Facer, P.; Durrenberger, P.; Chessell, I.P.; Naylor, A.; Bountra, C.; Banati, R.; Anand, P. COX-2, CB2 and P2X7-immunoreactivities were increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol. 2006, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Benito, C.; Núñez, E.; Tolón, R.M.; Carrier, E.J.; Rábano, A.; Hillard, C.J.; Romero, J. Cannabinoid CB2 receptors and fatty acid amide hydrolase were selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J. Neurosci. 2003, 23, 11136–11141. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, B.G.; Blázquez, C.; del Pulgar, T.G.; Guzmán, M.; de Ceballos, M.L. Prevention of Alzheimer’s disease pathology by cannabinoids: Neuroprotection mediated by blockade of microglial activation. J. Neurosci. 2005, 25, 1904–1913. [Google Scholar] [CrossRef] [Green Version]
- Westlake, T.M.; Howlett, A.C.; Bonner, T.I.; Matsuda, L.A.; Herkenham, M. Cannabinoid receptor binding and messenger RNA expression in human brain: An in vitro receptor autoradiography and in situ hybridization histochemistry study of normal aged and Alzheimer’s brains. Neuroscience 1994, 63, 637–652. [Google Scholar] [CrossRef]
- Farooqui, A.A.; Liss, L.; Horrocks, L.A. Stimulation of lipolytic enzymes in Alzheimer’s disease. In Lipid Storage Disorders; Springer: Boston, MA, USA, 1988; pp. 689–698. [Google Scholar]
- Johnson, S.A.; Rodriguez, D.; Allred, K. A systematic review of essential oils and the endocannabinoid system: A connection worthy of further exploration. Evid.-Based Complement. Altern. Med. 2020, 2020, 8035301. [Google Scholar] [CrossRef]
- Chávez-Hurtado, P.; González-Castaneda, R.E.; Beas-Zarate, C.; Flores-Soto, M.E.; Viveros-Paredes, J.M. β-Caryophyllene reduces DNA oxidation and the overexpression of glial fibrillary acidic protein in the prefrontal cortex and hippocampus of D-galactose-induced aged BALB/c mice. J. Med. Food 2020, 23, 515–522. [Google Scholar] [CrossRef]
- Fontes, L.B.; Dias, D.D.; Aarestrup, B.J.; Aarestrup, F.M.; Da Silva Filho, A.A.; do Amaral Corrêa, J.O. β-Caryophyllene ameliorates the development of experimental autoimmune encephalomyelitis in C57BL/6 mice. Biomed. Pharmacother. 2017, 91, 257–264. [Google Scholar] [CrossRef]
- Askari, V.R.; Shafiee-Nick, R. Promising neuroprotective effects of β-caryophyllene against LPS-induced oligodendrocyte toxicity: A mechanistic study. Biochem. Pharmacol. 2019, 159, 154–171. [Google Scholar] [CrossRef]
- Cheng, Y.; Dong, Z.; Liu, S. β-Caryophyllene ameliorates the Alzheimer-like phenotype in APP/PS1 Mice through CB2 receptor activation and the PPARγ pathway. Pharmacology 2014, 94, 1–12. [Google Scholar] [CrossRef]
- Chang, H.J.; Kim, J.M.; Lee, J.C.; Kim, W.K.; Chun, H.S. Protective effect of β-caryophyllene, a natural bicyclic sesquiterpene, against cerebral ischemic injury. J. Med. Food 2013, 16, 471–480. [Google Scholar] [CrossRef]
- Yang, M.; Lv, Y.; Tian, X.; Lou, J.; An, R.; Zhang, Q.; Li, M.; Xu, L.; Dong, Z. Neuroprotective effect of β-caryophyllene on cerebral ischemia-reperfusion injury via regulation of necroptotic neuronal death and inflammation: In vivo and in vitro. Front. Neurosci. 2017, 11, 583. [Google Scholar] [CrossRef]
- Hashiesh, H.M.; Sharma, C.; Goyal, S.N.; Sadek, B.; Jha, N.K.; Al Kaabi, J.; Ojha, S. A focused review on CB2 receptor-selective pharmacological properties and therapeutic potential of β-caryophyllene, a dietary cannabinoid. Biomed. Pharmacother. 2021, 140, 111639. [Google Scholar] [CrossRef]
- Francomano, F.; Caruso, A.; Barbarossa, A.; Fazio, A.; La Torre, C.; Ceramella, J.; et. al. β-Caryophyllene: A sesquiterpene with countless biological properties. Appl. Sci. 2019, 9, 5420. [Google Scholar] [CrossRef] [Green Version]
- Machado, K.D.; Islam, M.T.; Ali, E.S.; Rouf, R.; Uddin, S.J.; Dev, S.; et. al. A systematic review on the neuroprotective perspectives of beta-caryophyllene. Phytother. Res. 2018, 32, 2376–2388. [Google Scholar] [CrossRef]
- Nagappan, T.; Ramasamy, P.; Wahid, M.E.; Segaran, T.C.; Vairappan, C.S. Biological activity of carbazole alkaloids and essential oil of Murraya koenigii against antibiotic resistant microbes and cancer cell lines. Molecules 2011, 16, 9651–9664. [Google Scholar] [CrossRef] [Green Version]
- Manjima, R.B.; Ramya, S.; Kavitha, K.; Paulpandi, M.; Saranya, T.; Winster, S.; Balachandar, V.; Arul, N. Spathulenol attenuates 6-hydroxydopamine induced neurotoxicity in SH-SY5Y neuroblastoma cells. Gene Rep. 2021, 25, 101396. [Google Scholar] [CrossRef]
- Miyazawa, M.; Yamafuji, C. Inhibition of acetylcholinesterase activity by bicyclic monoterpenoids. J. Agri. Food Chem. 2005, 53, 1765–1768. [Google Scholar] [CrossRef]
- Abuhamdah, S.; Abuhamdah, R.; Howes, M.J.; Uttley, G.; Chazot, P.L. A Molecular Docking Study of Aloysia citrodora Palau. Leaf Essential Oil Constituents towards Human Acetylcholinesterase: Implications for Alzheimer’s disease. Jordan J. Biol. Sci. 2020, 13, 575–580. [Google Scholar]
- Cioanca, O.; Hritcu, L.; Mihasan, M.; Hancianu, M. Cognitive-enhancing and antioxidant activities of inhaled coriander volatile oil in amyloid β (1–42) rat model of Alzheimer’s disease. Physiol. Behav. 2013, 120, 193–202. [Google Scholar] [CrossRef]
- LoPachin, R.M. Acrylamide neurotoxicity: Eurological, morphological and molecular endpoints in animal models. Adv. Exp. Med. Biol. 2005, 561, 21–37. [Google Scholar]
- Mehri, S.; Meshki, M.A.; Hosseinzadeh, H. Linalool as a neuroprotective agent against acrylamide-induced neurotoxicity in Wistar rats. Drug Chem. Toxicol. 2015, 38, 162–166. [Google Scholar] [CrossRef]
- Silva Brum, L.F.; Emmanuelli, T.; Souza, D.O.; Elisabetsky, E. Effects of linalool on glutamate release and uptake in mouse cortical synaptosomes. Neurochem. Res. 2001, 26, 191–194. [Google Scholar] [CrossRef]
- Brum, L.F.; Elisabetsky, E.; Souza, D. Effects of linalool on [(3)H]MK801 and [(3)H] muscimol binding in mouse cortical membranes. Phytother. Res. 2001, 15, 422–425. [Google Scholar] [CrossRef]
- Sabogal-Guaqueta, A.M.; Osorio, E.; Cardona-Gomez, G.P. Linaloo reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer’s mice. Neuropharmacology 2016, 102, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Ciftci, O.; Oztanir, M.N.; Cetin, A. Neuroprotective effects of β-myrcene following global cerebral ischemia/reperfusion-mediated oxidative and neuronal damage in a C57BL/J6 mouse. Neurochem. Res. 2014, 39, 1717–1723. [Google Scholar] [CrossRef]
- Javed, H.; Azimullah, S.; Abul Khair, S.B.; Ojha, S.; Haque, M. Neuroprotective effect of nerolidol against neuroinflammation and oxidative stress induced by rotenone. BMC Neurosci. 2016, 17, 58. [Google Scholar] [CrossRef] [Green Version]
- Kaur, A.; Jaiswal, G.; Brar, J.; Kumar, P. Neuroprotective effect of nerolidol in traumatic brain injury associated behavioural comorbidities in rats. Toxicol. Res. 2021, 10, 40–50. [Google Scholar] [CrossRef]
- Varghese, A.; Babu, H.M.; Kukkera, P.N. Comparative evaluation of efficacy of Murraya koenigii and chlorhexidine gluconate in the treatment of gingivitis: A randomized controlled clinical trial. J. Indian Soc. Periodontol. 2018, 22, 427–432. [Google Scholar]
- Molly, J.; Edison, S.; Vijajaraghavan, R. Effect of Murraya Koenigii (Curry Leaves) powder on the liver and renal functions in women with hyperlipidemia. Int. J. Health Sci. Res. 2017, 7, 188–192. [Google Scholar]
- Lauche, R.; Kumar, S.; Hallmann, J.; Lüdtke, R.; Rampp, T.; Dobos, G.; Langhorst, J. Efficacy and safety of Ayurvedic herbs in diarrhoea-predominant irritable bowel syndrome: A randomised controlled crossover trial. Complement. Ther. Med. 2016, 26, 171–177. [Google Scholar] [CrossRef]
- Gaikwad, P.; Khan, T.N.; Nalwade, V. Impact of curry leaves (Murraya koenigii) chutney supplementation on hypertensive subjects. Int. J. Food Nutri. Sci. 2013, 2, 68–72. [Google Scholar]
- Choudhury, R.P.; Garg, A.N. Variation in essential, trace and toxic elemental contents in Murraya koenigii–A spice and medicinal herb from different Indian states. Food Chem. 2007, 104, 1454–1463. [Google Scholar] [CrossRef]
- Sakarkar, D.M.; Tembhume, S.V.; More, B.H. 28 Days repeated dose toxicity study of ethanolic extract of Murraya koenigii in Wistar rats. Ann. Pharmacol. Pharm. 2017, 2, 1047. [Google Scholar]
- Azzubaidi, M.S.; Saxena, A.K.; Alattraqchi, A.G.; Abdualkader, A.M. Chronic LD50 vs. safest dose for the methanolic extract of curry leaves (Murraya koenigii) cultivated in Malaysia. J. Appl. Pharm. Sci. 2014, 4, 56–58. [Google Scholar]
- Satyavarapu, E.M.; Sinha, P.K.; Mandal, C. Preclinical development of mahanine-enriched fraction from indian spice Murraya koenigii for the management of cancer: Efficacy, temperature/pH stability, pharmacokinetics, acute and chronic toxicity (14–180 days) studies. BioMed Res. Int. 2020, 2020, 4638132. [Google Scholar] [CrossRef]
- Apostoli, P. Elements in environmental and occupational medicine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002, 778, 63–97. [Google Scholar] [CrossRef]
Extract/Bioactive Components | Model | Property | Neuroprotective Mechanism | Refs. |
---|---|---|---|---|
Alkaloid extract | Swiss Albino aged mice (in vivo) | Antioxidant properties | Reduced LPO, NO, Increased SOD, CAT, GSH | [65,66] |
Aqueous extract | Aluminum-treated rats (in vivo) | Antioxidant properties | Decreased LPO, Increased CAT, GSH | [58] |
Aqueous extract | Paraquat-induced Parkinsonism in rats (in vivo) | Antioxidant properties | Better performance in behavioral and locomotor activities, Increased CAT, GSH, Decreased LPO | [61] |
β-Caryophyllene | Brain of patients (Postmortum) Galactose model of aging mice (in vivo) Autoimmune encephalomyelitis model (in vivo) Isolated macrophages and lymphocytes (in vitro) | Agonist of CB2R Antioxidant properties, Anti-inflammatory | Activation of CB2R, Block the increases in the number of astrocytes and the DNA oxidation, Modulated CB2R and PPAR-γ signaling pathways, Inhibited expression of iNOS, IL-1β, IL-6, and COX-2 and decreased the level of nitric oxide and prostaglandin E2 | [84,86,87,88,91,92,94] |
(+)-3-Carene | In vitro | Enzyme inhibition | Uncompetitive inhibitor of AChE | [102] |
Caryophyllene oxide | In vitro, in silico | Enzyme inhibition | Inhibitor of AChE | [103] |
Geranyl acetate | In vitro, in silico | Enzyme inhibition | Inhibitor of AChE | [103] |
Isolongifolene | SH-SY5Y (in vitro) Rotenone-induced rat model of PD (in vivo) | Antioxidant properties Protect dopaminergic neurons | Downregulated the expression of Bax, caspases-3, 6, 8, and 9, cytosolic cyt c; increased Bcl-2 expression, Increased SOD, CAT, GPx, Decreased LPO | [70,71] |
Leaf powder | Diazepam-, scopolamine- and ageing-induced amnesia behavioral models in rats (in vivo) | Nootropic effect pro-cholinergic activity | Improved memory and learning impairment, Decreased AChE and total cholesterol levels | [63,64] |
Linalool | Aβ1-42-treated rats (in vivo) | Antioxidant properties | Cognitive-enhancing effects, anti-apoptotic activities, NMDA receptor antagonist | [104,106,107] |
Mahanimbine | SK-N-SH (in vitro) ICR mouse (in vivo) | Antioxidant properties, Anti-inflammatory | Inhibited BACE1 and AChE, Decreased IL-1 β and TNF-α, COX2, Increased TGF-β and IL-10 | [67,69] |
Methanolic extract | Two-vessel occlusion rat model of partial global cerebral ischemia (in vivo) | Nootropic effect | Improved memory and learning impairment | [62] |
β-Myrcene | Global cerebral ischemia/reperfusion (I/R) in C57BL/J6 mice | Antioxidant properties | Protection against oxidative stress, apoptosis, and histopathological damage | [107] |
Nerolidol | Rotenone-induced model of PD (in vivo) | Antioxidant properties, Anti-inflammatory | Increased SOD, CAT, GSH, Decreased MDA inhibits the release of pro-inflammatory cytokines and inflammatory mediators, Prevented rotenone-induced activation of glial cells, Improved locomotor activity and cognitive impairment, Reduced the AChE activity | [100,111,112] |
Spathulenol | SH-SY5Y (in vitro) | Antioxidant properties | Maintained mitochondrial membrane integrity | [101] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, M.A.; Sharma, N.; An, S.S.A. Multi-Target Approach of Murraya koenigii Leaves in Treating Neurodegenerative Diseases. Pharmaceuticals 2022, 15, 188. https://doi.org/10.3390/ph15020188
Tan MA, Sharma N, An SSA. Multi-Target Approach of Murraya koenigii Leaves in Treating Neurodegenerative Diseases. Pharmaceuticals. 2022; 15(2):188. https://doi.org/10.3390/ph15020188
Chicago/Turabian StyleTan, Mario A., Niti Sharma, and Seong Soo A. An. 2022. "Multi-Target Approach of Murraya koenigii Leaves in Treating Neurodegenerative Diseases" Pharmaceuticals 15, no. 2: 188. https://doi.org/10.3390/ph15020188
APA StyleTan, M. A., Sharma, N., & An, S. S. A. (2022). Multi-Target Approach of Murraya koenigii Leaves in Treating Neurodegenerative Diseases. Pharmaceuticals, 15(2), 188. https://doi.org/10.3390/ph15020188