Schinopsis brasiliensis Engler—Phytochemical Properties, Biological Activities, and Ethnomedicinal Use: A Scoping Review
Abstract
:1. Introduction
2. Material and Methods
2.1. Geographical Distribution of S. brasiliensis
2.2. Protocol and Registration
2.3. Eligibility Criteria
2.4. Search Strategy and Information Sources
2.5. Selection of Sources of Evidence
2.6. Data Items and Synthesis of Results
3. Results
3.1. Geographical Distribution of S. brasiliensis
3.2. Summary of the Articles
3.3. Ethnobotanical Studies
3.4. Phytochemistry Studies
3.5. Antimicrobial Activity
3.6. Antioxidant Activity
3.7. Cytotoxic Activity
3.8. Other Biological Activities
4. Discussion
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva, M.S.P.; Brandão, D.O.; Chaves, T.P.; Filho, A.L.N.F.; Costa, E.M.M.D.B.; Santos, V.L.; Medeiros, A.C.D. Study Bioprospecting of Medicinal Plant Extracts of the Semiarid Northeast: Contribution to the Control of Oral Microorganisms. Evid.-Based Complement. Altern. Med. 2012, 2012, 681207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bessa, N.; Borges, J.; Beserra, F.P.; Carvalho, R.; Pereira, M.; Fagundes, R.; Campos, S.; Ribeiro, L.; Quirino, M.; Chagas Junior, A.F.; et al. Prospecção fitoquímica preliminar de plantas nativas do cerrado de uso popular medicinal pela comunidade rural do assentamento vale verde-Tocantins. Rev. Bras. Plantas Med. 2013, 15, 692–707. [Google Scholar] [CrossRef]
- López, L.; Villalba, R. An assessment of Schinopsis brasiliensis Engler (Anacardiacea) for dendroclimatological applications in the tropical Cerrado and Chaco forests, Bolivia. Dendrochronologia 2016, 40, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, P. Braúna-do-Sertão Schinopsis brasiliensis; Embrapa Florestas: Brasília, Brazil, 2009. [Google Scholar]
- Alves, C.A.B.; Leite, A.P.; Ribeiro, J.E.D.S.; Guerra, N.M.; Santos, S.D.S.; Souza, R.S.; Carvalho, T.K.N.; De Lucena, C.M.; Fonseca, A.M.F.D.A.; Filho, J.A.L.; et al. Distribution and future projections for Schinopsis brasiliensis Engler (Anacardiaceae) in the semi-arid region of Brazil. Rev. Bras. De Gestão Ambient. E Sustentabilidade 2020, 7, 1361–1378. [Google Scholar] [CrossRef]
- Saraiva, M.; Saraiva, C.; Cordeiro, R.; Soares, R.; Xavier, H.; Caetano, N. Atividade antimicrobiana e sinérgica das frações das folhas de Schinopsis brasiliensis Engl. frente a clones multirresistentes de Staphylococcus aureus. Rev. Bras. Plantas Med. 2013, 15, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Silva-Luz, C.; Pirani, J.; Pell, S.; Mitchell, J. Anacardiaceae in Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro. Available online: http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB4396 (accessed on 5 June 2021).
- Sette-De-Souza, P.H.; Medeiros, F.D.; Santana, C.; Araújo, R.M.; Cartaxo-Furtado, N.A.O.; Macêdo, R.O.; Medeiros, A.C.D. Thermal decomposition profile of chitosan microparticles produced with Schinopsis brasiliensis Engler extract. J. Therm. Anal. 2018, 131, 829–834. [Google Scholar] [CrossRef]
- Albuquerque, U.; de Medeiros, P.; de Almeida, A.; Monteiro, J.; de Freitas Lins Neto, E.; de Melo, J.; dos Santos, J. Medicinal plants of the caatinga (semi-arid) vegetation of NE Brazil: A quantitative approach. J. Ethnopharmacol. 2007, 114, 325–354. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, C.; Silva, T.D.L.E.; de Amorim, E.; Maia, M.D.S.; de Albuquerque, U. Life strategy and chemical composition as predictors of the selection of medicinal plants from the caatinga (Northeast Brazil). J. Arid Environ. 2005, 62, 127–142. [Google Scholar] [CrossRef]
- Júnior, W.S.F.; Ladio, A.; Albuquerque, U.P. Resilience and adaptation in the use of medicinal plants with suspected anti-inflammatory activity in the Brazilian Northeast. J. Ethnopharmacol. 2011, 138, 238–252. [Google Scholar] [CrossRef]
- Agra, M.; Baracho, G.; Nurit, K.; Basílio, I.; Coelho, V. Medicinal and poisonous diversity of the flora of “Cariri Paraibano”, Brazil. J. Ethnopharmacol. 2007, 111, 383–395. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Farias, E.; Santos, E.; Nascimento, J.; Silva, G.; Silva, L. Plantas medicinais—conhecendo e valorizando os recursos naturais da Caatinga, no alto do Capibaribe. In Proceedings of the XIII Jornada de Ensino, Pesquisa e Extensão da UFRPE—JEPEX, Recife, Brazil, 9–13 December 2013. [Google Scholar]
- Albuquerque, U. Re-examining hypotheses concerning the use and knowledge of medicinal plants: A study in the Caatinga vegetation of NE Brazil. J. Ethnobiol. Ethnomed. 2006, 2, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albuquerque, U.; Andrade, L. Uso de recursos vegetais da Caatinga: O caso do Agreste do Estado de Pernambuco (Nordeste do Brasil). Interciencia 2002, 27, 336–346. [Google Scholar]
- Gomes, T.B.; Bandeira, F.P.S.D.F. Uso e diversidade de plantas medicinais em uma comunidade quilombola no Raso da Catarina, Bahia. Acta Bot. Bras. 2012, 26, 796–809. [Google Scholar] [CrossRef] [Green Version]
- Pereira Júnior, L.; Andrade, A.; Araújo, K.; Barbosa, A.; Barbosa, F. Espécies da Caatinga como alternativa para o desenvolvimento de novos fitofármacos. Floresta Ambiente 2012, 21, 509–520. [Google Scholar] [CrossRef]
- Santos, C.C.D.S.; Guilhon, C.C.; Moreno, D.S.A.; Alviano, C.S.; Estevam, C.D.S.; Blank, A.F.; Fernandes, P.D. Anti-inflammatory, antinociceptive and antioxidant properties of Schinopsis brasiliensis bark. J. Ethnopharmacol. 2018, 213, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Moreira, B.O.; Vilar, V.L.S.; de Almeida, R.N.S.; Morbeck, L.L.B.; Andrade, B.S.; Barros, R.G.M.; Neves, B.M.; de Carvalho, A.L.; Cruz, M.P.; Yatsuda, R.; et al. New dimer and trimer of chalcone derivatives from anti-inflammatory and antinociceptive extracts of Schinopsis brasiliensis roots. J. Ethnopharmacol. 2022, 289, 115089. [Google Scholar] [CrossRef]
- Donati, M.; Mondin, A.; Chen, Z.; Miranda, F.; do Nascimento, B.; Schirato, G.; Pastore, P.; Froldi, G. Radical scavenging and antimicrobial activities of Croton zehntneri, Pterodon emarginatus and Schinopsis brasiliensis essential oils and their major constituents: Estragole, trans-anethole, β-caryophyllene and myrcene. Nat. Prod. Res. 2014, 29, 939–946. [Google Scholar] [CrossRef]
- Santos, C.C.D.S.; Masullo, M.; Cerulli, A.; Mari, A.; Estevam, C.D.S.; Pizza, C.; Piacente, S. Isolation of antioxidant phenolics from Schinopsis brasiliensis based on a preliminary LC-MS profiling. Phytochemistry 2017, 140, 45–51. [Google Scholar] [CrossRef]
- Saraiva, M.; Castro, R.H.A.; Cordeiro, R.P.; Sobrinho, T.J.S.P.; Amorim, E.L.C.; Xavier, H.S.; Pisciottano, M.N.C. In vitro evaluation of antioxidant, antimicrobial and toxicity properties of extracts of Schinopsis brasiliensis Engl. (Anacardiaceae). Afr. J. Pharm. Pharmacol. 2011, 5, 1724–1731. [Google Scholar] [CrossRef] [Green Version]
- Sette-de-Souza, P.H.; de Santana, C.; Amaral-Machado, L.; Duarte, M.; de Medeiros, F.; Veras, G.; de Medeiros, A. Antimicrobial Activity of Schinopsis brasiliensis Engler Extract-Loaded Chitosan Microparticles in Oral Infectious Disease. AAPS PharmSciTech 2020, 21, 246. [Google Scholar] [CrossRef]
- Sette-de-Souza, P.; de Santana, C.; Sousa, I.; Foglio, M.; Medeiros, F.; Medeiros, A. Schinopsis brasiliensis Engl. to combat the biofilm-dependents diseases in vitro. An. Acad. Bras. Ciências 2020, 92, e20200408. [Google Scholar] [CrossRef]
- Farias, D.F.; Souza, T.M.; Viana, M.P.; Soares, B.M.; Cunha, A.P.; Vasconcelos, I.M.; Ricardo, N.M.P.S.; Ferreira, P.M.P.; Melo, V.M.M.; Carvalho, A.F.U. Antibacterial, Antioxidant, and Anticholinesterase Activities of Plant Seed Extracts from Brazilian Semiarid Region. BioMed Res. Int. 2013, 2013, 510736. [Google Scholar] [CrossRef] [PubMed]
- Filho, A.L.N.F.; Carneiro, V.; Souza, E.A.; Santos, R.L.; Catão, M.H.C.; Medeiros, A.C.D. In Vitro Evaluation of Antimicrobial Photodynamic Therapy Associated with Hydroalcoholic Extracts of Schinopsis brasiliensis Engl. New Therapeutic Perspectives. Photomed. Laser Surg. 2015, 33, 240–245. [Google Scholar] [CrossRef]
- Lima-Saraiva, S.; Oliveira, F.; Junior, R.; Araújo, C.; Oliveira, A.; Pacheco, A.; Rolim, L.; Amorim, E.; César, F.; Almeida, J. Chemical Analysis and Evaluation of Antioxidant, Antimicrobial, and Photoprotective Activities of Schinopsis brasiliensis Engl. (Anacardiaceae). Sci. World J. 2017, 2017, 1713921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrade, B.D.A.; Corrêa, A.J.C.; Gomes, A.K.S.; Neri, P.M.D.S.; Sobrinho, T.J.D.S.P.; Araújo, T.A.D.S.; Castro, V.T.N.D.A.E.; de Amorim, E.L.C. Photoprotective activity of medicinal plants from the caatinga used as anti-inflammatories. Pharmacogn. Mag. 2019, 15, 356. [Google Scholar] [CrossRef]
- Almeida, C.; Amorim, E.; Albuquerque, U. Insights into the search for new drugs from traditional knowledge: An ethnobotanical and chemical-ecological perspective. Pharm. Biol. 2011, 49, 864–873. [Google Scholar]
- Araújo, T.; Alencar, N.; de Amorim, E.; de Albuquerque, U. A new approach to study medicinal plants with tannins and flavonoids contents from the local knowledge. J. Ethnopharmacol. 2008, 120, 72–80. [Google Scholar] [CrossRef]
- Fernandes, F.H.A.; Batista, R.S.d.A.; De Medeiros, F.D.; Santos, F.S.; Medeiros, A.C.D. Development of a rapid and simple HPLC-UV method for determination of gallic acid in Schinopsis brasiliensis. Rev. Bras. Farmacogn. 2015, 25, 208–211. [Google Scholar] [CrossRef] [Green Version]
- Siqueira, C.F.D.Q.; Cabral, D.L.V.; Sobrinho, T.J.D.S.P.; De Amorim, E.L.C.; De Melo, J.G.; Araújo, T.A.D.S.; Albuquerque, U.P. Levels of Tannins and Flavonoids in Medicinal Plants: Evaluating Bioprospecting Strategies. Evid.-Based Complement. Altern. Med. 2012, 2012, 434782. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, A.; Coutinho, F.; Da Silva, R.; Randau, K.; Xavier, H.; Pisciottano, M. Atividade antimicrobiana de polifenóis isolados das folhas de Schinopsis brasiliensis (Engl.) guiado por bioautografia. Rev. Fitos 2021, 14, 10–25. [Google Scholar] [CrossRef]
- Tricco, A.; Lillie, E.; Zarin, W.; O’Brien, K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albuquerque, H.; Figuêredo, D.; Cerqueira, J. Os vegetais com potencial fitoterápico do Complexo Aluízio Campos, Campina Grande-PB. Rev. Bras. Inf. Científicas 2011, 3, 17–26. [Google Scholar]
- Ribeiro, D.; Macêdo, D.; Oliveira, L.; Saraiva, M.; Oliveira, S.; Souza, M.; Menezes, I. Potencial terapêutico e uso de plantas medicinais em uma área de Caatinga no estado do Ceará, nordeste do Brasil. Rev. Bras. Plantas Med. 2014, 16, 912–930. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, O.; Almeida, A.; dos Santos, M.V.F.; Muir, J.; Cunha, M.; Lira, M.; Ferreira, R. Season and rainfall gradient effects on condensed tannin concentrations of woody rangeland species. Rev. Bras. Ciências Agrárias-Braz. J. Agric. Sci. 2015, 10, 165–169. [Google Scholar] [CrossRef]
- Luz, L.D.R.; Porto, D.D.; Castro, C.B.; Silva, M.F.S.; Filho, E.D.G.A.; Canuto, K.M.; de Brito, E.S.; Becker, H.; Pessoa, C.D.; Zocolo, G.J. Metabolomic profile of Schinopsis brasiliensis via UPLC-QTOF-MS for identification of biomarkers and evaluation of its cytotoxic potential. J. Chromatogr. B 2018, 1099, 97–109. [Google Scholar] [CrossRef]
- Cardoso, M.; David, J.; David, J. A new alkyl phenol from Schinopsis brasiliensis. Nat. Prod. Res. 2005, 19, 431–433. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, M.; Lima, L.; David, J.; Moreira, B.; Santos, E.; David, J.; Alves, C. A New Biflavonoid from Schinopsis brasiliensis (Anacardiaceae). J. Braz. Chem. Soc. 2015, 26, 1527–1531. [Google Scholar]
- Ribeiro, I.; Mariano, E.; Careli, R.; Morais-Costa, F.; de Sant’Anna, F.; Pinto, M.; de Souza, M.; Duarte, E. Plants of the Cerrado with antimicrobial effects against Staphylococcus spp. and Escherichia coli from cattle. BMC Vet. Res. 2018, 14, 32. [Google Scholar]
- De Oliveira, M.S.; Junior, J.A.O.; Sato, M.R.; Conceição, M.M.; Medeiros, A.C.D. Polymeric Nanoparticle Associated with Ceftriaxone and Extract of Schinopsis Brasiliensis Engler against Multiresistant Enterobacteria. Pharmaceutics 2020, 12, 695. [Google Scholar] [CrossRef]
- Silva, K.; Chaves, T.; Santos, R.; Brandao, D.; Fernandes, F.; Ramos Júnior, F.; Dos Santos, V.; Felismino, D.; Medeiros, A. Modulation of the erythromycin resistance in Staphylococcus aureus by ethanolic extracts of Ximenia americana L and Schinopsis brasiliensis Engl. Boletín Latinoam. Caribe Plantas Med. Aromáticas 2022, 2015, 92–98. [Google Scholar]
- Souza, T.M.; Farias, D.F.; Soares, B.M.; Viana, M.P.; Lima, G.; Machado, L.; Morais, S.M.; Carvalho, A. Toxicity of Brazilian Plant Seed Extracts to Two Strains of Aedes aegypti (Diptera: Culicidae) and Nontarget Animals. J. Med. Entomol. 2011, 48, 846–851. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.C.; Araújo, S.S.; Santos, A.L.; Almeida, E.C.; Dias, A.S.; Damascena, N.P.; Santos, D.M.; Santos, M.I.; Júnior, K.A.; Pereira, C.K.; et al. Evaluation of the toxicity and molluscicidal and larvicidal activities of Schinopsis brasiliensis stem bark extract and its fractions. Rev. Bras. Farm. 2014, 24, 298–303. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, P.B.B.M.; De Oliveira, J.M.; Chagas, J.M.; Rabelo, L.M.A.; De Medeiros, G.F.; Giodani, R.B.; Da Silva, E.A.; Uchôa, A.F.; Ximenes, M.D.F.D.F.M. Evaluation of seed extracts from plants found in the Caatinga biome for the control of Aedes aegypti. Parasitol. Res. 2014, 113, 3565–3580. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.H.A.; Santana, C.; Silva, P.C.D.; Simões, M.O.D.S.; Kaneko, T.M.; Medeiros, A.C.D. Development of a sunscreen by thermal compatibility study using Schinopsis brasiliensis Engler extract as preservative. J. Therm. Anal. 2017, 131, 753–763. [Google Scholar] [CrossRef]
- Leal, I.; Silva, J.; Tabarelli, M.; Lacher Junior, T. Mudando o curso da conservação da biodiversidade na Caatinga do Nordeste do Brasil. Megadiversidade 2005, 1, 139–146. [Google Scholar]
- El Omari, N.; Guaouguaou, F.E.; El Menyiy, N.; Benali, T.; Aanniz, T.; Chamkhi, I.; Balahbib, A.; Taha, D.; Shariati, M.A.; Zengin, G.; et al. Phytochemical and biological activities of Pinus halepensis mill., and their ethnomedicinal use. J. Ethnopharmacol. 2021, 268, 113661. [Google Scholar] [CrossRef] [PubMed]
- Vargas, G.C.; Bellaver, E.H. Estudo da atividade antioxidante dos compostos fenólicos na medicina preventiva: Revisão de literatura. Visão Acad. 2022, 23, 55–64. [Google Scholar] [CrossRef]
- Bruneton, J.; Barton, D.; Villar del Fresno, A. Elementos de Fitoquímica y de Farmacognosia; Editorial Acribia: Zaragoza, Spain, 1991. [Google Scholar]
- Mello, J.P.C.; Santos, S.C. Taninos. In Farmacognosia: Do Produto Natural ao Medicamento; Simões, C.M.O., Schenckel, E.P., Mello, J.C.P., Mentz, L.A., Petrovick, P.R., Eds.; Artmed: Porto Alegre, Brazil, 2017; pp. 234–247. [Google Scholar]
- D’Archivio, M.; Filesi, C.; Di Benedetto, R.; Gargiulo, R.; Giovannini, C.; Masella, R. Polyphenols, dietary sources and bioavailability. Ann. Dell’Istituto Super. Sanita 2007, 43, 348–361. [Google Scholar]
- Middleton, E., Jr.; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000, 52, 673–751. [Google Scholar]
- Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002, 96, 67–202. [Google Scholar] [CrossRef]
- Nijveldt, R.; van Nood, E.; van Hoorn, D.; Boelens, P.; van Norren, K.; van Leeuwen, P. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 2001, 74, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Mutoh, M.; Takahashi, M.; Fukuda, K.; Komatsu, H.; Enya, T.; Matsushima-Hibiya, Y.; Mutoh, H.; Sugimura, T.; Wakabayashi, K. Suppression by Flavonoids of Cyclooxygenase-2 Promoter-dependent Transcriptional Activity in Colon Cancer Cells: Structure-Activity Relationship. Jpn. J. Cancer Res. 2000, 91, 686–691. [Google Scholar] [CrossRef]
- García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.; Martínez, J. Flavonoids as anti-inflammatory agents: Implications in cancer and cardiovascular disease. Inflamm. Res. 2009, 58, 537–552. [Google Scholar] [CrossRef] [PubMed]
- Datta, B.K.; Chowdhury, M.M.; Khan, T.H.; Kundu, J.K.; Rashid, M.A.; Nahar, L.; Sarker, S.D. Analgesic, Antiinflammatory and CNS Depressant Activities of Sesquiterpenes (I)–(III) and a Flavonoid Glycoside (IV) from Polygonum viscosum. ChemInform 2004, 35, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Perazzo, F.F.; Carvalho, J.C.T.; Rodrigues, M.; Morais, E.K.L.; Maciel, M.A.M. Comparative anti-inflammatory and antinociceptive effects of terpenoids and an aqueous extract obtained from Croton cajucara Benth. Rev. Bras. Farm. 2007, 17, 521–528. [Google Scholar] [CrossRef]
- De Sousa, D.P.; Nobrega, F.F.F.; Claudino, F.S.; De Almeida, R.N.; Leite, J.R.; Mattei, R. Pharmacological effects of the monoterpene alpha,beta-epoxy-carvone in mice. Rev. Bras. Farm. 2007, 17, 170–175. [Google Scholar] [CrossRef]
- Wina, E.; Muetzel, S.; Becker, K. The Impact of Saponins or Saponin-Containing Plant Materials on Ruminant Production—A Review. J. Agric. Food Chem. 2005, 53, 8093–8105. [Google Scholar] [CrossRef] [PubMed]
- Athayde, M.L.; Taketa, A.T.C.; Gosmann, G.; Schenkel, E.P. Saponinas. In Farmacognosia: Plantado Produto Natural ao Medicamento; Simões, C.M., Schenkel, E.P., Mello, J.C.P., Mentz, L.A., Petrovick, P.R., Eds.; Artmed: Porto Alegre, Brazil, 2017; pp. 284–302. [Google Scholar]
- Hauptli, L.; Lovatto, P. Alimentação de porcas gestantes e lactantes com dietas contendo saponinas. Ciência Rural 2006, 36, 610–616. [Google Scholar] [CrossRef]
- Sette-De-Souza, P.H.; Costa, M.J.; Araújo, F.A.; Alencar, E.N.; Amaral-Machado, L. Two phytocompounds from Schinopsis brasiliensis show promising antiviral activity with multiples targets in Influenza A virus. An. Acad. Bras. Ciências 2021, 93, e20210964. [Google Scholar] [CrossRef]
Therapeutic Indication | Location | Used Part | Preparation | Reference |
---|---|---|---|---|
Antitussive, diarrhea, and dysentery | Cabaceiras/PB, São João do Cariri/PB, Serra Branca/PB, Monteiro/PB | Bark | Decoction, syrup | Agra et al. [12] |
Cold and flu | Alagoinha/PE | Bark | Infusion, Syrup | Albuquerque [14] |
Antitussive and flu | Alagoinha/PE | Bark | Decoction, Syrup | Albuquerque and Andrade [15] |
Fracture, Inflammation, Sexual Impotence, Sore Throat Cold, Flu, and Diarrhea | Unreported | Bark, Leaf, Fruit, Seed, Resin | Unreported | Albuquerque et al. [9] |
Antihisteric, nervosthenic, tonic, toothache, earache, verminosis | Campina Grande/PB | Resin, Bark | Tincture, Decoction, Infusion | Albuquerque et al. [36] |
Inflammation and Sexual Impotence | Piranhas/AL, Delmiro Gouveia/AL | Bark | Unreported | Almeida et al. [10] |
Menstrual Cramps, Inflammation, Infection | Altinho/PE | N/E | Unreported | Ferreira-Júnior et al. [11] |
Prostate, anticoagulant, flu, and bones | Jeremoabo/BA | Bark | Maceration, Tea, Syrup | Gomes and Bandeira [16] |
Back pain, nerve pain, flu | Monteiro/PB | Flower | Decoction | Pereira-Júnior et al. [17] |
Stomach pain, liver pain | Assaré/CE | Leaf | Decoction | Ribeiro et al. [37] |
Cough, flu, diarrhea, fractures, sexual impotence | Unreported | Bark | Unreported | Silva et al. [13] |
Used Part | Extract | Compound | Amount | Reference |
---|---|---|---|---|
Unreported | Ethanolic | Alkaloids | - | Almeida et al. [29] |
Bark | Ethanolic | Flavonoids | 132.4 ± 1.76 mg/g (RE) | Lima-Saraiva et al. [27] |
Bark | Ethanolic | Flavonoids | 6.94 mg/g | Sette-de-Souza et al. [24] |
Bark | Hydroalcoholic | Flavonoids | 1.44% | Fernandes et al. [31] |
Bark | Hydroalcoholic | Flavonoids | 10.16 ± 0.54 mg/g | Sette-de-Souza et al. [23] |
Bark | Methanolic | Flavonoids | 2.63% | Araújo et al. [30] |
Bark | Methanolic | Flavonoids | - | Saraiva et al. [33] |
Flowers | Methanolic | Flavonoids | - | Saraiva et al. [33] |
Fruit | Methanolic | Flavonoids | - | Saraiva et al. [33] |
Leaves | Methanolic | Flavonoids | - | Saraiva et al. [33] |
Root | Methanolic | Flavonoids | - | Saraiva et al. [33] |
Seeds | Methanolic | Flavonoids | - | Saraiva et al. [33] |
Bark | Unreported | Flavonoids | 2.55% | Siqueira et al. [32] |
Bark | Hydroalcoholic | Gallic acid | - | Fernandes et al. [31] |
Heartwood | Butanol | Phenol | 501.94 ± 10.49 mg/g (GAE) | Moreira et al. [19] |
Root Bark | Butanol | Phenol | 505.25 ± 11.65 mg/g (GAE) | Moreira et al. [19] |
Heartwood | Chloroform | Phenol | 474.38 ± 7.07 mg/g (GAE) | Moreira et al. [19] |
Root Bark | Chloroform | Phenol | 525.31 ± 2.67 mg/g (GAE) | Moreira et al. [19] |
Bark | Ethanolic | Phenol | - | Almeida et al. [10] |
Bark | Ethanolic | Phenol | 493.88 ± 13.23 mg/g (TAE) | Almeida-Andrade et al. [28] |
Bark | Ethanolic | Phenol | 624.6 ± 0.42 mg/g (GAE) | Lima-Saraiva et al. [27] |
Heartwood | Ethyl Acetate | Phenol | 816.37 ± 15.40 mg/g (GAE) | Moreira et al. [19] |
Root Bark | Ethyl Acetate | Phenol | 648.26 ± 6.01 mg/g (GAE) | Moreira et al. [19] |
Heartwood | Hexane | Phenol | 19.14 ± 2.67 mg/g (GAE) | Moreira et al. [19] |
Root Bark | Hexane | Phenol | 76.61 ± 6.7 mg/g (GAE) | Moreira et al. [19] |
Bark | Methanolic | Phenolic acid | - | Saraiva et al. [33] |
Flowers | Methanolic | Phenolic acid | - | Saraiva et al. [33] |
Fruit | Methanolic | Phenolic acid | - | Saraiva et al. [33] |
Leaves | Methanolic | Phenolic acid | - | Saraiva et al. [33] |
Root | Methanolic | Phenolic acid | - | Saraiva et al. [33] |
Seeds | Methanolic | Phenolic acid | - | Saraiva et al. [33] |
Bark | Ethanolic | Polyphenols | 598.55 mg/g | Sette-de-Souza et al. [24] |
Bark | Hydroalcoholic | Polyphenols | 15.08% | Fernandes et al. [31] |
Bark | Hydroalcoholic | Polyphenols | 586.13 ± 9.38 mg/g | Sette-de-Souza et al. [23] |
Bark | Ethanolic | Quinones | - | Almeida et al. [10] |
Unreported | Ethanolic | Saponins | - | Almeida et al. [29] |
Bark | Methanolic | Saponins | - | Saraiva et al. [33] |
Flowers | Methanolic | Saponins | - | Saraiva et al. [33] |
Fruit | Methanolic | Saponins | - | Saraiva et al. [33] |
Leaves | Methanolic | Saponins | - | Saraiva et al. [33] |
Root | Methanolic | Saponins | - | Saraiva et al. [33] |
Seeds | Methanolic | Saponins | - | Saraiva et al. [33] |
Bark | Ethanolic | Tannins | - | Almeida et al. [10] |
Bark | Ethanolic | Tannins | 367.12 ± 21.35 mg/g (TAE) | Almeida-Andrade et al. [28] |
Bark | Ethanolic | Tannins | 255.8 ± 2.06 mg/g (TAE) | Lima-Saraiva et al. [27] |
Bark | Ethanolic | Tannins | 15.83 mg/g | Sette-de-Souza et al. [24] |
Unreported | Ethanolic | Tannins | - | Almeida et al. [29] |
Bark | Hydroalcoholic | Tannins | 27.12 ± 0.61 mg/g | Sette-de-Souza et al. [23] |
Bark | Methanolic | Tannins | 50.24% | Araújo et al. [30] |
Bark | Methanolic | Tannins | - | Saraiva et al. [33] |
Flowers | Methanolic | Tannins | - | Saraiva et al. [33] |
Fruit | Methanolic | Tannins | - | Saraiva et al. [33] |
Leaves | Methanolic | Tannins | - | Saraiva et al. [33] |
Root | Methanolic | Tannins | - | Saraiva et al. [33] |
Seeds | Methanolic | Tannins | - | Saraiva et al. [33] |
Bark | Unreported | Tannins | 5.53% | Siqueira et al. [32] |
Leaves and Bark | Unreported | Tannins | 78.9 ± 12.2 mg/g | Oliveira et al. [38] |
Bark | Ethanolic | Triterpene | - | Almeida et al. [10] |
Bark | Methanolic | Triterpene | - | Saraiva et al. [33] |
Flowers | Methanolic | Triterpene | - | Saraiva et al. [33] |
Fruit | Methanolic | Triterpene | - | Saraiva et al. [33] |
Leaves | Methanolic | Triterpene | - | Saraiva et al. [33] |
Root | Methanolic | Triterpene | - | Saraiva et al. [33] |
Seeds | Methanolic | Triterpene | - | Saraiva et al. [33] |
Isolated Compound | Class | Plant Part | Reference |
---|---|---|---|
Sylvestrene | Alkene | Leaves | Donati et al. [20] |
Quercetin- O- (O- galloyl) –hexoside | Benzoate | Leaves | Reis-Luz et al. [39] |
Methyl 6-eicosanyl-2-hydroxy-4-methoxybenzoate | Benzoate | Bark | Cardoso et al. [40] |
Urundeuvin A | Benzopyran | Branch | Reis-Luz et al. [39] |
Chlorogenic acid | Carboxylic acid | Bark | Reis-Luz et al. [39] |
Citric Acid | Carboxylic acid | Bark | Reis-Luz et al. [39] |
Digalloyl Quinic Acid | Carboxylic acid | Bark | Reis-Luz et al. [39] |
Quinic acid | Carboxylic acid | Bark | Reis-Luz et al. [39] |
Chlorogenic acid | Carboxylic acid | Branch | Reis-Luz et al. [39] |
Quinic acid | Carboxylic acid | Branch | Reis-Luz et al. [39] |
Quinic acid | Carboxylic acid | Leaves | Reis-Luz et al. [39] |
Cajobin | Chalcone | Root bark | Moreira et al. [19] |
Luxenchalcone | Chalcone | Root bark | Moreira et al. [19] |
5α, 8α-epidioxyergosta-6,22-dien-3-b-ol | Cholestane | Bark | Cardoso et al. [40] |
4,2′,4′-tri-hydroxichalcona-(3→O→4″)-2‴,4‴,-dihydroxiccalcona | Flavonoid | Bark | Cardoso et al. [41] |
Apigenin | Flavonoid | Bark | Lima-Saraiva et al. [27] |
Catechin | Flavonoid | Bark | Lima-Saraiva et al. [27] |
Epicatechin | Flavonoid | Bark | Lima-Saraiva et al. [27] |
Ethyl-O-β-D-(6′-O-galloyl)-glucopyranoside | Flavonoid | Branch | Reis-Luz et al. [39] |
Catechin | Flavonoid | Fruit | Saraiva et al. [33] |
(2R *, 3R *, 2″R *, 3″R *)-7-hydroxy-4′-methoxy-flavanone-(3→3″)-3‴, 7″-di-hydroxy-4‴-methoxyflavone | Flavonoid | Leaves | Cardoso et al. [41] |
4,2′,4′-tri-hydroxichalcona-(3→O→4″)-2‴,4‴,-dihydroxiccalcona | Flavonoid | Leaves | Cardoso et al. [41] |
Myricitrin O-gallate | Flavonoid | Leaves | Reis-Luz et al. [39] |
Quercetin gallopentosis | Flavonoid | Leaves | Reis-Luz et al. [39] |
Quercetin- O- hexosíde | Flavonoid | Leaves | Reis-Luz et al. [39] |
Gallic acid | Gallate | Bark | Fernandes et al. [31] |
Gallic acid | Gallate | Bark | Lima-Saraiva et al. [27] |
Gallic acid | Gallate | Heartwood | Moreira et al. [19] |
Gallic acid | Gallate | Leaves | Fernandes et al. [31] |
Gallic acid | Gallate | Leaves | Lima-Saraiva et al. [27] |
Gallic acid | Gallate | Root | Lima-Saraiva et al. [27] |
Penta-O-galloyl-β-D | Gallotannin | Bark | Reis-Luz et al. [39] |
O-galloylnorbergenin | Gallotannin | Branch | Reis-Luz et al. [39] |
Penta-O-galloyl-β-D | Gallotannin | Branch | Reis-Luz et al. [39] |
Penta-O-galloyl-β-D | Gallotannin | Leaves | Reis-Luz et al. [39] |
C20H28O23 | Not identified | Bark | Reis-Luz et al. [39] |
C30H20O9 | Not identified | Bark | Reis-Luz et al. [39] |
C31H24O14 | Not identified | Bark | Reis-Luz et al. [39] |
C46H36O21 | Not identified | Bark | Reis-Luz et al. [39] |
C28H24O17 | Not identified | Branch | Reis-Luz et al. [39] |
C45H24O14 | Not identified | Branch | Reis-Luz et al. [39] |
C14H8O | Not identified | Leaves | Reis-Luz et al. [39] |
C18H26O14 | Not identified | Leaves | Reis-Luz et al. [39] |
C26H36O11 | Not identified | Leaves | Reis-Luz et al. [39] |
C28H24O17 | Not identified | Leaves | Reis-Luz et al. [39] |
C30H22O9 | Not identified | Root bark | Moreira et al. [19] |
C46H36O12 | Not identified | Root bark | Moreira et al. [19] |
Methyl Gallate | Phenol Compound | Root bark | Moreira et al. [19] |
Cynamic Derivate | Phenolic acid | Bark | Saraiva et al. [33] |
Cynamic Derivate | Phenolic acid | Flowers | Saraiva et al. [33] |
Cynamic Derivate | Phenolic acid | Fruit | Saraiva et al. [33] |
Cynamic Derivate | Phenolic acid | Leaves | Saraiva et al. [33] |
Cynamic Derivate | Phenolic acid | Root | Saraiva et al. [33] |
Cynamic Derivate | Phenolic acid | Seeds | Saraiva et al. [33] |
Estragole (4-allylanisole) | Phenols | Leaves | Donati et al. [20] |
Daucosterol | Phytosterol | Heartwood | Moreira et al. [19] |
2-hydroxy-4-methoxyphenol-1-O-β-D-(6′-O-galloyl)-glucopyranoside | Polyphenol | Bark | Reis-Luz et al. [39] |
Galloyl quinic acid | Polyphenol | Bark | Reis-Luz et al. [39] |
Proanthocyanidin | Polyphenol | Bark | Saraiva et al. [33] |
2-hydroxy-4-methoxyphenol-1-O-β-D-(6′-O-galloyl)-glucopyranoside | Polyphenol | Branch | Reis-Luz et al. [39] |
Di-O-galloyl-2,3-(S)-hexahydroxydiphenoy1-scyllo-quercitol | Polyphenol | Branch | Reis-Luz et al. [39] |
Galloyl quinic acid | Polyphenol | Branch | Reis-Luz et al. [39] |
Hexagalloyl-hexoside | Polyphenol | Branch | Reis-Luz et al. [39] |
Proanthocyanidin | Polyphenol | Fruit | Saraiva et al. [33] |
Digallic acid | Polyphenol | Leaves | Reis-Luz et al. [39] |
Ethyl 2,4-dihydroxy-3-(3,4,5-trihydroxybenzoyl)oxybezoate | Polyphenol | Leaves | Reis-Luz et al. [39] |
Hexagalloyl-hexoside | Polyphenol | Leaves | Reis-Luz et al. [39] |
Tetra-O-galloyl-glucose | Polyphenol | Leaves | Reis-Luz et al. [39] |
Proanthocyanidin | Polyphenol | Root | Saraiva et al. [33] |
Ellagic Acid | Polyphenol | Root bark | Moreira et al. [19] |
Corilagin | Tannin | Branch | Reis-Luz et al. [39] |
Aromadendrene | Terpene | Leaves | Donati et al. [20] |
Eucalyptol (cineol) | Terpene | Leaves | Donati et al. [20] |
Globulol | Terpene | Leaves | Donati et al. [20] |
Guaiol | Terpene | Leaves | Donati et al. [20] |
Ledene | Terpene | Leaves | Donati et al. [20] |
Linalol | Terpene | Leaves | Donati et al. [20] |
Myrcene | Terpene | Leaves | Donati et al. [20] |
Terpinen-4-ol | Terpene | Leaves | Donati et al. [20] |
Terpineol | Terpene | Leaves | Donati et al. [20] |
α-humulene (α-caryophyllene) | Terpene | Leaves | Donati et al. [20] |
α-pinene | Terpene | Leaves | Donati et al. [20] |
β-caryophyllene | Terpene | Leaves | Donati et al. [20] |
β-element | Terpene | Leaves | Donati et al. [20] |
Plant Part | Extract | Microorganism | MIC | Control | Reference |
---|---|---|---|---|---|
Barks | Hydroalcoholic | E. faecalis | 0.25 mg/mL | Chlorhexidine | Sette-de-Souza et al. [23] |
0.5 mg/mL | |||||
Barks | Ethanolic | S. mutans | 0.5 mg/mL | Chlorhexidine | Sette-de-Souza et al. [24] |
S. oralis | 0.5 mg/mL | ||||
S. mitis | 0.5 mg/mL | ||||
S. salivarius | 0.25 mg/mL | ||||
Seeds | Ethanolic | S. choleraesuis | 37.32 mg/mL | Tetracycline, Nystatin solution | Farias et al. [25] |
Barks | Hydroalcoholic | S. aureus | 50 mg/mL | Malachite Green dye | Formiga-Filho et al. [26] |
Escherichia | 500 mg/mL | ||||
P. aeruginosa | 50 mg/mL | ||||
E. faecalis | 200 mg/mL | ||||
Leaves | Hydroalcoholic | S. aureus | 50 mg/mL | Malachite Green dye | Formiga-Filho et al. [26] |
E. coli | 200 mg/mL | ||||
P. aeruginosa | 50 mg/mL | ||||
E. faecalis | 100 mg/mL | ||||
Barks | Ethanolic | B. cereus | 12.5 mg/mL | Gentamicin | Lima-Saraiva et al. [27] |
E. coli | 12.5 mg/mL | ||||
E. faecali | 12.5 mg/mL | ||||
K. pneumoniae | 12.5 mg/mL | ||||
P. aeruginosa | 12.5 mg/mL | ||||
S. marcescens | 6.25 mg/mL | ||||
S. flexneri | 3.12 mg/mL | ||||
S. enterica | 0.39 mg/mL | ||||
S. aureus | 3.12 mg/mL | ||||
Leaves | Ethanolic | S. haemolyticus | 0.17 mg/mL | Chloramphenicol, Erythromycin, Vancomycin, Oxacillin, Gentamicin, Tetracycline, Clindamycin, Penicillin | Ribeiro et al. [42] |
S. aureus | 0.17 mg/mL | ||||
E. coli | 0.17 mg/mL | Chloramphenicol, Ampicillin, Gentamicin, Ciprofloxacin, Tetracycline, Norfloxacin | |||
Leaves | Hydroalcoholic | E. coli | 0.23 µg/mL | Ceftriaxone | Oliveira et al. [43] |
K. pneumoniae | 10 µg/mL | ||||
Leaves, Flowers, Root, Bark, Fruits | Methanolic | S. aureus | 0.125 mg/mL | Tetraciclin | Saraiva et al. [33] |
Ethyl Acetate | 0.25 mg/mL | ||||
Leaves | Methanolic | E. coli | 250 µg/mL | Tetracycline, Gentamycin, Ketoconazole | Saraiva et al. [22] |
E. faecalis | 2 µg/mL | ||||
S. aureus | 125 µg/mL | ||||
S. saprophyticus | 500 µg/mL | ||||
S. epidermidis | 500 µg/mL | ||||
P. aeruginosa | 31.25 µg/mL | ||||
Leaves | Ethyl Acetate | S. aureus | 100 µg/mL | Tetracycline, Oxacilin | Saraiva et al. [6] |
E. coli | >100 µg/mL | ||||
K. pneumoniae | >100 µg/mL | ||||
E. faecalis | >100 µg/mL | ||||
Salmonella spp | >100 µg/mL | ||||
Leaves | Methanolic | S. aureus | 25 µg/mL | Saraiva et al. [6] | |
E. coli | 50 µg/mL | ||||
K. pneumoniae | 100 µg/mL | ||||
E. faecalis | >100 µg/mL | ||||
Salmonella spp | >100 µg/mL | ||||
C. albicans | 200 µg/mL | Ketoconazole | |||
C. krusei | 200 µg/mL | ||||
C. tropicalis | 200 µg/mL | ||||
Barks | Hydroalcoholic | P. aeruginosa | 0.004 µL/µL | Chlorhexidine | Silva et al. [1] |
E. faecalis | 1 µL/µL | ||||
S. aureus | 0.063 µL/µL | ||||
S. oralis | 0.5 µL/µL | ||||
Leaves | Ethanolic | S. aureus | 1.04 mg/mL | Erythromycin | Silva et al. [44] |
Barks | Ethanolic | S. aureus | 1.04 mg/mL | Erythromycin | Silva et al. [44] |
Root bark | Hexane | S. aureus | >1000 µg/mL | - | Moreira et al. [19] |
Root bark | Chloroform | S. aureus | 31.25 µg/mL | - | Moreira et al. [19] |
Root bark | Ethyl Acetate | S. aureus | 62.50 µg/mL | - | Moreira et al. [19] |
Root bark | Butanol | S. aureus | 125 µg/mL | - | Moreira et al. [19] |
Heartwood | Hexane | S. aureus | >1000 µg/mL | - | Moreira et al. [19] |
Heartwood | Chloroform | S. aureus | 250 µg/mL | - | Moreira et al. [19] |
Heartwood | Ethyl Acetate | S. aureus | 62.50 µg/mL | - | Moreira et al. [19] |
Heartwood | Butanol | S. aureus | 250 µg/mL | - | Moreira et al. [19] |
Plant Part | Extract | Method | Main Result | Reference |
---|---|---|---|---|
Bark | Ethanolic | DPPH | IC50: 1.46 ± 0.07 µg/mL | Lima-Saraiva et al. [27] |
Bark | Ethanolic | β-carotene | 60.81% | Lima-Saraiva et al. [27] |
Bark | Ethanolic | TEAC | 3.04 mg/mL | Santos et al. [21] |
Bark | Ethanolic | DPPH | IC50: 19.69 ± 0.77 µg/mL | Almeida-Andrade et al. [28] |
Leaf | Essential Oil | ORAC | 1918, 3 ± 246 µmol/g | Donati et al. [20] |
Leaf | Essential Oil | DPPH | IC50: 17.63 mg/mL (9.19–33.82) | Donati et al. [20] |
Leaf | Methanolic | DPPH | EC50 = 8.80 ± 0.94 g/mL | Saraiva et al. [22] |
Root bark | Hexane | DPPH | >1000 µg/mL | Moreira et al. [19] |
Root bark | Chloroform | DPPH | 101.53 µg/mL | Moreira et al. [19] |
Root bark | Ethyl Acetate | DPPH | 38.37 µg/mL | Moreira et al. [19] |
Root bark | Butanol | DPPH | 53.46 µg/mL | Moreira et al. [19] |
Root bark | Hexane | β-carotene | 39.64 µg/mL | Moreira et al. [19] |
Root bark | Chloroform | β-carotene | 115.74 µg/mL | Moreira et al. [19] |
Root bark | Ethyl Acetate | β-carotene | 127.16 µg/mL | Moreira et al. [19] |
Root bark | Butanol | β-carotene | 29.65 µg/mL | Moreira et al. [19] |
Heartwood | Hexane | DPPH | >1000 µg/mL | Moreira et al. [19] |
Heartwood | Chloroform | DPPH | 85.54 µg/mL | Moreira et al. [19] |
Heartwood | Ethyl Acetate | DPPH | 36.49 µg/mL | Moreira et al. [19] |
Heartwood | Butanol | DPPH | 71.43 µg/mL | Moreira et al. [19] |
Heartwood | Hexane | β-carotene | 301.51 µg/mL | Moreira et al. [19] |
Heartwood | Chloroform | β-carotene | 190.81 µg/mL | Moreira et al. [19] |
Heartwood | Ethyl Acetate | β-carotene | 31.42 µg/mL | Moreira et al. [19] |
Heartwood | Butanol | β-carotene | 109.72 µg/mL | Moreira et al. [19] |
Study Desing | Plant Part | Extract | Experimental Models | LC50/IC50 | Reference |
---|---|---|---|---|---|
In vivo | Bark | Ethanolic | Artemia salina | LC50 > 100 μg/mL | Santos et al. [46] |
In vivo | Bark | Methanolic | Artemia salina | LC50 > 100 μg/mL | Santos et al. [46] |
In vivo | Bark | Chloroform | Artemia salina | LC50 = 313 μg/mL | Santos et al. [46] |
In vivo | Bark | Hexane | Artemia salina | LC50 = 582 μg/mL | Santos et al. [46] |
In vivo | Bark | Ethyl acetate | Artemia salina | LC50 = 557 μg/mL | Santos et al. [46] |
In vivo | Bark | Hydroalcoholic | Artemia salina | LC50: 428 µg/mL | Silva et al. [1] |
In vivo | Leaf | Methanolic | Artemia salina | LC50: 705.54 ± 60.46 μg/mL | Saraiva et al. [22] |
In vivo | Leaf | Ethanolic | Artemia salina | LC50: 512 μg/mL | Silva et al. [44] |
In vivo | Seed | SPF | Ceriodaphnia dubia | LC50: 1.91 mg/mL | Barbosa et al. [47] |
In vivo | Seed | Ethanolic | Artemia sp | LC50: 962.97 μg/mL | Souza et al. [45] |
In vitro | Seed | SPF | Fibroblasts 3T3 | LC50: 6.14 mg/mL | Barbosa et al. [47] |
In vitro | Leaf | Hydroalcoholic | Glioblastoma SF-295 | IC50 = 78.57 μg/mL | Reis-Luz et al. [39] |
In vitro | Leaf | Hydroalcoholic | Prostate PC3 | IC50 = 71.54 μg/mL | Reis-Luz et al. [39] |
In vitro | Leaf | Hydroalcoholic | Leukemia HL60 | IC50 = 52.58 μg/mL | Reis-Luz et al. [39] |
In vitro | Leaf | Hydroalcoholic | Colorectal RAJI | IC50 = 55.90 μg/mL | Reis-Luz et al. [39] |
In vitro | Leaf | Hydroalcoholic | Colorectal HCT-116 | IC50 = 61.73 μg/mL | Reis-Luz et al. [39] |
In vitro | Leaf | Hydroalcoholic | Colorectal SW-620 | IC50 = 65.46 μg/mL | Reis-Luz et al. [39] |
In vitro | Leaf | Hydroalcoholic | Fibroblast L929 | IC50 = 49.53 μg/mL | Reis-Luz et al. [39] |
In vitro | Bark | Hydroalcoholic | Glioblastoma SF-295 | IC50 > 100 μg/mL | Reis-Luz et al. [39] |
In vitro | Bark | Hydroalcoholic | Prostate PC3 | IC50 > 100 μg/mL | Reis-Luz et al. [39] |
In vitro | Bark | Hydroalcoholic | Leukemia HL60 | IC50 = 58.75 μg/mL | Reis-Luz et al. [39] |
In vitro | Bark | Hydroalcoholic | Colorectal RAJI | IC50 > 100 μg/mL | Reis-Luz et al. [39] |
In vitro | Bark | Hydroalcoholic | Colorectal HCT-116 | IC50 = 93.64 μg/mL | Reis-Luz et al. [39] |
In vitro | Bark | Hydroalcoholic | Colorectal SW-620 | IC50 = 25.68 μg/mL | Reis-Luz et al. [39] |
In vitro | Bark | Hydroalcoholic | Fibroblast L929 | IC50 = 82.00 μg/mL | Reis-Luz et al. [39] |
Biological Activity | Plant Part | Extract | Method (Study Design) | Main Results | IC50 | Reference |
---|---|---|---|---|---|---|
Photoprotection | Bark | Ethanolic | Espectrophotometric (in vitro) | SPF: 6.26 ± 0.28 | - | Almeida-Andrade et al. [28] |
Bark | Ethanolic | SPF (in vitro) | SPF: 6 UVB | - | Lima-Saraiva et al. [27] | |
Preserving agent | Leaf | Hydroalcoholic | DSC and FT-IR (in vitro) | - | - | Fernandes et al. [48] |
Molluscicide (Biomphalaria glabrata) | Bark | Chloroform Ethyl Acetate | Santos and Sant’Ana (2001) (in vivo) | LC90: 68 μg/mL | - | Santos et al. [46] |
LC90: 73 μg/mL | ||||||
Larvicidal (Aedes aegypti) | Bark | Ethyl Acetate Hexane Chloroform | WHO (in vivo) | LC50: 345 μg/mL LC50: 527 μg/mL LC50: 583 μg/mL | - | Santos et al. [46] |
Seed | Ethanolic | WHO (in vivo) | FC strain: 100% SS strain: 100% | FC strain: 580.9 µg/mL SS strain: 661.6 µg/mL | Souza et al. [45] | |
Seed | Sodium phosphate buffer | Konishi et al., 2008 and WHO adapted (in vivo) | 100% of dead | - | Barbosa et al. [47] | |
Pupicidal (Aedes aegypti) | Seed | Ethanolic | WHO (in vivo) | FC strain: 100% SS strain: 100% | FC strain: 32.9 µg/mL SS strain: 40.6 µg/mL | Souza et al. [45] |
Seed | Sodium phosphate buffer | Konishi et al., 2008 and WHO adapted (in vivo) | 100% of dead | - | Barbosa et al. [47] | |
Ovicidal (Aedes aegypti) | Seed | Ethanolic | WHO (in vivo) | FC strain: 5.7% SS strain: 0% | - | Souza et al. [45] |
Seed | Sodium phosphate buffer | Konishi et al., 2008 and WHO adapted (in vivo) | ODI2.5% 25.44 ODI20% 51.10 | - | Barbosa et al. [47] | |
Anti-inflammatory | Bark | Hydroethanolic | Carrageenan (in vivo) | EAF: 100 mg/kg Agal: 10 mg/kg | - | Santos et al. [18] |
Root Bark | Methanolic | Carrageenan (in vivo) | - | - | Moreira et al. [19] | |
Heartwood | Methanolic | Carrageenan (in vivo) | - | - | Moreira et al. [19] | |
Antinociceptive | Bark | Hydroethanolic | Formalin-induced licking (in vivo) | EAF: 40% less pain. HEE: 40% less pain | - | Santos et al. [18] |
Root Bark | Methanolic | Formalin-induced and paw edema (in vivo) | - | - | Moreira et al. [19] | |
Heartwood | Methanolic | Formalin-induced and paw edema (in vivo) | - | - | Moreira et al. [19] | |
Anti-hemolytic | Bark | Ethanolic | 43.84% ± 0.02 | - | Lima-Saraiva et al. [27] | |
Bark | Hydroalcoholic | Cruz-Silva et al., 2000 (in vitro) | - | 92.66 mg/mL | Sette-de-Souza et al. [23] | |
Bark | Ethanolic | Cruz-Silva et al., 2000 (in vitro) | - | 50.27 mg/mL | Sette-de-Souza et al. [24] | |
Enzymatic inhibitor | Seed | Sodium phosphate buffer | Trypsin: 282.33 | - | Barbosa et al. [47] | |
Chymotrypsin: 90.42 | - | |||||
Proteases: 141.17 | - | |||||
Amylase: 26.50 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barreto Linhares, L.P.M.; Pereira, B.V.N.; Dantas, M.K.G.; Bezerra, W.M.d.S.; Viana-Marques, D.d.A.; de Lima, L.R.A.; Sette-de-Souza, P.H. Schinopsis brasiliensis Engler—Phytochemical Properties, Biological Activities, and Ethnomedicinal Use: A Scoping Review. Pharmaceuticals 2022, 15, 1028. https://doi.org/10.3390/ph15081028
Barreto Linhares LPM, Pereira BVN, Dantas MKG, Bezerra WMdS, Viana-Marques DdA, de Lima LRA, Sette-de-Souza PH. Schinopsis brasiliensis Engler—Phytochemical Properties, Biological Activities, and Ethnomedicinal Use: A Scoping Review. Pharmaceuticals. 2022; 15(8):1028. https://doi.org/10.3390/ph15081028
Chicago/Turabian StyleBarreto Linhares, Ladaha Pequeno Menna, Bruna Vanessa Nunes Pereira, Maria Karoline Gomes Dantas, Wislayne Mirelly da Silva Bezerra, Daniela de Araújo Viana-Marques, Luiza Rayanna Amorim de Lima, and Pedro Henrique Sette-de-Souza. 2022. "Schinopsis brasiliensis Engler—Phytochemical Properties, Biological Activities, and Ethnomedicinal Use: A Scoping Review" Pharmaceuticals 15, no. 8: 1028. https://doi.org/10.3390/ph15081028
APA StyleBarreto Linhares, L. P. M., Pereira, B. V. N., Dantas, M. K. G., Bezerra, W. M. d. S., Viana-Marques, D. d. A., de Lima, L. R. A., & Sette-de-Souza, P. H. (2022). Schinopsis brasiliensis Engler—Phytochemical Properties, Biological Activities, and Ethnomedicinal Use: A Scoping Review. Pharmaceuticals, 15(8), 1028. https://doi.org/10.3390/ph15081028