Anti-Inflammatory Activity of Piquerol Isolated from Piqueria trinervia Cav.
Abstract
:1. Introduction
2. Results
2.1. Structure of Piquerol
2.2. Anti-Inflammation Activity In Vivo
2.3. Measurement of Mediators: Pro-Inflammatory and Anti-Inflammatory
2.4. Membrane Stabilization Property
3. Discussion
4. Materials and Methods
4.1. Material
4.2. Plant Material
4.3. Extraction and Isolation of Piquerol
4.4. Structural Analysis
4.5. Animals
4.6. Acute Anti-Inflammatory Activity: Edema Induced by TPA
4.7. Cell Viability Assay
4.8. Determination of Nitric Oxide (NO), Cytokines, and NF-κB Levels
4.9. Methodology of Membrane Stabilization Property
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iwalewa, E.O.; McGaw, L.J.; Naidoo, V.; Eloff, J.N. Inflammation: The foundation of diseases and disorders. A review of phytomedicines of South African origin used to treat pain and inflammatory conditions. Afr. J. Biotechnol. 2007, 6, 2868–2885. [Google Scholar]
- Basak, S.; Kim, H.; Kearns, J.D.; Tergaonkar, V.; O’Dea, E.; Werner, S.L.; Benedict, C.A.; Ware, C.F.; Ghosh, G.; Verma, I.M. Fourth IκB protein within the NF-κB signaling module. Cell 2007, 128, 369–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saklatvala, J.; Dean, J.; Clark, A. Control of the expression of inflammatory response genes. Biochem. Soc. Symp. 2003, 70, 95–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brune, K.; Patrignani, P. New insights into the use of currently available non-steroidal anti-inflammatory drugs. J. Pain Res. 2015, 20, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Wagner, K.H.; Elmadfa, I. Biological Relevance of terpenoids. Ann. Nutr. Metab. 2003, 47, 95–106. [Google Scholar] [CrossRef]
- Marques, F.M.; Figueira, M.M.; Schmitt, E.F.; Kondratyuk, T.P.; Endringer, D.C.; Scherer, R.; Fronza, M. In vitro anti-inflammatory activity of terpenes via suppression of superoxide and nitric oxide generation and the NF-κB signalling pathway. Inflammopharmacology 2019, 27, 281–289. [Google Scholar] [CrossRef]
- Quintans, J.S.; Shanmugam, S.; Heimfarth, L.; Araújo, A.A.S.; Almeida, J.R.D.S.; Picot, L.; Quintans-Júnior, L.J. Monoterpenes modulating cytokines—A review. Food Chem. Toxicol. 2019, 123, 233–257. [Google Scholar] [CrossRef]
- Rzedowski, G.C.; Rzedowski, J. Flora Fanerógamica del Valle de México, 2nd ed.; 1a Reimp; Comision Nacional Para el Conocimiento y Uso de la Biodiversidad: Patzcuaro, Michoacán, Mexico, 2005; p. 1406.
- Romo, J.; Romo-deVivar, A.; Quijano, L.; Ríos, T.; Díaz, E. Los componentes terpenoides de Piqueria trinervia Cav. Rev. Lat. Quim. 1970, 1, 72–81. [Google Scholar]
- Cruz-Reyes, A.; Chavarín, C.; Campos-Arias, M.P.; Taboada, J.; Jiménez-Estrada, M. Actividad molusquicida del piquerol A aislado de Piqueria trinervia (Compositae) sobre ocho especies de caracoles pulmonados. Mem. Inst. Oswaldo Cruz 1989, 84, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Castro, C.; Jiménez-Estrada, M.; González-Parra, M. Inhibitory effect of piquerol a on the growth of epimastigotes of Trypanosoma cruzi. Planta Med. 1992, 58, 281–282. [Google Scholar] [CrossRef]
- Ruiz-Esparza, R.; Bye, T.; Meckes, M.; Torres-Lopez, J.; Jiménez-Estrada, M. Antibacterial activity of Piqueria trinervia a Mexican medicinal plant used to treat diarrhea. Pharm. Biol. 2007, 45, 446–452. [Google Scholar] [CrossRef]
- Rufino-González, Y.; Ponce-Macotela, M.; Jiménez-Estrada, M.; Jiménez-Fragoso, C.; Palencia, G.; Sanson-Romero, G.; Anzo-Osorio, A.; Martínez-Gordillo, M. Piqueria trinervia as a source of metabolites against Giardia intestinalis. Pharm. Biol. 2017, 55, 1787–1791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soriano-García, M.; Jiménez, M.; González, M.; Hernández, A.; Schatz, M.; Campana, C. Crystal and Molecular Structure of Piquerol, A. A Potent Growth-Inhibiting Factor. Chem. Lett. 1983, 12, 617–620. [Google Scholar] [CrossRef] [Green Version]
- Lam, N.S.; Long, X.; Su, X.Z.; Lu, F. Melaleuca alternifolia (tea tree) oil and its monoterpene constituents in treating protozoan and helminthic infections. Biomed. Pharmacother. 2020, 130, 110624. [Google Scholar] [CrossRef]
- Bhatti, H.N.; Khan, S.S.; Khan, A.; Rani, M.; Ahmad, V.U.; Choudhary, M.I. Biotransformation of monoterpenoids and their antimicrobial activities. Phytomedicine 2014, 21, 1597–1626. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Liu, Z.; Zhong, Z.; Wang, L.; Zhuo, X.; Li, J.; Jiang, X.; Ye, X.Y.; Xie, T.; Bai, R. Natural terpenoids with anti-inflammatory activities: Potential leads for anti-inflammatory drug discovery. Bioorganic Chem. 2022, 124, 105817. [Google Scholar] [CrossRef] [PubMed]
- Blumberg, P.M. Protein kinase C as the receptor for the phorbol ester tumorpromoters: Sixth Rhoads memorial award lecture. Cancer Res. 1988, 48, 1–8. [Google Scholar] [PubMed]
- Hiraganahalli, B.D.; Prince, S.B. Effect of Baricitinib on TPA-induced psoriasis like skin inflammation. Life Sci. 2021, 279, 119655. [Google Scholar] [CrossRef] [PubMed]
- Ignarro, L.J. Regulation of lysosomal enzyme secretion: Role in inflammation. Agents Actions 1974, 4, 241–258. [Google Scholar] [CrossRef]
- Hossain, M.M.; Ahamed, S.K.; Dewan, S.M.; Hassan, M.M.; Istiaq, A.; Islam, M.S.; Moghal, M.M. In vivo antipyretic, antiemetic, in vitro membrane stabilization, antimicrobial, and cytotoxic activities of different extracts from Spilanthes paniculata leaves. Biol. Res. 2014, 47, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, H.; Eswaraiah, M.C.; Vakati, K.; Madhavi, P. In vitro studies suggest probable mechanism of eucalyptus oil for anti-inflammatory and anti-arthritic activity. Int. J. Phyto. Pharm. 2012, 2, 81–83. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.; Qiao, Y.; Wang, P.; Li, S.; Zhao, W.; Gao, C. microRNA-210 negatively regulates LPS-induced production of proinflammatory cytokines by targeting NF-κB1 in murine macrophages. FEBS Lett. 2012, 586, 1201–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, W.; Chen, X.; Song, X.; Chen, Y.; Jia, R.; Zou, Y.; Li, L.; Yin, L.; He, C.; Liang, X.; et al. Resveratrol inhibits LPS-induced inflammation through suppressing the signaling cascades of TLR4-NF-κB/MAPKs/IRF3. Exp. Ther. Med. 2020, 19, 1824–1834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, J.N.; Al-Omran, A.; Parvathy, S.S. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 2007, 15, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Kolios, G.; Valatas, V.; Ward, S.G. Nitric oxide in inflammatory bowel disease: A universal messenger in an unsolved puzzle. Immunology 2004, 113, 427–437. [Google Scholar] [CrossRef]
- Ren, K.; Torres, R. Role of interleukin-1beta during pain and inflammation. Brain Res. Rev. 2009, 60, 57–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ca, Y.; Xue, F.; Quan, C.; Qu, M.; Liu, N.; Zhang, Y.; Fleming, C.; Hu, X.; Zhang, H.; Weichselbaum, R.; et al. Critical role of IL-1β–IL-1R signaling pathway in skininflammation and psoriasis pathogenesis. J. Investig. Dermatol. 2019, 139, 146–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinarello, C.A. Proinflammatory cytokines. Chest 2000, 118, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef] [PubMed]
- Barnes, T.C.; Anderson, M.E.; Moots, R.J. The many faces of interleukin-6: The role of IL-6 in inflammation, vasculopathy, and fibrosis in systemic sclerosis. Int. J. Rheumatol. 2011, 2011, 721608. [Google Scholar] [CrossRef] [Green Version]
- Popa, C.; Netea, M.G.; van Riel, P.L.; van der Meer, J.W.; Stalenhoef, A.F. The role of TNF-α in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J. Lipid Res. 2007, 48, 751–762. [Google Scholar] [CrossRef] [Green Version]
- Zelová, H.; Hošek, J. TNF-α signalling and inflammation: Interactions between old acquaintances. Inflamm. Res. 2013, 62, 641–651. [Google Scholar] [CrossRef]
- Iyer, S.S.; Cheng, G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit. Rev. Immunol. 2012, 32, 23–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, L.M.; Kheifets, J.B.; Ballaron, S.J.; Young, J.M. Edema and cell infiltration in the phorbol ester-treated mouse ear are temporally separate and can be differentially modulated by pharmacological agents. Agents Actions 1989, 26, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, X.; Broderick, M.; Fein, H. Measurement of nitric oxide production in biological systems by using Griess reaction assay. Sensors 2003, 3, 276–284. [Google Scholar] [CrossRef] [Green Version]
- Parameswari, P.; Devika, R.; Vijayaraghavan, P. In vitro anti-inflammatory and antimi-crobial potential of leaf extract from Artemisia nilagirica (Clarke) Pamp. Saudi J. Biol. Sci. 2019, 26, 460–463. [Google Scholar] [CrossRef] [PubMed]
Group | Difference of Weight (mg) | % Decrease in Inflammation |
---|---|---|
Negative | 11.45 ± 0.5 ** | 0.0 |
IND (2 mg/ear) | 4.41 ± 0.5 * | 61.44 ± 4.2 |
Piquerol (2 mg/ear) | 4.36 ± 0.6 * | 66.19 ± 5.3 |
µg/mL | Diclofenac | Piquerol |
---|---|---|
200 | 77.84 ± 0.32 | 76.65 ± 1.21 |
100 | 84.97 ± 0.45 | 86.17 ± 0.47 |
50 | 84.19 ± 0.11 | 85.20 ± 1.22 |
25 | 87.93 ± 0.56 | 86.98 ± 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos-Xolalpa, N.; Esquivel-Campos, A.L.; Martínez-Casares, R.M.; Pérez-Gutiérrez, S.; Pérez-Ramos, J.; Sánchez-Mendoza, E. Anti-Inflammatory Activity of Piquerol Isolated from Piqueria trinervia Cav. Pharmaceuticals 2022, 15, 771. https://doi.org/10.3390/ph15070771
Campos-Xolalpa N, Esquivel-Campos AL, Martínez-Casares RM, Pérez-Gutiérrez S, Pérez-Ramos J, Sánchez-Mendoza E. Anti-Inflammatory Activity of Piquerol Isolated from Piqueria trinervia Cav. Pharmaceuticals. 2022; 15(7):771. https://doi.org/10.3390/ph15070771
Chicago/Turabian StyleCampos-Xolalpa, Nimsi, Ana Laura Esquivel-Campos, Rubria Marlen Martínez-Casares, Salud Pérez-Gutiérrez, Julia Pérez-Ramos, and Ernesto Sánchez-Mendoza. 2022. "Anti-Inflammatory Activity of Piquerol Isolated from Piqueria trinervia Cav." Pharmaceuticals 15, no. 7: 771. https://doi.org/10.3390/ph15070771
APA StyleCampos-Xolalpa, N., Esquivel-Campos, A. L., Martínez-Casares, R. M., Pérez-Gutiérrez, S., Pérez-Ramos, J., & Sánchez-Mendoza, E. (2022). Anti-Inflammatory Activity of Piquerol Isolated from Piqueria trinervia Cav. Pharmaceuticals, 15(7), 771. https://doi.org/10.3390/ph15070771