Refining Glioblastoma Surgery through the Use of Intra-Operative Fluorescence Imaging Agents
Abstract
:1. Introduction
2. Established Fluorescent Agent Utilised in Surgery
2.1. Fluorescein Sodium
2.2. 5-Aminolevulinic Acid (5-ALA)
2.3. Indocyanine Green
2.4. IRDye 800 CW
3. Novel Dyes in Pre-Clinical Development
3.1. Folate-Targeted FGS
3.2. Hypericin
3.3. RGD Conjugated Agents
3.4. Alkylphosphocholine Analogues (APCs)
3.5. NIR-AZA Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schupper, A.J.; Hadjipanayis, C. Use of Intraoperative Fluorophores. Neurosurg. Clin. N. Am. 2021, 32, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.; Costa, A.; Osório, L.; Lago, R.C.; Linhares, P.; Carvalho, B.; Caeiro, C. Current Standards of Care in Glioblastoma Therapy. In Glioblastoma; De Vleeschouwer, S., Ed.; Codon Publications: Brisbane, QLD, Australia, 2017. [Google Scholar] [CrossRef] [Green Version]
- Stupp, R.; Hegi, M.; Mason, W.; van den Bent, M.; Taphoorn, M.; Janzer, R.; Ludwin, S.; Allgeier, A.; Fisher, B.; Belanger, K.; et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009, 10, 459–466. [Google Scholar] [CrossRef]
- Orillac, C.; Stummer, W.; Orringer, D.A. Fluorescence Guidance and Intraoperative Adjuvants to Maximize Extent of Resection. Neurosurgery 2021, 89, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Youngblood, M.W.; Stupp, R.; Sonabend, A.M. Role of Resection in Glioblastoma Management. Neurosurg. Clin. N. Am. 2021, 32, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Stummer, W.; Pichlmeier, U.; Meinel, T.; Wiestler, O.D.; Zanella, F.; Reulen, H.-J. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: A randomised controlled multicentre phase III trial. Lancet Oncol. 2006, 7, 392–401. [Google Scholar] [CrossRef]
- Sanai, N.; Berger, M.S. Operative techniques for gliomas and the value of extent of resection. Neurotherapeutics 2009, 6, 478–486. [Google Scholar] [CrossRef] [Green Version]
- Lacroix, M.; Abi-Said, D.; Fourney, D.R.; Gokaslan, Z.L.; Shi, W.; DeMonte, F.; Lang, F.F.; McCutcheon, I.E.; Hassenbusch, S.J.; Holland, E.; et al. A multivariate analysis of 416 patients with glioblastoma multiforme: Prognosis, extent of resection, and survival. J. Neurosurg. 2001, 95, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.M.; Suki, D.; Hess, K.; Sawaya, R. The influence of maximum safe resection of glioblastoma on survival in 1229 patients: Can we do better than gross-total resection? J. Neurosurg. 2016, 124, 977–988. [Google Scholar] [CrossRef] [Green Version]
- Armocida, D.; Frati, A.; Salvati, M.; Santoro, A.; Pesce, A. Is Ki-67 index overexpression in IDH wild type glioblastoma a predictor of shorter Progression Free survival? A clinical and Molecular analytic investigation. Clin. Neurol. Neurosurg. 2020, 198, 106126. [Google Scholar] [CrossRef]
- Li, J.; Liang, R.; Song, C.; Xiang, Y.; Liu, Y. Prognostic significance of epidermal growth factor receptor expression in glioma patients. OncoTargets Ther. 2018, 11, 731–742. [Google Scholar] [CrossRef] [Green Version]
- Ahmadipour, Y.; Jabbarli, R.; Gembruch, O.; Pierscianek, D.; Darkwah Oppong, M.; Dammann, P.; Wrede, K.; Ozkan, N.; Muller, O.; Sure, U.; et al. Impact of Multifocality and Molecular Markers on Survival of Glioblastoma. World Neurosurg. 2019, 122, e461–e466. [Google Scholar] [CrossRef] [PubMed]
- Pessina, F.; Navarria, P.; Clerici, E.; Bellu, L.; Franzini, A.; Milani, D.; Simonelli, M.; Persico, P.; Politi, L.S.; Casarotti, A.; et al. Role of 11C Methionine Positron Emission Tomography (11CMETPET) for Surgery and Radiation Therapy Planning in Newly Diagnosed Glioblastoma Patients Enrolled into a Phase II Clinical Study. J. Clin. Med. 2021, 10, 2313. [Google Scholar] [CrossRef] [PubMed]
- Pirotte, B.J.; Levivier, M.; Goldman, S.; Massager, N.; Wikler, D.; Dewitte, O.; Bruneau, M.; Rorive, S.; David, P.; Brotchi, J. Positron emission tomography-guided volumetric resection of supratentorial high-grade gliomas: A survival analysis in 66 consecutive patients. Neurosurgery 2009, 64, 471–481; discussion 481. [Google Scholar] [CrossRef] [PubMed]
- Ort, J.; Hamou, H.A.; Kernbach, J.M.; Hakvoort, K.; Blume, C.; Lohmann, P.; Galldiks, N.; Heiland, D.H.; Mottaghy, F.M.; Clusmann, H.; et al. (18)F-FET-PET-guided gross total resection improves overall survival in patients with WHO grade III/IV glioma: Moving towards a multimodal imaging-guided resection. J. Neuro-Oncol. 2021, 155, 71–80. [Google Scholar] [CrossRef]
- Liu, J.T.C.; Meza, D.; Sanai, N. Trends in fluorescence image-guided surgery for gliomas. Neurosurgery 2014, 75, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Gerard, I.J.; Kersten-Oertel, M.; Petrecca, K.; Sirhan, D.; Hall, J.A.; Collins, D.L. Brain shift in neuronavigation of brain tumors: A review. Med. Image Anal. 2017, 35, 403–420. [Google Scholar] [CrossRef]
- Senders, J.T.; Muskens, I.S.; Schnoor, R.; Karhade, A.V.; Cote, D.J.; Smith, T.R.; Broekman, M.L. Agents for fluorescence-guided glioma surgery: A systematic review of preclinical and clinical results. Acta Neurochir. 2017, 159, 151–167. [Google Scholar] [CrossRef] [Green Version]
- Nagaya, T.; Nakamura, Y.A.; Choyke, P.L.; Kobayashi, H. Fluorescence-Guided Surgery. Front. Oncol. 2017, 7, 314. [Google Scholar] [CrossRef]
- Daly, H.C.; Conroy, E.; Todor, M.; Wu, D.; Gallagher, W.M.; O’Shea, D.F. An EPR Strategy for Bio-responsive Fluorescence Guided Surgery with Simulation of the Benefit for Imaging. Theranostics 2020, 10, 3064–3082. [Google Scholar] [CrossRef]
- Handgraaf, H.J.M.; Boonstra, M.C.; Prevoo, H.; Kuil, J.; Bordo, M.W.; Boogerd, L.S.F.; Sibinga Mulder, B.G.; Sier, C.F.M.; Vinkenburg-van Slooten, M.L.; Valentijn, A.; et al. Real-time near-infrared fluorescence imaging using cRGD-ZW800-1 for intraoperative visualization of multiple cancer types. Oncotarget 2017, 8, 21054–21066. [Google Scholar] [CrossRef] [Green Version]
- Stummer, W.; Suero Molina, E. Fluorescence Imaging/Agents in Tumor Resection. Neurosurg. Clin. N. Am. 2017, 28, 569–583. [Google Scholar] [CrossRef] [PubMed]
- Stummer, W.; Stepp, H.; Wiestler, O.D.; Pichlmeier, U. Randomized, Prospective Double-Blinded Study Comparing 3 Different Doses of 5-Aminolevulinic Acid for Fluorescence-Guided Resections of Malignant Gliomas. Neurosurgery 2017, 81, 230–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, D.W.; Olson, J.D.; Evans, L.T.; Kolste, K.K.; Kanick, S.C.; Fan, X.; Bravo, J.J.; Wilson, B.C.; Leblond, F.; Marois, M.; et al. Red-light excitation of protoporphyrin IX fluorescence for subsurface tumor detection. J. Neurosurg. 2018, 128, 1690–1697. [Google Scholar] [CrossRef] [PubMed]
- Sanai, N.; Snyder, L.A.; Honea, N.J.; Coons, S.W.; Eschbacher, J.M.; Smith, K.A.; Spetzler, R.F. Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid fluorescence in low-grade gliomas. J. Neurosurg. 2011, 115, 740–748. [Google Scholar] [CrossRef]
- Widhalm, G.; Olson, J.; Weller, J.; Bravo, J.; Han, S.J.; Phillips, J.; Hervey-Jumper, S.L.; Chang, S.M.; Roberts, D.W.; Berger, M.S. The value of visible 5-ALA fluorescence and quantitative protoporphyrin IX analysis for improved surgery of suspected low-grade gliomas. J. Neurosurg. 2019, 133, 79–88. [Google Scholar] [CrossRef]
- Li, C.; Buch, L.; Cho, S.; Lee, J.Y.K. Near-infrared intraoperative molecular imaging with conventional neurosurgical microscope can be improved with narrow band “boost” excitation. Acta Neurochir. 2019, 161, 2311–2318. [Google Scholar] [CrossRef]
- Patil, C.G.; Walker, D.G.; Miller, D.M.; Butte, P.; Morrison, B.; Kittle, D.S.; Hansen, S.J.; Nufer, K.L.; Byrnes-Blake, K.A.; Yamada, M.; et al. Phase 1 Safety, Pharmacokinetics, and Fluorescence Imaging Study of Tozuleristide (BLZ-100) in Adults With Newly Diagnosed or Recurrent Gliomas. Neurosurgery 2019, 85, E641–E649. [Google Scholar] [CrossRef]
- Schupper, A.J.; Yong, R.L.; Hadjipanayis, C.G. The Neurosurgeon’s Armamentarium for Gliomas: An Update on Intraoperative Technologies to Improve Extent of Resection. J. Clin. Med. 2021, 10, 236. [Google Scholar] [CrossRef]
- Diaz, R.J.; Dios, R.R.; Hattab, E.M.; Burrell, K.; Rakopoulos, P.; Sabha, N.; Hawkins, C.; Zadeh, G.; Rutka, J.T.; Cohen-Gadol, A.A. Study of the biodistribution of fluorescein in glioma-infiltrated mouse brain and histopathological correlation of intraoperative findings in high-grade gliomas resected under fluorescein fluorescence guidance. J. Neurosurg. 2015, 122, 1360–1369. [Google Scholar] [CrossRef] [Green Version]
- Acerbi, F.; Broggi, M.; Eoli, M.; Anghileri, E.; Cuppini, L.; Pollo, B.; Schiariti, M.; Visintini, S.; Orsi, C.; Franzini, A.; et al. Fluorescein-guided surgery for grade IV gliomas with a dedicated filter on the surgical microscope: Preliminary results in 12 cases. Acta Neurochir. 2013, 155, 1277–1286. [Google Scholar] [CrossRef]
- Höhne, J.; Schebesch, K.-M.; de Laurentis, C.; Akçakaya, M.O.; Pedersen, C.B.; Brawanski, A.; Poulsen, F.R.; Kiris, T.; Cavallo, C.; Broggi, M.; et al. Fluorescein Sodium in the Surgical Treatment of Recurrent Glioblastoma Multiforme. World Neurosurg. 2019, 125, e158–e164. [Google Scholar] [CrossRef] [Green Version]
- Okuda, T.; Yoshioka, H.; Kato, A. Fluorescence-guided surgery for glioblastoma multiforme using high-dose fluorescein sodium with excitation and barrier filters. J. Clin. Neurosci. 2012, 19, 1719–1722. [Google Scholar] [CrossRef] [PubMed]
- Stummer, W.; Novotny, A.; Stepp, H.; Goetz, C.; Bise, K.; Reulen, H.J. Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: A prospective study in 52 consecutive patients. J. Neurosurg. 2000, 93, 1003–1013. [Google Scholar] [CrossRef] [PubMed]
- Michael, A.P.; Watson, V.L.; Ryan, D.; Delfino, K.R.; Bekker, S.V.; Cozzens, J.W. Effects of 5-ALA dose on resection of glioblastoma. J. Neurooncol. 2019, 141, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, S.; Tayebi Meybodi, A.; Belykh, E.; Cavallo, C.; Zhao, X.; Syed, M.P.; Borba Moreira, L.; Lawton, M.T.; Nakaji, P.; Preul, M.C. Survival Outcomes Among Patients With High-Grade Glioma Treated With 5-Aminolevulinic Acid-Guided Surgery: A Systematic Review and Meta-Analysis. Front. Oncol. 2019, 9, 620. [Google Scholar] [CrossRef] [Green Version]
- Stepp, H.; Stummer, W. 5-ALA in the management of malignant glioma. Lasers Surg. Med. 2018, 50, 399–419. [Google Scholar] [CrossRef] [Green Version]
- Vermandel, M.; Dupont, C.; Lecomte, F.; Leroy, H.A.; Tuleasca, C.; Mordon, S.; Hadjipanayis, C.G.; Reyns, N. Standardized intraoperative 5-ALA photodynamic therapy for newly diagnosed glioblastoma patients: A preliminary analysis of the INDYGO clinical trial. J. Neurooncol. 2021, 152, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Teixidor, P.; Arráez, M.; Villalba, G.; Garcia, R.; Tardáguila, M.; González, J.J.; Rimbau, J.; Vidal, X.; Montané, E. Safety and Efficacy of 5-Aminolevulinic Acid for High Grade Glioma in Usual Clinical Practice: A Prospective Cohort Study. PLoS ONE 2016, 11, e0149244. [Google Scholar] [CrossRef] [Green Version]
- Hadjipanayis, C.G.; Stummer, W. 5-ALA and FDA approval for glioma surgery. J. Neurooncol. 2019, 141, 479–486. [Google Scholar] [CrossRef]
- Hilderbrand, S.A.; Weissleder, R. Near-infrared fluorescence: Application to in vivo molecular imaging. Curr. Opin. Chem. Biol. 2010, 14, 71–79. [Google Scholar] [CrossRef]
- Wu, D.; Daly, H.C.; Conroy, E.; Li, B.; Gallagher, W.M.; Cahill, R.A.; O’Shea, D.F. PEGylated BF(2)-Azadipyrromethene (NIR-AZA) fluorophores, for intraoperative imaging. Eur. J. Med. Chem. 2019, 161, 343–353. [Google Scholar] [CrossRef]
- Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P.L.; Urano, Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 2010, 110, 2620–2640. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Daly, H.C.; Grossi, M.; Conroy, E.; Li, B.; Gallagher, W.M.; Elmes, R.; O’Shea, D.F. RGD conjugated cell uptake off to on responsive NIR-AZA fluorophores: Applications toward intraoperative fluorescence guided surgery. Chem. Sci. 2019, 10, 6944–6956. [Google Scholar] [CrossRef] [Green Version]
- Cahill, R.A.; O’Shea, D.F.; Khan, M.F.; Khokhar, H.A.; Epperlein, J.P.; Mac Aonghusa, P.G.; Nair, R.; Zhuk, S.M. Artificial intelligence indocyanine green (ICG) perfusion for colorectal cancer intra-operative tissue classification. Br. J. Surg. 2021, 108, 5–9. [Google Scholar] [CrossRef]
- Cho, S.S.; Salinas, R.; De Ravin, E.; Teng, C.W.; Li, C.; Abdullah, K.G.; Buch, L.; Hussain, J.; Ahmed, F.; Dorsey, J.; et al. Near-Infrared Imaging with Second-Window Indocyanine Green in Newly Diagnosed High-Grade Gliomas Predicts Gadolinium Enhancement on Postoperative Magnetic Resonance Imaging. Mol. Imaging Biol. 2020, 22, 1427–1437. [Google Scholar] [CrossRef]
- Teng, C.W.; Huang, V.; Arguelles, G.R.; Zhou, C.; Cho, S.S.; Harmsen, S.; Lee, J.Y.K. Applications of indocyanine green in brain tumor surgery: Review of clinical evidence and emerging technologies. Neurosurg. Focus 2021, 50, E4. [Google Scholar] [CrossRef]
- Kalyane, D.; Raval, N.; Maheshwari, R.; Tambe, V.; Kalia, K.; Tekade, R.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C 2019, 98, 1252–1276. [Google Scholar] [CrossRef]
- Cho, S.S.; Salinas, R.; Lee, J.Y.K. Indocyanine-Green for Fluorescence-Guided Surgery of Brain Tumors: Evidence, Techniques, and Practical Experience. Front. Surg. 2019, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.E.; Tummers, W.S.; Teraphongphom, N.; van den Berg, N.S.; Hasan, A.; Ertsey, R.D.; Nagpal, S.; Recht, L.D.; Plowey, E.D.; Vogel, H.; et al. First-in-human intraoperative near-infrared fluorescence imaging of glioblastoma using cetuximab-IRDye800. J. Neurooncol. 2018, 139, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Samkoe, K.S.; Gunn, J.R.; Marra, K.; Hull, S.M.; Moodie, K.L.; Feldwisch, J.; Strong, T.V.; Draney, D.R.; Hoopes, P.J.; Roberts, D.W.; et al. Toxicity and Pharmacokinetic Profile for Single-Dose Injection of ABY-029: A Fluorescent Anti-EGFR Synthetic Affibody Molecule for Human Use. Mol. Imaging Biol. 2017, 19, 512–521. [Google Scholar] [CrossRef]
- de Souza, A.L.; Marra, K.; Gunn, J.; Samkoe, K.S.; Hoopes, P.J.; Feldwisch, J.; Paulsen, K.D.; Pogue, B.W. Fluorescent Affibody Molecule Administered In Vivo at a Microdose Level Labels EGFR Expressing Glioma Tumor Regions. Mol. Imaging Biol. 2017, 19, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hubbard, J.M.; Alberts, S.R. Alternate dosing of cetuximab for patients with metastatic colorectal cancer. Gastrointest. Cancer Res. 2013, 6, 47–55. [Google Scholar] [PubMed]
- Rosenthal, E.L.; Warram, J.M.; de Boer, E.; Chung, T.K.; Korb, M.L.; Brandwein-Gensler, M.; Strong, T.V.; Schmalbach, C.E.; Morlandt, A.B.; Agarwal, G.; et al. Safety and Tumor Specificity of Cetuximab-IRDye800 for Surgical Navigation in Head and Neck Cancer. Clin. Cancer Res. 2015, 21, 3658–3666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belykh, E.; Martirosyan, N.L.; Yagmurlu, K.; Miller, E.J.; Eschbacher, J.M.; Izadyyazdanabadi, M.; Bardonova, L.A.; Byvaltsev, V.A.; Nakaji, P.; Preul, M.C. Intraoperative Fluorescence Imaging for Personalized Brain Tumor Resection: Current State and Future Directions. Front. Surg. 2016, 3, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elechalawar, C.K.; Bhattacharya, D.; Ahmed, M.T.; Gora, H.; Sridharan, K.; Chaturbedy, P.; Sinha, S.H.; Jaggarapu, M.M.C.S.; Narayan, K.P.; Chakravarty, S. Dual targeting of folate receptor-expressing glioma tumor-associated macrophages and epithelial cells in the brain using a carbon nanosphere–cationic folate nanoconjugate. Nanoscale Adv. 2019, 1, 3555–3567. [Google Scholar] [CrossRef] [Green Version]
- Noell, S.; Mayer, D.; Strauss, W.S.; Tatagiba, M.S.; Ritz, R. Selective enrichment of hypericin in malignant glioma: Pioneering in vivo results. Int. J. Oncol. 2011, 38, 1343–1348. [Google Scholar] [CrossRef] [Green Version]
- Warram, J.M.; de Boer, E.; Korb, M.; Hartman, Y.; Kovar, J.; Markert, J.M.; Gillespie, G.Y.; Rosenthal, E.L. Fluorescence-guided resection of experimental malignant glioma using cetuximab-IRDye 800CW. Br. J. Neurosurg. 2015, 29, 850–858. [Google Scholar] [CrossRef] [Green Version]
- Napier, T.S.; Udayakumar, N.; Jani, A.H.; Hartman, Y.E.; Houson, H.A.; Moore, L.; Amm, H.M.; van den Berg, N.S.; Sorace, A.G.; Warram, J.M. Comparison of Panitumumab-IRDye800CW and 5-Aminolevulinic Acid to Provide Optical Contrast in a Model of Glioblastoma Multiforme. Mol. Cancer 2020, 19, 1922–1929. [Google Scholar] [CrossRef]
- Huang, R.; Vider, J.; Kovar, J.L.; Olive, D.M.; Mellinghoff, I.K.; Mayer-Kuckuk, P.; Kircher, M.F.; Blasberg, R.G. Integrin αvβ3-targeted IRDye 800CW near-infrared imaging of glioblastoma. Clin. Cancer Res. 2012, 18, 5731–5740. [Google Scholar] [CrossRef] [Green Version]
- Crisp, J.L.; Savariar, E.N.; Glasgow, H.L.; Ellies, L.G.; Whitney, M.A.; Tsien, R.Y. Dual targeting of integrin αvβ3 and matrix metalloproteinase-2 for optical imaging of tumors and chemotherapeutic delivery. Mol. Cancer 2014, 13, 1514–1525. [Google Scholar] [CrossRef] [Green Version]
- Swanson, K.I.; Clark, P.A.; Zhang, R.R.; Kandela, I.K.; Farhoud, M.; Weichert, J.P.; Kuo, J.S. Fluorescent cancer-selective alkylphosphocholine analogs for intraoperative glioma detection. Neurosurgery 2015, 76, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Veiseh, M.; Gabikian, P.; Bahrami, S.B.; Veiseh, O.; Zhang, M.; Hackman, R.C.; Ravanpay, A.C.; Stroud, M.R.; Kusuma, Y.; Hansen, S.J.; et al. Tumor paint: A chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci. Cancer Res. 2007, 67, 6882–6888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, H.; Wang, J.; Yi, P.; Lei, H.; Zhan, C.; Xie, C.; Feng, L.; Qian, J.; Zhu, J.; Lu, W.; et al. Imaging brain tumor by dendrimer-based optical/paramagnetic nanoprobe across the blood-brain barrier. Chem. Commun. 2011, 47, 8130–8132. [Google Scholar] [CrossRef] [PubMed]
- Lanzardo, S.; Conti, L.; Brioschi, C.; Bartolomeo, M.P.; Arosio, D.; Belvisi, L.; Manzoni, L.; Maiocchi, A.; Maisano, F.; Forni, G. A new optical imaging probe targeting αVβ3 integrin in glioblastoma xenografts. Contrast Media Mol. Imaging 2011, 6, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Snuderl, M.; Wirth, D.; Sheth, S.A.; Bourne, S.K.; Kwon, C.S.; Ancukiewicz, M.; Curry, W.T.; Frosch, M.P.; Yaroslavsky, A.N. Dye-enhanced multimodal confocal imaging as a novel approach to intraoperative diagnosis of brain tumors. Brain Pathol. 2013, 23, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Irwin, C.P.; Portorreal, Y.; Brand, C.; Zhang, Y.; Desai, P.; Salinas, B.; Weber, W.A.; Reiner, T. PARPi-FL—A fluorescent PARP1 inhibitor for glioblastoma imaging. Neoplasia 2014, 16, 432–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antaris, A.L.; Chen, H.; Cheng, K.; Sun, Y.; Hong, G.; Qu, C.; Diao, S.; Deng, Z.; Hu, X.; Zhang, B.; et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 2016, 15, 235–242. [Google Scholar] [CrossRef]
- Sexton, K.; Tichauer, K.; Samkoe, K.S.; Gunn, J.; Hoopes, P.J.; Pogue, B.W. Fluorescent affibody peptide penetration in glioma margin is superior to full antibody. PLoS ONE 2013, 8, e60390. [Google Scholar] [CrossRef] [Green Version]
- Meincke, M.; Tiwari, S.; Hattermann, K.; Kalthoff, H.; Mentlein, R. Near-infrared molecular imaging of tumors via chemokine receptors CXCR4 and CXCR7. Clin. Exp. Metastasis 2011, 28, 713–720. [Google Scholar] [CrossRef] [Green Version]
- Kurbegovic, S.; Juhl, K.; Sorensen, K.K.; Leth, J.; Willemoe, G.L.; Christensen, A.; Adams, Y.; Jensen, A.R.; von Buchwald, C.; Skjoth-Rasmussen, J.; et al. IRDye800CW labeled uPAR-targeting peptide for fluorescence-guided glioblastoma surgery: Preclinical studies in orthotopic xenografts. Theranostics 2021, 11, 7159–7174. [Google Scholar] [CrossRef]
- Terwisscha van Scheltinga, A.G.; van Dam, G.M.; Nagengast, W.B.; Ntziachristos, V.; Hollema, H.; Herek, J.L.; Schroder, C.P.; Kosterink, J.G.; Lub-de Hoog, M.N.; de Vries, E.G. Intraoperative near-infrared fluorescence tumor imaging with vascular endothelial growth factor and human epidermal growth factor receptor 2 targeting antibodies. J. Nucl. Med. 2011, 52, 1778–1785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Zhan, Y.; Qu, Y.; Qi, X.; Li, J.; Yu, C. Changes of folate receptor -α protein expression in human gliomas and its clinical relevance. Zhonghua Wai Ke Za Zhi 2014, 52, 202–207. [Google Scholar]
- Landry, A.P.; Balas, M.; Alli, S.; Spears, J.; Zador, Z. Distinct regional ontogeny and activation of tumor associated macrophages in human glioblastoma. Sci. Rep. 2020, 10, 19542. [Google Scholar] [CrossRef]
- Ritz, R.; Daniels, R.; Noell, S.; Feigl, G.C.; Schmidt, V.; Bornemann, A.; Ramina, K.; Mayer, D.; Dietz, K.; Strauss, W.S.L.; et al. Hypericin for visualization of high grade gliomas: First clinical experience. Eur. J. Surg. Oncol. (EJSO) 2012, 38, 352–360. [Google Scholar] [CrossRef]
- Desgrosellier, J.S.; Cheresh, D.A. Integrins in cancer: Biological implications and therapeutic opportunities. Nat. Rev. Cancer 2010, 10, 9–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, H. iRGD: A Promising Peptide for Cancer Imaging and a Potential Therapeutic Agent for Various Cancers. J. Oncol. 2019, 2019, 9367845. [Google Scholar] [CrossRef] [PubMed]
- Daly, H.C.; Sampedro, G.; Bon, C.; Wu, D.; Ismail, G.; Cahill, R.A.; O’Shea, D.F. BF2-azadipyrromethene NIR-emissive fluorophores with research and clinical potential. Eur. J. Med. Chem. 2017, 135, 392–400. [Google Scholar] [CrossRef]
- Curtin, N.; Wu, D.; Cahill, R.; Sarkar, A.; Aonghusa, P.M.; Zhuk, S.; Barberio, M.; Al-Taher, M.; Marescaux, J.; Diana, M.; et al. Dual Color Imaging from a Single BF2-Azadipyrromethene Fluorophore Demonstrated in vivo for Lymph Node Identification. Int. J. Med. Sci. 2021, 18, 1541–1553. [Google Scholar] [CrossRef] [PubMed]
- Allen, E.; Jabouille, A.; Rivera, L.B.; Lodewijckx, I.; Missiaen, R.; Steri, V.; Feyen, K.; Tawney, J.; Hanahan, D.; Michael, I.P.; et al. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl. Med. 2017, 9, eaak9679. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.M.; Banu, M.A.; Canoll, P.; Bruce, J.N. Rationale and Clinical Implications of Fluorescein-Guided Supramarginal Resection in Newly Diagnosed High-Grade Glioma. Front. Oncol. 2021, 11, 666734. [Google Scholar] [CrossRef]
- Li, D.; Zhang, J.; Chi, C.; Xiao, X.; Wang, J.; Lang, L.; Ali, I.; Niu, G.; Zhang, L.; Tian, J.; et al. First-in-human study of PET and optical dual-modality image-guided surgery in glioblastoma using (68)Ga-IRDye800CW-BBN. Theranostics 2018, 8, 2508–2520. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Cuthbert, H.; Watts, C. Fluorescence-Guided Surgery in the Surgical Treatment of Gliomas: Past, Present and Future. Cancers 2021, 13, 3508. [Google Scholar] [CrossRef] [PubMed]
- Mieog, J.S.D.; Achterberg, F.B.; Zlitni, A.; Hutteman, M.; Burggraaf, J.; Swijnenburg, R.J.; Gioux, S.; Vahrmeijer, A.L. Fundamentals and developments in fluorescence-guided cancer surgery. Nat. Rev. Clin. Oncol. 2022, 19, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; O’Shea, D.F. RGD conjugated switch on near infrared-fluorophores for fluorescence guided cancer surgeries. Future Oncol. 2019, 15, 4123–4125. [Google Scholar] [CrossRef] [PubMed]
Fluorophore | Chemical Family | Excitation Wavelength (nm) | Emission Peak (nm) | Mode of Action | Trial Number | Tumour | Aim/Result | Reference |
---|---|---|---|---|---|---|---|---|
Fluorescein | Fluorescein | 460–500 | 510–525 | Passive | NCT03752203 | Paediatric Neurosurgical Tumours | Determine EOR of Intracranial and spinal lesions using Fluorescein Sodium | https://clinicaltrials.gov/ct2/show/NCT03752203 (accessed on 16 February 2022) |
NCT02691923 Phase 2 | High grade glioma | Determine the diagnostic potential of Fluorescein through an operating microscope relate to (1) contrast enhancement on co-registered preoperative MR scans, (2) intra-operative ALA-induced PpIX fluorescence and (3) gold-standard histology obtained from biopsy sampling during the procedure. | https://clinicaltrials.gov/ct2/show/NCT02691923 (accessed on 16 February 2022) | |||||
5-ALA | Endogenous non-proteinogenic amino acid | 400–410 | 635–710 | Metabolic | NCT00241670 Phase 3 | Malignant Glioma | 29% more Complete Resections 6-month higher PFS | [6] |
NCT02755142 Phase 1/2 | Malignant Glioma | 100% Positive Predictive Value 10-fold increase in dose led to 4-fold increase in contrast between tumour and brain 20 mg/kg gave the strongest fluorescence | [23] | |||||
NCT00752323 Phase 2 | Malignant Astrocytoma | Determine the optimum dose and administration time of 5-ALA | https://clinicaltrials.gov/ct2/show/NCT00752323 (accessed on 16 February 2022) | |||||
NCT02379572 | Glioblastoma | Comparison of iMRI and 5-ALA on number of complete resections | ||||||
NCT01128218 Phase 1,2 | Malignant Glioma | Determine specificity and sensitivity of 5-ALA fluorescence | https://clinicaltrials.gov/ct2/show/NCT01128218 (accessed on 16 February 2022) | |||||
NCT02191488 Phase 1 | Low, and high grade gliomas, Menihgiomas, or metastases | Red-light excitation of PpIX revealed tumour up to 5mm below resection bed in 22 of 24 tumours already visualised with blue-light. | [24] | |||||
NCT00870779 Phase 1 | Low, and high grade gliomas, Menihgiomas, or metastases pituitary adenoma or metastasis | Determine degree of spatial correlation between local fluorescence recorded intra-operatively and co-registered conventional imaging obtained preoperatively via MRI and intra-operatively via ultrasound and operating microscope stereovision | https://clinicaltrials.gov/ct2/show/NCT00870779 (accessed on 16 February 2022) | |||||
NCT01502280 Phase 3 | Low-grade Gliomas | Intra-operative confocal microscopy identified 5-ALA tumour fluorescence at a cellular level in 10 consecutive patients. | [25] | |||||
NCT01116661 Phase 2 | Glioma | Mean CPpIX was higher in fluorescing samples than nonfluorescing samples. Visible fluorescence can be used in line with Quantitative PpIX analysis | [26] | |||||
NCT02155452 | Malignant Glioma | Study the heterogeneity of fluorescence within malignant gliomas by sampling tissues from variable areas within the same tumour | https://clinicaltrials.gov/ct2/show/NCT02155452 (accessed on 16 February 2022) | |||||
NCT02119338 | Recurrent glioma | Correlation of 5-ALA fluorescence in tumour tissue with pathological findings | https://clinicaltrials.gov/ct2/show/NCT02119338 (accessed on 16 February 2022) | |||||
NCT02050243 Phase 1/2 | CNS Tumour, Paediatric | Determine sensitivity of CNS in identifying paediatric CNS tumours and number of patients with associated side effects | https://clinicaltrials.gov/ct2/show/NCT02050243 (accessed on 16 February 2022) | |||||
ICG | Cyanine | 780 | 800–830 | Passive | NCT03262636 Phase 1 | Primary and Recurrent Brain Tumour | Determine the sensitivity of ICG uptake and expression in identifying autonomic nervous system tumours | [27] |
BLZ-100 | Chlorotoxin peptide + ICG | 730–785 | 760–841 | Targeted | NCT02234297 Phase 1 | Glioma | Determine safety of BLZ-100 in adult patients with glioma undergoing surgery. | [28] |
NCT02462629 Phase 1 | Central Nervous System (CNS) Tumours | Determine safety of BLZ-100 in paediatric patients with CNS Tumours | https://clinicaltrials.gov/ct2/show/NCT02462629 (accessed on 16 February 2022) | |||||
Panitumumab-IRDye 800 CW | IRDye 800 CW | 775 | 789–795 | Targeted | NCT04085887 Phase 1/2 | Paediatric brain neoplasms | Determine the safety and efficacy of Panitumumab-IRDye 800 CW in removing suspected tumours in paediatric patients | https://clinicaltrials.gov/ct2/show/NCT04085887 (accessed on 16 February 2022) |
ABY-029 | IRDye 800 CW | 775 | 789–795 | Targeted | NCT02901925 Phase 1 | Recurrent Glioma | Determine if microdoses of ABY-029 lead to detectable signals in sampled tissues with an EGFR pathology score ≥ 1 based on histological staining. | https://clinicaltrials.gov/ct2/show/NCT02901925 (accessed on 16 February 2022) |
LUM015 | Cy5 | 633–647 | 675 | Metabolic | NCT03717142 | Low grade glioma, Glioblastoma | Determine the safety and efficacy of LUM015 for imaging low grade gliomas, GBM and tumour metastasis to the brain | https://clinicaltrials.gov/ct2/show/NCT03717142 (accessed on 16 February 2022) |
Demeclocycline | Demeclocycline | 402 | 535 | passive | NCT02740933 | Brain Tumour | Determine if fluorescence is observable via confocal microscopy. | https://clinicaltrials.gov/ct2/show/NCT02740933 (accessed on 16 February 2022) |
BBN-IRDye 800 CW | IRDye 800 CW | 775 | 789 | Targeted | NCT02910804 | Glioblastoma | Determine the efficacy of BBN-IRDye800 CW in GBM patients | https://clinicaltrials.gov/ct2/show/NCT02910804 (accessed on 16 February 2022) |
NCT03407781 | Lower grade Glioma | Determine the efficacy of BBN-IRDye800 CW in lower grade glioma patients | https://clinicaltrials.gov/ct2/show/NCT03407781 (accessed on 16 February 2022) |
Fluorophore | Chemical Family | Excitation Wavelength (nm) | Emission Peak (nm) | Mode of Action | Tissue Type | Result | Reference |
---|---|---|---|---|---|---|---|
CF8 − DiR | CSP + F8 + DiR | 750 | 782 | Targeted | Glioma in mice | Folate-targeted CF8-DiR showed a significantly higher accumulation than CSP-DiR. Free DiR dye remained localised in injection point showing accumulation was due to conjugation with CF8. | [56] |
Hypericin | 510–550 | 590–650 | Passive | Glioma in rats | Tumour Background Ratio (TBR)s of 6 and 1.4 | [18,57] | |
Cetuximab-IRDye 800 CW | IRDye 800 CW | 775 | 789–795 | Targeted | Orthotopic mice GBM | 87% luciferase signal reduction compared to 41% with white light. | [58] |
Panitumumab-IRDye 800 CW | IRDye 800 CW | 775 | 789–795 | Targeted | GBM in mice | 30% higher TBR when using Panitumumab-IRDye 800 CW than 5-ALA | [59] |
IRDye 800 CW-RGD | RGD Conjugate + IRDye 800 CW | 775 | 789–795 | Targeted | Mice Glioblastoma (GBM) | Renal clearance of IRDye 800 CW-RGD. The dye selectively binds to Integrin receptors on GBM tissue. TBR of 79.7 ± 6.9 in GBM | [60] |
Cyclic-RGD-PLGC (Me)AG-ACPP | RGD Conjugate + Matrix Metalloproteinase (MMP-2) | 620 | 670 | Targeted | GBM Cells | Dual targeting improved uptake compared to either cRGD or MMP-2 alone. TBR of 7.8 ± 1.6 in GBM | [61] |
cRGD-ZW800-1 | RGD Conjugate | 750–785 | 800 | Targeted | GBM cell lines | 36% more fluorescence signal recorded in comparison to unlabelled cRGD | [21] |
CLR1502 | Alkylphosphocholine (APCs) Analogues | 760 | 778 | Metabolic | Glioma in mice | TBR of 9.28 ± 1.08) | [62] |
CLR1501 | Alkylphosphocholine (APCs) Analogues | 500 | 517 | Metabolic | Glioma in mice | TBR of 3.51 ± 0.44 on confocal imaging; 7.23 ± 1.63 on IVIS imaging | [62] |
Chlorotoxin:Cy5.5 | Cyanine5.5 | 633 | 694 | Targeted | Glioma-bearing mice | Mice injected with Chlorotoxin: Cy5.5 a 15-fold higher TBR at day 1 in comparison to mice with Cy5.5 alone | [63] |
Angiopep-2-Cy5.5 | Cyanine5.5 | 660–680 | 694 | Targeted | GBM in mice | Tumour to normal fluorescence ratio (TNR) of 1.6 and 63% higher intracerebral uptake than PEG-Cy5.5, tumour margin was delineated non-invasively in vivo | [64] |
PEG-Cy5.5 | Cyanine5.5 | 650 | 665 | Passive | GBM in mice | TNR of 1.1 | [64] |
DA364 | RGD Conjugate | 675 | 694–720 | Targeted | GBM in mice | TBR of 5.14 | [65] |
Methylene Blue | 642 | 688–700 | Passive/Metabolic | Patient samples of Gliomas | Sensitivity and specificity of 95% and 100% respectively. Dye-enhanced multimodal confocal microscopy shows architectural and morphological features with similar quality to haematoxylin and eosin (H & E) | [66] | |
PARPi-FL | Inhibitor of the DNA repair enzyme PARP1 | 503 | 525 | Targeted | GBM in mice | PARPi-FL showed low toxicity, high stability in vivo, and accumulates selectively in glioblastomas due to high PARP1 expression | [67] |
CH1055 | NIR-II | 750 | 1055 | Passive | Brain tumours in mice | Tumour was detected at depths of 4 mm. | [68] |
Anti-EGFR Affibody-IRDye-800 CW | IRDye 800 CW | 720 | 730–900 | Targeted | GBM cell in mice | The small (6.7 kDa) protein Anti-EGFR Affibody was observed at high levels in outer edges of the tumour | [69] |
SDF-1-IRDye-800 CW | IRDye 800 CW | 685 and 785 | 702 or 789 | Targeted | GBM cells | Fluorescence persisted for up to 4 days in-vivo | [70] |
IRDye800 CW-AE344 (uPAR) | IRDye 800 CW | 740 nm | 850 nm | Targeted | Orthotopic GBM in mice | TBR above 4.5 between 1 to 12 h post injection | [71] |
VEGF labelled IRDye-800 CW | IRDye 800 CW | 675 and 745 nm | 800 nm | Targeted | Mouse models of ovarian, breast and gastric cancers | TBR of 1.93 ± 0.40 on day 6 post administration | [72] |
EGFR2 labelled IRDye-800 CW | IRDye 800 CW | 675 and 745 nm | 800 nm | Targeted | Mouse models of ovarian, breast and gastric cancers | TBR of 2.92 ± 0.29 on day 6 post administration | [72] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Netufo, O.; Connor, K.; Shiels, L.P.; Sweeney, K.J.; Wu, D.; O’Shea, D.F.; Byrne, A.T.; Miller, I.S. Refining Glioblastoma Surgery through the Use of Intra-Operative Fluorescence Imaging Agents. Pharmaceuticals 2022, 15, 550. https://doi.org/10.3390/ph15050550
Netufo O, Connor K, Shiels LP, Sweeney KJ, Wu D, O’Shea DF, Byrne AT, Miller IS. Refining Glioblastoma Surgery through the Use of Intra-Operative Fluorescence Imaging Agents. Pharmaceuticals. 2022; 15(5):550. https://doi.org/10.3390/ph15050550
Chicago/Turabian StyleNetufo, Oluwakanyinsolami, Kate Connor, Liam P. Shiels, Kieron J. Sweeney, Dan Wu, Donal F. O’Shea, Annette T. Byrne, and Ian S. Miller. 2022. "Refining Glioblastoma Surgery through the Use of Intra-Operative Fluorescence Imaging Agents" Pharmaceuticals 15, no. 5: 550. https://doi.org/10.3390/ph15050550
APA StyleNetufo, O., Connor, K., Shiels, L. P., Sweeney, K. J., Wu, D., O’Shea, D. F., Byrne, A. T., & Miller, I. S. (2022). Refining Glioblastoma Surgery through the Use of Intra-Operative Fluorescence Imaging Agents. Pharmaceuticals, 15(5), 550. https://doi.org/10.3390/ph15050550