Next Article in Journal
Pharmacological Small Molecules against Prostate Cancer by Enhancing Function of Death Receptor 5
Next Article in Special Issue
Factors and Practices Associated with Self-Medicating Children among Mexican Parents
Previous Article in Journal
Asperuloside Prevents Peri-Implantitis via Suppression of NF-κB and ERK1/2 on Rats
Previous Article in Special Issue
Anti-Inflammatory Activity of Piquerol Isolated from Piqueria trinervia Cav.
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Systematic Review

Schinopsis brasiliensis Engler—Phytochemical Properties, Biological Activities, and Ethnomedicinal Use: A Scoping Review

by
Ladaha Pequeno Menna Barreto Linhares
1,†,
Bruna Vanessa Nunes Pereira
1,†,
Maria Karoline Gomes Dantas
2,
Wislayne Mirelly da Silva Bezerra
2,
Daniela de Araújo Viana-Marques
1,
Luiza Rayanna Amorim de Lima
1 and
Pedro Henrique Sette-de-Souza
1,2,*
1
Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental, Universidade de Pernambuco–Garanhuns, Recife 55294-902, Brazil
2
Faculdade de Odontologia, Universidade de Pernambuco–Arcoverde, Recife 56503-146, Brazil
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Pharmaceuticals 2022, 15(8), 1028; https://doi.org/10.3390/ph15081028
Submission received: 10 July 2022 / Revised: 30 July 2022 / Accepted: 1 August 2022 / Published: 20 August 2022
(This article belongs to the Special Issue Ethnopharmacology in Latin America)

Abstract

:
Brazil has the most incredible biodiversity globally and has a vast storehouse of molecules to be discovered. However, there are no pharmacological and phytochemical studies on most native plants. Parts of Schinopsis brasiliensis Engler, a tree from the Anacardiaceae family, are used by several traditional communities to treat injuries and health problems. The objective of this scoping review was to summarize the pharmacological information about S. brasiliensis, from ethnobotanical to phytochemical and biological studies. Data collection concerning the geographical distribution of S. brasiliensis specimens was achieved through the Reflora Virtual Herbarium. The study’s protocol was drafted using the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). The search strategy used the keyword “Schinopsis brasiliensis” in the databases: PUBMED, EMBASE, SCOPUS, Science Direct, Web of Science, SciFinder, and SciELO. Rayyan was used for the selection of eligible studies. In total, 35 studies were included in the paper. The most recurrent therapeutic indications were for general pain, flu and inflammation. The bark was the most studied part of the plant. The most used preparation method was decoction and infusion, followed by syrup. Phytochemical investigations indicate the presence of tannins, flavonoids, phenols, and polyphenols. Most of the substances were found in the plant’s leaf and bark. Important biological activities were reported, such as antimicrobial, antioxidant, and anti-inflammatory. S. brasiliensis is used mainly by communities in the semi-arid region of northeastern Brazil to treat several diseases. Pharmacological and phytochemical studies together provide scientific support for the popular knowledge of the medicinal use of S. brasiliensis. In vitro and in vivo analyses reported antimicrobial, antioxidant, anti-inflammatory, antinociceptive, cytotoxic, photoprotective, preservative, molluscicidal, larvicidal, and pupicidal effects. It is essential to highlight the need for future studies that elucidate the mechanisms of action of these phytocompounds.

Graphical Abstract

1. Introduction

Medicinal plants have been used in many cultures for thousands of years, and information on the use of natural resources plays a vital role in discovering new products from plants as therapeutic agents [1]. Brazil is the country with the most extensive biodiversity globally, being a potential storehouse of molecules still not discovered, envisioning their use as a source of therapeutic resources. However, there are still no pharmacological and phytochemical studies on most native plants [2].
Schinopsis brasiliensis Engler is a tree of the Anacardiaceae family, of deciduous behavior, and can reach a height of 20 m (Figure 1) [3]. Its bark is gray, almost black, rough, and detaches in irregularly square portions, up to 30 mm thick [4]. S. brasiliensis is a native tree of the Caatinga, a unique Brazilian Biome located in the semiarid region of Brazilian northeastern, found from latitude 5° S in Ceará and Rio Grande do Norte, to 20° S in Mato Grosso and Minas Gerais [4,5].
It is popularly known in Brazil as “braúna”, “baraúna”, “braúna-do-sertão”, “braúna-parda”, “quebracho”, “chamacoco” and “chamucoco” [6,7] and in Bolivia as “soto” [3]. S. brasiliensis is used for medicinal purposes by several communities, depending on the location studied [8]. According to ethnobotanical surveys, several parts of S. brasiliensis are used for the treatment of various injuries and diseases, such as inflammatory disorders [9,10,11], diarrhea [9,12,13], influenza [9,13,14,15,16,17], cough [12,13,15], and sexual impotence [9,10,13]. The species has already proven biological activities, such as antinociceptive [18,19], anti-inflammatory [18,19], antioxidant [18,19,20,21,22] antimicrobial [23,24,25,26,27], and photoprotective [27,28].
Phytochemical investigations indicate the presence of tannins [10,22,27,29,30,31,32], flavonoids [27,30,31,32,33], phenols [10,27], saponins [29,33], triterpenes [29,33], quinones [10], alkaloids [29], polyphenols [31], gallic acid [31], condensed tannins, and phenolic acid [33].
Although some research reports the chemical composition and pharmacological activities of S. brasiliensis extracts, no review has been published to critically summarize these studies and suggest the use of the plant as a source of molecules of interest for future applications. Thus, the objective of this scoping review was to synthesize pharmacological information about S. brasiliensis, from ethnobotanical to phytochemical and biological studies.

2. Material and Methods

2.1. Geographical Distribution of S. brasiliensis

The collection of data concerning the geographical distribution of identified S. brasiliensis specimens was achieved through the Reflora Virtual Herbarium (Reflora Program—CNPq-https://reflora.jbrj.gov.br/reflora/herbarioVirtual, accessed on 28 May 2021). The previous authorization was conceded, and latitude and longitude data of each collected specimen were retrieved. Then, we plotted a map using RStudio 1.4 (through ‘geobr’ and ‘ggspatial’ packages) with the retrieved geographical data.

2.2. Protocol and Registration

The study’s protocol was drafted using the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) [34]. The final protocol was registered with the Open Science Framework on 4 June 2021 (https://doi.org/10.17605/osf.io/drjns, accessed on 4 June 2021).

2.3. Eligibility Criteria

Studies were included if: (i) published until 25 May 2021; (ii) a peer-reviewed publication; (iii) written in English, Portuguese, or Spanish; (iv) that had described the use of Schinopsis brasiliensis. Non-original articles were excluded, such as monographs, dissertations, theses, bibliographic reviews, letters, comments, editorials, or book chapters and studies that did not describe an antimicrobial, ethnobotanical, or a phytochemical approach to S. brasiliensis.

2.4. Search Strategy and Information Sources

The search strategy used the keyword “Schinopsis brasiliensis” in the following bibliographic databases: PUBMED, EMBASE, SCOPUS, Science Direct, Web of Science, SciFinder, and SciELO. The final search results of each database were exported and downloaded in CIW or RIS format. The files were imported into the online platform of Rayyan QCRI (RRID:SCR_017584-PMID: 27919275-https://www.rayyan.ai, accessed on 4 June 2021), and duplicates were removed.

2.5. Selection of Sources of Evidence

Rayyan was used to select eligible studies [35]. Based on the eligibility criteria, two reviewers (MKGD and WMSB) independently evaluated the same titles, abstracts, and full text of all publications identified by the searches. The disagreements on study selection and data extraction were resolved by consensus and discussion with a third reviewer (PHSS), when needed. The intra- and interobserver Kappa coefficients were performed using 70% of previously identified studies. The selection of sources was carried out until 25 May 2021. However, a new search was performed on 5 July 2022, to update the selected studies.

2.6. Data Items and Synthesis of Results

The data of selected studies according to the study approach (ethnobotanical, antimicrobial, phytochemical) were extracted and summarized as shown in the Tables. Study localization, plant part, extraction product, the method for extraction, compound class, identified compound, biological activity, and therapeutic indication were collected for each study.

3. Results

3.1. Geographical Distribution of S. brasiliensis

Based on the Reflora Virtual Herbarium data, we observed that the Caatinga Biome (northeastern Brazil) contained the majority of identified Schinopsis brasiliensis Engl specimens (Figure 2). Five specimens were identified in other regions, one in northeastern Pará and four in northeastern Goiás. There is a large concentration of specimens identified between 7° S/15° S and 36° W/43° W.

3.2. Summary of the Articles

A total of 388 titles were retrieved using the search strategy. After the removal of duplicates, 100 unique studies were independently evaluated by reviewers using eligibility criteria (Figure 3). The intra-observer Kappa coefficient was 0.96 (C.I. 0.76–1.00) and the inter-observer was 0.92 (C.I. 0.62–1.00). After full reading and updating references, 36 published studies were included in this scoping review.

3.3. Ethnobotanical Studies

Ethnobotanical studies have shown different ways to use S. brasiliensis by local communities, besides its uses for treating various symptoms (Table 1).
All ethnobotanical studies presented are Brazilian (n = 11,100%), from the Northeast region (Figure 4). General pain (tooth, ear, throat, stomach, liver, back, nerves, and menstrual cramps) was the most recurrent therapeutic indication (n = 8; 72.72%), followed by influenza (n = 6; 54.54%), and inflammation (n = 3; 27.27%). The barks were the most studied part of the plant (n = 7, 63.63%). The most used preparation method was the tea-decoction or infusion (n = 7, 63.63%). Thus, we observed the way that S. brasiliensis is used as a medicinal drug and the preparation mode.

3.4. Phytochemistry Studies

Eleven studies showed the phytochemical classes of S. brasiliensis, without identifying the compounds (Table 2). We noted that the plant is a phenolic compound source. Tannins are identified almost always (n = 10; 90.9%), although flavonoids (n = 7; 63.63%), phenols and polyphenols (n = 3; 27.27%), triterpenes and saponins (n = 2; 18.18%) are also observed in the papers. A lot of studies had isolated many phytocompounds from S. brasiliensis, according to the plant’s part (Table 3).
Eight studies described 64 isolated chemical compounds from S. brasiliensis. Polyphenols were the most prevalent chemical group identified (n = 15; 23.43%), followed by terpenes (n = 13; 20.31%). Most of the compounds were found in the leaves (n = 31; 48.43%).

3.5. Antimicrobial Activity

Fourteen studies presented results on the antibacterial activity of S. brasiliensis extracts against 17 bacteria, eight Gram-negative and nine Gram-positive. Table 4 summarizes the studies that reported the antibacterial activity of S. brasiliensis extracts. Notably, the leaf extract of S. brasiliensis showed antifungal activity against C. albicans, C. tropicalis, and C. krusei [6,22]. In addition, Formiga-Filho et al. [26] noted that the association of S. brasiliensis bark extract with low-power laser increases its activity against E. coli, S. aureus, P. aeruginosa, and E. faecalis.
In these studies, the bark was the most used plant structure (n = 7; 50%), followed by the leaves (n = 6; 44.8%). The ethanolic extract was used in 44.8% of the studies (n = 6). The most cited bacterium in the studies was Staphylococcus spp. (n = 9; 63.5%). The range of Minimum Inhibitory Concentration (MIC) varied as to concentrations, being 1 µL/µL for E. faecalis [1], 0.23 µg/mL for Escherichia coli [43], 0.004 µL/µL for P. aeruginosa [1] and 10 µg/mL for K. pneumoniae [43].
Besides the antimicrobial activity of the extracts, two studies evaluated the antibacterial effect of controlled release systems containing S. brasiliensis. The production of chitosan microparticles-loaded S. brasiliensis bark extract would be an alternative for the use of the extract in dentistry due to the improved organoleptic properties [23]. The MIC values of these microparticles were lower than that observed for the hydroalcoholic extract (0.25 mg/mL and 0.50 mg/mL, respectively). Furthermore, the microparticles inhibited biofilm development and growth of E. faecalis in 24 h. Through cytotoxicity analyses performed by Sette-de-Souza et al. [23], it was proven that microparticles are safe for use in the treatment of Enterococci infections and in dentistry due to their potential to inhibit biofilm development.
Oliveira et al. [43] showed that S. brasiliensis nanoparticles associated with ceftriaxone showed inhibitory activity against E. coli, including against ceftriaxone-resistant strains. These results express the capacity and importance of the use of controlled-release systems in the delivery of atypical pharmaceutical ingredients, demonstrating to be an excellent possibility for the treatment of infections caused by multidrug-resistant bacteria.

3.6. Antioxidant Activity

The antioxidant activity of S. brasiliensis extracts was evaluated in six studies (Table 5), through four tests: Oxygen Radical Absorbance Capacity-ORAC [20], 2,2-Diphenyl-1-Picryl-Hydrazyl-DPPH [19,20,22,27,28], β-Carotene [19,27] and Trolox Equivalent Antioxidant Capacity-TEAC [21]. Twenty-three results were obtained from the six studies. The DPPH (n = 11; 47.82%) and β-carotene (n = 9; 39.13%) methods were most used.

3.7. Cytotoxic Activity

The cytotoxic activity was evaluated in different experimental models (Table 6). The bark was the most used part of S. brasiliensis (n = 13; 52%). In vivo studies (n = 10; 40%) used model Artemia salina (n = 9; 90%) [1,22,45,46,47] and Ceriodaphnia dubia (n = 1; 10%) [47] were tested and the LC50 ranged from 1.91 mg/mL to 962.97 µg/mL. In vitro studies (n = 15; 60%) evaluated cytotoxicity against fibroblasts cell lines (n = 3; 20%) [39,47] or cancer lines (n = 12; 80%) [39]. In this way, S. brasiliensis should be a promising anticancer agent.

3.8. Other Biological Activities

Other biological activities of S. brasiliensis extracts have also been reported, such as photoprotective against Ultraviolet B radiation [27,28], sunscreen preservative [48], molluscicidal [46], larvicidal [45,46,47], pupicidal [45,47], ovicidal [45,47], anti-inflammatory [18,19], nociceptive [18,19], antihemolytic [23,24,27] and enzyme inhibiting [47] (Table 7).
A sun Protection Factor of 6 UVB was observed for the ethanolic extract of the bark of S. brasiliensis [27]. The bark extract of the plant can also be used in photoprotective formulations since it has preservative aspects, according to the analytical methods used [48].
Molluscicidal and larvicidal activities were observed in the study with S. brasiliensis bark. Through the method using Biomphalaria glabrata, it was possible to observe that the chloroform fraction of the ethanolic extract resulted in an LC90 of 68 μg/mL, and an ethyl acetate fraction of 73 μg/mL [46]. The larvicidal activity was also observed against Aedes aegypti larvae using the method recommended by the World Health Organization (WHO) for the ethyl acetate (LC50: 345 μg/mL), hexane (LC50: 527 μg/mL), and chloroform (LC50: 583 μg/mL) fractions [46]; while the ethanolic extract of the seeds was able to eliminate A. aegypti larvae (field-collected larvae-LC50: 580.9 µg/mL; insecticide-susceptible larvae-LC50: 661.6 µg/mL) [45]. The pupicidal potential of the ethanolic extract of the seeds was also evaluated, being described as an excellent activity, both for pupae collected in the field of A. aegypti (LC50: 32.9 µg/mL), and for those susceptible to insecticide (LC50: 40.6 µg/mL) [45]. In another study, Barbosa et al. [47] studied the larvicidal activity of the crude extract of S. brasiliensis seeds, using the Konishi et al. (2008) adapted and WHO (2005) adapted methods. The authors observed 100% death against L1 and L4 Aedes aegypti larvae, obtained in 24 h, LC50 of 6.01 mg/mL and 6.14 mg/mL and in 48 h LC50 of 5 mg/mL and 1 mg/mL, respectively.
The nociceptive activity was verified by formalin-induced licking behavior and/or through paw edema [18,19]. The hydroethanolic extract of S. brasiliensis bark and its ethyl acetate fraction reduced the licking time of mice by 40% when applied 30 mg/kg [18].
The anti-hemolytic activity was observed in three studies. The ethanolic extracts of the bark (n = 2; 66.66%) obtained the following results: 43.83% [27] inhibition of erythrocyte hemolysis, while the other one showed the IC50 (maximum concentration to obtain 50% inhibition) 50.27 mg/mL [24] as a result. The hydroalcoholic extract of the barks (n = 1; 33.33%) resulted in IC50 92.66 mg/mL [23].

4. Discussion

This review reports on the geographical distribution, ethnopharmacological use, biological activities, toxicology, and pharmacology of Schinopsis brasiliensis. This plant treats some health problems, mainly in the Caatinga population. The results of the ethnobotanical surveys show variability in the use of parts of the plant to treat several diseases. The difference in indications of use can be explained by the diversity of bioactive molecules found in S. brasiliensis, considering that the environmental conditions, such as temperature, soil, and humidity, directly impact the chemical composition of the plants.
This work observed that most specimens of S. brasiliensis identified in Brazil were from the Caatinga Biome. However, the species is reported to be found in the Chaco (Bolivia and Paraguay) and the Brazilian Cerrado, up to near latitude 20° S. Despite this finding, there is no specific information regarding the population density of S. brasiliensis in this region [3].
This location of S. brasiliensis may explain the concentration of studies in the Caatinga Biome, a large natural region, being the only exclusively Brazilian biome [49]. It has only two most expressive climates: the rainy period and the dry period [38]. These environmental stress factors can directly interfere with producing the plant’s secondary metabolites [50], resulting in several applications.
The great diversity of phytocompounds present in S. brasiliensis may be related to the indications of popular use. The phytochemical characterization of S. brasiliensis reveals numerous bioactive molecules belonging to several metabolic classes with reported biological activities. Secondary metabolites act by retarding and/or inhibiting the action of free radicals. The observed antioxidant capacity is probably due to the high content of compounds, such as flavonoids, tannins, and phenolic acids. These compounds could donate electrons, thus stabilizing free electrons, in addition to inactivating superoxide anions and peroxide radicals [51].
Tannins have astringent properties, precipitating proteins, and being favorable for antibacterial and antifungal effects [52]. Once administered via the oral route, they promote antidiarrheal and antiseptic effects. Due to the tannin-protein/polysaccharides complex, formed in the precipitation of proteins, creating a protective layer [52], they may exert a healing effect [53]. Thus, the presence of tannins [10,23,24,27,28,29,30,33,38], such as corilagin [39], in S. brasiliensis may explain the use of the plant to treat diarrhea [9,12,13], stomach pain [37], verminosis [36], infection [11], and fracture [13]. Phenolic compounds are related to antioxidant activities, pharmacological activities, modulation of different enzymes, interactions with receptors, and cell cycle regulations [54].
Flavonoids are compounds that can inhibit or retard enzymatic actions, characterizing their antioxidant action [55]. Their anti-inflammatory potential is associated with the inhibition of enzymes [56] such as cyclooxygenase (COX), lipoxygenase [57], and the inhibition of COX-2 and nitric oxide synthase [58]. Recently, the affinity between some S. brasiliensis phytocompounds and COX-1, COX-2, and LOX were evaluated, showing a promising anti-inflammatory activity [19]. Thus, flavonoids may have anti-inflammatory, antioxidant, antiallergic, antiviral, antithrombotic, and anticarcinogenic actions [55,59]. Catechins and derivatives found in S. brasiliensis extracts may be related to these described activities. Thus, this explains why in folk medicine S. brasiliensis is used to treat diseases of the respiratory tract [9,12,14,15,16,17], earache [36], toothache [36], inflammation [9,10,11], menstrual cramps [11], and fractures [9,13,16].
Because analgesic and anti-inflammatory drugs have significant adverse effects, new prototype drugs are of great interest to the scientific community. Terpenes are secondary metabolites, best known for their action on the Central Nervous System (sedative, tranquilizing, anticonvulsant, anxiolytic, and nociceptive effects). These pharmacological activities are similar to opioids [60,61,62]. In addition, terpenes are good antimicrobial agents through their ability to permeabilize and depolarize the cytoplasmic membranes of microorganisms. S. brasiliensis is rich in terpenes, such as myrcene, α-pinene and linalool. Therefore, one can associate the activity of terpenes with the use for sore throat [9], earache [36], toothache [36], pain in the nerves and spine [17], pain in the stomach and liver [37], reported in ethnobotanical surveys. In addition, terpenes can be attributed to nociceptive activity in rats [18,19].
Saponins are related to the defense mechanism of plants, being found in tissues that are more susceptible to attacks by fungi, insects, and bacteria [63]. They can alter membrane permeability related to ichthyotoxic and molluscicidal activities [64]. The literature reports their use as expectorants and diuretics [64] and their ingestion for stool hardening without affecting intestinal motility [65]. Thus, the saponins present in S. brasiliensis may justify its popular use for coughs [12,13,15], influenza [9,13,14,15,16,17,66], cold [9,14], diarrhea [9,12]. Moreover, this class of phytocompounds can justify the results found against Biomphalaria glabrata [46] and Aedes aegypti [45,46,47].
The replacement of synthetic insecticides has become a necessity, mainly related to pest resistance to these products. Besides this issue, to control populations of disease vectors such as mosquitoes, for example, larvicidal and pupicidal activities are necessary. Another critical situation is that some mollusks can be part of the biological cycle of helminths—hence the need to control these animals.
The importance of the species and its use for therapeutic purposes is observed since these phytochemical compounds presented have different biological activities.

5. Conclusions and Perspectives

We noticed that S. brasiliensis is used mainly by communities in the Northeast of Brazil, especially in the Caatinga, to treat various diseases. The traditional use of S. brasiliensis varies according to the part and the community studied. However, the difference in these reports can be attributed to the richness of bioactive compounds present in the plant.
On the other hand, the pharmacodynamic and pharmacokinetic properties of S. brasiliensis extracts have not been determined. Thus, future investigations are necessary to determine these parameters to understand the bioavailability of the phytocompounds from S. brasiliensis. Finally, it is essential to highlight the need for future studies to explore and elucidate the mechanisms of action of these phytocompounds.

Author Contributions

Conceptualization, L.P.M.B.L., B.V.N.P., D.d.A.V.-M., L.R.A.d.L. and P.H.S.-d.-S.; methodology, P.H.S.-d.-S.; formal analysis, L.P.M.B.L., B.V.N.P., M.K.G.D., W.M.d.S.B., D.d.A.V.-M., L.R.A.d.L. and P.H.S.-d.-S.; investigation, L.P.M.B.L., B.V.N.P., M.K.G.D. and W.M.d.S.B.; resources, D.d.A.V.-M., L.R.A.d.L. and P.H.S.-d.-S.; data curation, L.P.M.B.L., B.V.N.P., M.K.G.D., W.M.d.S.B., D.d.A.V.-M., L.R.A.d.L. and P.H.S.-d.-S.; writing—original draft preparation, L.P.M.B.L., B.V.N.P., M.K.G.D. and W.M.d.S.B.; writing—review and editing, D.d.A.V.-M., L.R.A.d.L. and P.H.S.-d.-S.; visualization, L.P.M.B.L., B.V.N.P., M.K.G.D., W.M.d.S.B., D.d.A.V.-M., L.R.A.d.L. and P.H.S.-d.-S.; supervision, D.d.A.V.-M., L.R.A.d.L. and P.H.S.-d.-S.; project administration, D.d.A.V.-M., L.R.A.d.L. and P.H.S.-d.-S.; funding acquisition, D.d.A.V.-M., L.R.A.d.L. and P.H.S.-d.-S. All authors have read and agreed to the published version of the manuscript.

Funding

The Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, financed this study in part. This study was financed also by Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco—Brasil (FACEPE)—Finance Code APQ 0788-4.02/21 (P.H.S.S.) & APQ 0140-9.26/22 (P.H.S.S.), and FACEPE/CAPES APQ 1381-9.25/21 (L.R.A.L; D.A.V.M.; P.H.S.S.).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data presented in this study are available in article.

Acknowledgments

We are grateful to the Reflora Virtual Herbarium (Reflora Program-CNPq) for conceding the authorization to use some information about S. brasiliensis. Authors are also grateful for the review of the English language made by Pró-Reitoria de Pós-Graduação, Pesquisa e Inovação (PROPEGI) of the Universidade de Pernambuco.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Silva, M.S.P.; Brandão, D.O.; Chaves, T.P.; Filho, A.L.N.F.; Costa, E.M.M.D.B.; Santos, V.L.; Medeiros, A.C.D. Study Bioprospecting of Medicinal Plant Extracts of the Semiarid Northeast: Contribution to the Control of Oral Microorganisms. Evid.-Based Complement. Altern. Med. 2012, 2012, 681207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  2. Bessa, N.; Borges, J.; Beserra, F.P.; Carvalho, R.; Pereira, M.; Fagundes, R.; Campos, S.; Ribeiro, L.; Quirino, M.; Chagas Junior, A.F.; et al. Prospecção fitoquímica preliminar de plantas nativas do cerrado de uso popular medicinal pela comunidade rural do assentamento vale verde-Tocantins. Rev. Bras. Plantas Med. 2013, 15, 692–707. [Google Scholar] [CrossRef]
  3. López, L.; Villalba, R. An assessment of Schinopsis brasiliensis Engler (Anacardiacea) for dendroclimatological applications in the tropical Cerrado and Chaco forests, Bolivia. Dendrochronologia 2016, 40, 85–92. [Google Scholar] [CrossRef] [Green Version]
  4. Carvalho, P. Braúna-do-Sertão Schinopsis brasiliensis; Embrapa Florestas: Brasília, Brazil, 2009. [Google Scholar]
  5. Alves, C.A.B.; Leite, A.P.; Ribeiro, J.E.D.S.; Guerra, N.M.; Santos, S.D.S.; Souza, R.S.; Carvalho, T.K.N.; De Lucena, C.M.; Fonseca, A.M.F.D.A.; Filho, J.A.L.; et al. Distribution and future projections for Schinopsis brasiliensis Engler (Anacardiaceae) in the semi-arid region of Brazil. Rev. Bras. De Gestão Ambient. E Sustentabilidade 2020, 7, 1361–1378. [Google Scholar] [CrossRef]
  6. Saraiva, M.; Saraiva, C.; Cordeiro, R.; Soares, R.; Xavier, H.; Caetano, N. Atividade antimicrobiana e sinérgica das frações das folhas de Schinopsis brasiliensis Engl. frente a clones multirresistentes de Staphylococcus aureus. Rev. Bras. Plantas Med. 2013, 15, 199–207. [Google Scholar] [CrossRef] [Green Version]
  7. Silva-Luz, C.; Pirani, J.; Pell, S.; Mitchell, J. Anacardiaceae in Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro. Available online: http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB4396 (accessed on 5 June 2021).
  8. Sette-De-Souza, P.H.; Medeiros, F.D.; Santana, C.; Araújo, R.M.; Cartaxo-Furtado, N.A.O.; Macêdo, R.O.; Medeiros, A.C.D. Thermal decomposition profile of chitosan microparticles produced with Schinopsis brasiliensis Engler extract. J. Therm. Anal. 2018, 131, 829–834. [Google Scholar] [CrossRef]
  9. Albuquerque, U.; de Medeiros, P.; de Almeida, A.; Monteiro, J.; de Freitas Lins Neto, E.; de Melo, J.; dos Santos, J. Medicinal plants of the caatinga (semi-arid) vegetation of NE Brazil: A quantitative approach. J. Ethnopharmacol. 2007, 114, 325–354. [Google Scholar] [CrossRef] [PubMed]
  10. de Almeida, C.; Silva, T.D.L.E.; de Amorim, E.; Maia, M.D.S.; de Albuquerque, U. Life strategy and chemical composition as predictors of the selection of medicinal plants from the caatinga (Northeast Brazil). J. Arid Environ. 2005, 62, 127–142. [Google Scholar] [CrossRef]
  11. Júnior, W.S.F.; Ladio, A.; Albuquerque, U.P. Resilience and adaptation in the use of medicinal plants with suspected anti-inflammatory activity in the Brazilian Northeast. J. Ethnopharmacol. 2011, 138, 238–252. [Google Scholar] [CrossRef]
  12. Agra, M.; Baracho, G.; Nurit, K.; Basílio, I.; Coelho, V. Medicinal and poisonous diversity of the flora of “Cariri Paraibano”, Brazil. J. Ethnopharmacol. 2007, 111, 383–395. [Google Scholar] [CrossRef] [PubMed]
  13. Silva, M.; Farias, E.; Santos, E.; Nascimento, J.; Silva, G.; Silva, L. Plantas medicinais—conhecendo e valorizando os recursos naturais da Caatinga, no alto do Capibaribe. In Proceedings of the XIII Jornada de Ensino, Pesquisa e Extensão da UFRPE—JEPEX, Recife, Brazil, 9–13 December 2013. [Google Scholar]
  14. Albuquerque, U. Re-examining hypotheses concerning the use and knowledge of medicinal plants: A study in the Caatinga vegetation of NE Brazil. J. Ethnobiol. Ethnomed. 2006, 2, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  15. Albuquerque, U.; Andrade, L. Uso de recursos vegetais da Caatinga: O caso do Agreste do Estado de Pernambuco (Nordeste do Brasil). Interciencia 2002, 27, 336–346. [Google Scholar]
  16. Gomes, T.B.; Bandeira, F.P.S.D.F. Uso e diversidade de plantas medicinais em uma comunidade quilombola no Raso da Catarina, Bahia. Acta Bot. Bras. 2012, 26, 796–809. [Google Scholar] [CrossRef] [Green Version]
  17. Pereira Júnior, L.; Andrade, A.; Araújo, K.; Barbosa, A.; Barbosa, F. Espécies da Caatinga como alternativa para o desenvolvimento de novos fitofármacos. Floresta Ambiente 2012, 21, 509–520. [Google Scholar] [CrossRef]
  18. Santos, C.C.D.S.; Guilhon, C.C.; Moreno, D.S.A.; Alviano, C.S.; Estevam, C.D.S.; Blank, A.F.; Fernandes, P.D. Anti-inflammatory, antinociceptive and antioxidant properties of Schinopsis brasiliensis bark. J. Ethnopharmacol. 2018, 213, 176–182. [Google Scholar] [CrossRef] [PubMed]
  19. Moreira, B.O.; Vilar, V.L.S.; de Almeida, R.N.S.; Morbeck, L.L.B.; Andrade, B.S.; Barros, R.G.M.; Neves, B.M.; de Carvalho, A.L.; Cruz, M.P.; Yatsuda, R.; et al. New dimer and trimer of chalcone derivatives from anti-inflammatory and antinociceptive extracts of Schinopsis brasiliensis roots. J. Ethnopharmacol. 2022, 289, 115089. [Google Scholar] [CrossRef]
  20. Donati, M.; Mondin, A.; Chen, Z.; Miranda, F.; do Nascimento, B.; Schirato, G.; Pastore, P.; Froldi, G. Radical scavenging and antimicrobial activities of Croton zehntneri, Pterodon emarginatus and Schinopsis brasiliensis essential oils and their major constituents: Estragole, trans-anethole, β-caryophyllene and myrcene. Nat. Prod. Res. 2014, 29, 939–946. [Google Scholar] [CrossRef]
  21. Santos, C.C.D.S.; Masullo, M.; Cerulli, A.; Mari, A.; Estevam, C.D.S.; Pizza, C.; Piacente, S. Isolation of antioxidant phenolics from Schinopsis brasiliensis based on a preliminary LC-MS profiling. Phytochemistry 2017, 140, 45–51. [Google Scholar] [CrossRef]
  22. Saraiva, M.; Castro, R.H.A.; Cordeiro, R.P.; Sobrinho, T.J.S.P.; Amorim, E.L.C.; Xavier, H.S.; Pisciottano, M.N.C. In vitro evaluation of antioxidant, antimicrobial and toxicity properties of extracts of Schinopsis brasiliensis Engl. (Anacardiaceae). Afr. J. Pharm. Pharmacol. 2011, 5, 1724–1731. [Google Scholar] [CrossRef] [Green Version]
  23. Sette-de-Souza, P.H.; de Santana, C.; Amaral-Machado, L.; Duarte, M.; de Medeiros, F.; Veras, G.; de Medeiros, A. Antimicrobial Activity of Schinopsis brasiliensis Engler Extract-Loaded Chitosan Microparticles in Oral Infectious Disease. AAPS PharmSciTech 2020, 21, 246. [Google Scholar] [CrossRef]
  24. Sette-de-Souza, P.; de Santana, C.; Sousa, I.; Foglio, M.; Medeiros, F.; Medeiros, A. Schinopsis brasiliensis Engl. to combat the biofilm-dependents diseases in vitro. An. Acad. Bras. Ciências 2020, 92, e20200408. [Google Scholar] [CrossRef]
  25. Farias, D.F.; Souza, T.M.; Viana, M.P.; Soares, B.M.; Cunha, A.P.; Vasconcelos, I.M.; Ricardo, N.M.P.S.; Ferreira, P.M.P.; Melo, V.M.M.; Carvalho, A.F.U. Antibacterial, Antioxidant, and Anticholinesterase Activities of Plant Seed Extracts from Brazilian Semiarid Region. BioMed Res. Int. 2013, 2013, 510736. [Google Scholar] [CrossRef] [PubMed]
  26. Filho, A.L.N.F.; Carneiro, V.; Souza, E.A.; Santos, R.L.; Catão, M.H.C.; Medeiros, A.C.D. In Vitro Evaluation of Antimicrobial Photodynamic Therapy Associated with Hydroalcoholic Extracts of Schinopsis brasiliensis Engl. New Therapeutic Perspectives. Photomed. Laser Surg. 2015, 33, 240–245. [Google Scholar] [CrossRef]
  27. Lima-Saraiva, S.; Oliveira, F.; Junior, R.; Araújo, C.; Oliveira, A.; Pacheco, A.; Rolim, L.; Amorim, E.; César, F.; Almeida, J. Chemical Analysis and Evaluation of Antioxidant, Antimicrobial, and Photoprotective Activities of Schinopsis brasiliensis Engl. (Anacardiaceae). Sci. World J. 2017, 2017, 1713921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  28. Andrade, B.D.A.; Corrêa, A.J.C.; Gomes, A.K.S.; Neri, P.M.D.S.; Sobrinho, T.J.D.S.P.; Araújo, T.A.D.S.; Castro, V.T.N.D.A.E.; de Amorim, E.L.C. Photoprotective activity of medicinal plants from the caatinga used as anti-inflammatories. Pharmacogn. Mag. 2019, 15, 356. [Google Scholar] [CrossRef]
  29. Almeida, C.; Amorim, E.; Albuquerque, U. Insights into the search for new drugs from traditional knowledge: An ethnobotanical and chemical-ecological perspective. Pharm. Biol. 2011, 49, 864–873. [Google Scholar]
  30. Araújo, T.; Alencar, N.; de Amorim, E.; de Albuquerque, U. A new approach to study medicinal plants with tannins and flavonoids contents from the local knowledge. J. Ethnopharmacol. 2008, 120, 72–80. [Google Scholar] [CrossRef]
  31. Fernandes, F.H.A.; Batista, R.S.d.A.; De Medeiros, F.D.; Santos, F.S.; Medeiros, A.C.D. Development of a rapid and simple HPLC-UV method for determination of gallic acid in Schinopsis brasiliensis. Rev. Bras. Farmacogn. 2015, 25, 208–211. [Google Scholar] [CrossRef] [Green Version]
  32. Siqueira, C.F.D.Q.; Cabral, D.L.V.; Sobrinho, T.J.D.S.P.; De Amorim, E.L.C.; De Melo, J.G.; Araújo, T.A.D.S.; Albuquerque, U.P. Levels of Tannins and Flavonoids in Medicinal Plants: Evaluating Bioprospecting Strategies. Evid.-Based Complement. Altern. Med. 2012, 2012, 434782. [Google Scholar] [CrossRef] [PubMed]
  33. Saraiva, A.; Coutinho, F.; Da Silva, R.; Randau, K.; Xavier, H.; Pisciottano, M. Atividade antimicrobiana de polifenóis isolados das folhas de Schinopsis brasiliensis (Engl.) guiado por bioautografia. Rev. Fitos 2021, 14, 10–25. [Google Scholar] [CrossRef]
  34. Tricco, A.; Lillie, E.; Zarin, W.; O’Brien, K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  35. Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  36. Albuquerque, H.; Figuêredo, D.; Cerqueira, J. Os vegetais com potencial fitoterápico do Complexo Aluízio Campos, Campina Grande-PB. Rev. Bras. Inf. Científicas 2011, 3, 17–26. [Google Scholar]
  37. Ribeiro, D.; Macêdo, D.; Oliveira, L.; Saraiva, M.; Oliveira, S.; Souza, M.; Menezes, I. Potencial terapêutico e uso de plantas medicinais em uma área de Caatinga no estado do Ceará, nordeste do Brasil. Rev. Bras. Plantas Med. 2014, 16, 912–930. [Google Scholar] [CrossRef] [Green Version]
  38. Oliveira, O.; Almeida, A.; dos Santos, M.V.F.; Muir, J.; Cunha, M.; Lira, M.; Ferreira, R. Season and rainfall gradient effects on condensed tannin concentrations of woody rangeland species. Rev. Bras. Ciências Agrárias-Braz. J. Agric. Sci. 2015, 10, 165–169. [Google Scholar] [CrossRef]
  39. Luz, L.D.R.; Porto, D.D.; Castro, C.B.; Silva, M.F.S.; Filho, E.D.G.A.; Canuto, K.M.; de Brito, E.S.; Becker, H.; Pessoa, C.D.; Zocolo, G.J. Metabolomic profile of Schinopsis brasiliensis via UPLC-QTOF-MS for identification of biomarkers and evaluation of its cytotoxic potential. J. Chromatogr. B 2018, 1099, 97–109. [Google Scholar] [CrossRef]
  40. Cardoso, M.; David, J.; David, J. A new alkyl phenol from Schinopsis brasiliensis. Nat. Prod. Res. 2005, 19, 431–433. [Google Scholar] [CrossRef] [PubMed]
  41. Cardoso, M.; Lima, L.; David, J.; Moreira, B.; Santos, E.; David, J.; Alves, C. A New Biflavonoid from Schinopsis brasiliensis (Anacardiaceae). J. Braz. Chem. Soc. 2015, 26, 1527–1531. [Google Scholar]
  42. Ribeiro, I.; Mariano, E.; Careli, R.; Morais-Costa, F.; de Sant’Anna, F.; Pinto, M.; de Souza, M.; Duarte, E. Plants of the Cerrado with antimicrobial effects against Staphylococcus spp. and Escherichia coli from cattle. BMC Vet. Res. 2018, 14, 32. [Google Scholar]
  43. De Oliveira, M.S.; Junior, J.A.O.; Sato, M.R.; Conceição, M.M.; Medeiros, A.C.D. Polymeric Nanoparticle Associated with Ceftriaxone and Extract of Schinopsis Brasiliensis Engler against Multiresistant Enterobacteria. Pharmaceutics 2020, 12, 695. [Google Scholar] [CrossRef]
  44. Silva, K.; Chaves, T.; Santos, R.; Brandao, D.; Fernandes, F.; Ramos Júnior, F.; Dos Santos, V.; Felismino, D.; Medeiros, A. Modulation of the erythromycin resistance in Staphylococcus aureus by ethanolic extracts of Ximenia americana L and Schinopsis brasiliensis Engl. Boletín Latinoam. Caribe Plantas Med. Aromáticas 2022, 2015, 92–98. [Google Scholar]
  45. Souza, T.M.; Farias, D.F.; Soares, B.M.; Viana, M.P.; Lima, G.; Machado, L.; Morais, S.M.; Carvalho, A. Toxicity of Brazilian Plant Seed Extracts to Two Strains of Aedes aegypti (Diptera: Culicidae) and Nontarget Animals. J. Med. Entomol. 2011, 48, 846–851. [Google Scholar] [CrossRef] [PubMed]
  46. Santos, C.C.; Araújo, S.S.; Santos, A.L.; Almeida, E.C.; Dias, A.S.; Damascena, N.P.; Santos, D.M.; Santos, M.I.; Júnior, K.A.; Pereira, C.K.; et al. Evaluation of the toxicity and molluscicidal and larvicidal activities of Schinopsis brasiliensis stem bark extract and its fractions. Rev. Bras. Farm. 2014, 24, 298–303. [Google Scholar] [CrossRef] [Green Version]
  47. Barbosa, P.B.B.M.; De Oliveira, J.M.; Chagas, J.M.; Rabelo, L.M.A.; De Medeiros, G.F.; Giodani, R.B.; Da Silva, E.A.; Uchôa, A.F.; Ximenes, M.D.F.D.F.M. Evaluation of seed extracts from plants found in the Caatinga biome for the control of Aedes aegypti. Parasitol. Res. 2014, 113, 3565–3580. [Google Scholar] [CrossRef] [PubMed]
  48. Fernandes, F.H.A.; Santana, C.; Silva, P.C.D.; Simões, M.O.D.S.; Kaneko, T.M.; Medeiros, A.C.D. Development of a sunscreen by thermal compatibility study using Schinopsis brasiliensis Engler extract as preservative. J. Therm. Anal. 2017, 131, 753–763. [Google Scholar] [CrossRef]
  49. Leal, I.; Silva, J.; Tabarelli, M.; Lacher Junior, T. Mudando o curso da conservação da biodiversidade na Caatinga do Nordeste do Brasil. Megadiversidade 2005, 1, 139–146. [Google Scholar]
  50. El Omari, N.; Guaouguaou, F.E.; El Menyiy, N.; Benali, T.; Aanniz, T.; Chamkhi, I.; Balahbib, A.; Taha, D.; Shariati, M.A.; Zengin, G.; et al. Phytochemical and biological activities of Pinus halepensis mill., and their ethnomedicinal use. J. Ethnopharmacol. 2021, 268, 113661. [Google Scholar] [CrossRef] [PubMed]
  51. Vargas, G.C.; Bellaver, E.H. Estudo da atividade antioxidante dos compostos fenólicos na medicina preventiva: Revisão de literatura. Visão Acad. 2022, 23, 55–64. [Google Scholar] [CrossRef]
  52. Bruneton, J.; Barton, D.; Villar del Fresno, A. Elementos de Fitoquímica y de Farmacognosia; Editorial Acribia: Zaragoza, Spain, 1991. [Google Scholar]
  53. Mello, J.P.C.; Santos, S.C. Taninos. In Farmacognosia: Do Produto Natural ao Medicamento; Simões, C.M.O., Schenckel, E.P., Mello, J.C.P., Mentz, L.A., Petrovick, P.R., Eds.; Artmed: Porto Alegre, Brazil, 2017; pp. 234–247. [Google Scholar]
  54. D’Archivio, M.; Filesi, C.; Di Benedetto, R.; Gargiulo, R.; Giovannini, C.; Masella, R. Polyphenols, dietary sources and bioavailability. Ann. Dell’Istituto Super. Sanita 2007, 43, 348–361. [Google Scholar]
  55. Middleton, E., Jr.; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000, 52, 673–751. [Google Scholar]
  56. Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002, 96, 67–202. [Google Scholar] [CrossRef]
  57. Nijveldt, R.; van Nood, E.; van Hoorn, D.; Boelens, P.; van Norren, K.; van Leeuwen, P. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 2001, 74, 418–425. [Google Scholar] [CrossRef] [PubMed]
  58. Mutoh, M.; Takahashi, M.; Fukuda, K.; Komatsu, H.; Enya, T.; Matsushima-Hibiya, Y.; Mutoh, H.; Sugimura, T.; Wakabayashi, K. Suppression by Flavonoids of Cyclooxygenase-2 Promoter-dependent Transcriptional Activity in Colon Cancer Cells: Structure-Activity Relationship. Jpn. J. Cancer Res. 2000, 91, 686–691. [Google Scholar] [CrossRef]
  59. García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.; Martínez, J. Flavonoids as anti-inflammatory agents: Implications in cancer and cardiovascular disease. Inflamm. Res. 2009, 58, 537–552. [Google Scholar] [CrossRef] [PubMed]
  60. Datta, B.K.; Chowdhury, M.M.; Khan, T.H.; Kundu, J.K.; Rashid, M.A.; Nahar, L.; Sarker, S.D. Analgesic, Antiinflammatory and CNS Depressant Activities of Sesquiterpenes (I)–(III) and a Flavonoid Glycoside (IV) from Polygonum viscosum. ChemInform 2004, 35, 222–225. [Google Scholar] [CrossRef] [PubMed]
  61. Perazzo, F.F.; Carvalho, J.C.T.; Rodrigues, M.; Morais, E.K.L.; Maciel, M.A.M. Comparative anti-inflammatory and antinociceptive effects of terpenoids and an aqueous extract obtained from Croton cajucara Benth. Rev. Bras. Farm. 2007, 17, 521–528. [Google Scholar] [CrossRef]
  62. De Sousa, D.P.; Nobrega, F.F.F.; Claudino, F.S.; De Almeida, R.N.; Leite, J.R.; Mattei, R. Pharmacological effects of the monoterpene alpha,beta-epoxy-carvone in mice. Rev. Bras. Farm. 2007, 17, 170–175. [Google Scholar] [CrossRef]
  63. Wina, E.; Muetzel, S.; Becker, K. The Impact of Saponins or Saponin-Containing Plant Materials on Ruminant Production—A Review. J. Agric. Food Chem. 2005, 53, 8093–8105. [Google Scholar] [CrossRef] [PubMed]
  64. Athayde, M.L.; Taketa, A.T.C.; Gosmann, G.; Schenkel, E.P. Saponinas. In Farmacognosia: Plantado Produto Natural ao Medicamento; Simões, C.M., Schenkel, E.P., Mello, J.C.P., Mentz, L.A., Petrovick, P.R., Eds.; Artmed: Porto Alegre, Brazil, 2017; pp. 284–302. [Google Scholar]
  65. Hauptli, L.; Lovatto, P. Alimentação de porcas gestantes e lactantes com dietas contendo saponinas. Ciência Rural 2006, 36, 610–616. [Google Scholar] [CrossRef]
  66. Sette-De-Souza, P.H.; Costa, M.J.; Araújo, F.A.; Alencar, E.N.; Amaral-Machado, L. Two phytocompounds from Schinopsis brasiliensis show promising antiviral activity with multiples targets in Influenza A virus. An. Acad. Bras. Ciências 2021, 93, e20210964. [Google Scholar] [CrossRef]
Figure 1. Schinopsis brasiliensis Engl. Image captured by the authors (Arcoverde/Pernambuco/Brazil—July/2022).
Figure 1. Schinopsis brasiliensis Engl. Image captured by the authors (Arcoverde/Pernambuco/Brazil—July/2022).
Pharmaceuticals 15 01028 g001
Figure 2. Geographical distribution of identified Schinopsis brasiliensis Engl specimens from the Reflora Virtual Herbarium collection found in Brazil. (Map plotted using RStudio 1.4 with ‘geobr’ and ‘ggspatial’ packages).
Figure 2. Geographical distribution of identified Schinopsis brasiliensis Engl specimens from the Reflora Virtual Herbarium collection found in Brazil. (Map plotted using RStudio 1.4 with ‘geobr’ and ‘ggspatial’ packages).
Pharmaceuticals 15 01028 g002
Figure 3. Flow chart of the articles selection process according to PRISMA-ScR.
Figure 3. Flow chart of the articles selection process according to PRISMA-ScR.
Pharmaceuticals 15 01028 g003
Figure 4. Regions of the Ethnobotanical Surveys (black) conducted in Brazil, with emphasis on the Caatinga Biome (gray).
Figure 4. Regions of the Ethnobotanical Surveys (black) conducted in Brazil, with emphasis on the Caatinga Biome (gray).
Pharmaceuticals 15 01028 g004
Table 1. List of therapeutic indications of Schinopsis brasiliensis Engler according to the results of the ethnobotanical surveys.
Table 1. List of therapeutic indications of Schinopsis brasiliensis Engler according to the results of the ethnobotanical surveys.
Therapeutic
Indication
LocationUsed PartPreparationReference
Antitussive, diarrhea, and dysenteryCabaceiras/PB, São João do Cariri/PB, Serra Branca/PB, Monteiro/PBBarkDecoction, syrupAgra et al. [12]
Cold and fluAlagoinha/PEBarkInfusion, SyrupAlbuquerque [14]
Antitussive and fluAlagoinha/PEBarkDecoction, SyrupAlbuquerque and Andrade [15]
Fracture, Inflammation, Sexual Impotence, Sore Throat Cold, Flu, and
Diarrhea
UnreportedBark, Leaf, Fruit, Seed, ResinUnreportedAlbuquerque et al. [9]
Antihisteric,
nervosthenic, tonic, toothache, earache, verminosis
Campina Grande/PBResin, BarkTincture,
Decoction,
Infusion
Albuquerque et al. [36]
Inflammation and
Sexual Impotence
Piranhas/AL, Delmiro Gouveia/ALBarkUnreportedAlmeida et al. [10]
Menstrual Cramps, Inflammation, InfectionAltinho/PEN/EUnreportedFerreira-Júnior et al. [11]
Prostate, anticoagulant, flu, and bonesJeremoabo/BABarkMaceration, Tea, SyrupGomes and Bandeira [16]
Back pain, nerve pain, fluMonteiro/PBFlowerDecoctionPereira-Júnior et al. [17]
Stomach pain, liver painAssaré/CELeafDecoctionRibeiro et al. [37]
Cough, flu, diarrhea, fractures, sexual
impotence
UnreportedBarkUnreportedSilva et al. [13]
PB: Paraíba; PE: Pernambuco; AL: Alagoas; BA: Bahia; CE: Ceará.
Table 2. Phytochemical compounds found in Schinopsis brasiliensis.
Table 2. Phytochemical compounds found in Schinopsis brasiliensis.
Used PartExtractCompoundAmountReference
UnreportedEthanolicAlkaloids-Almeida et al. [29]
BarkEthanolicFlavonoids132.4 ± 1.76 mg/g (RE)Lima-Saraiva et al. [27]
BarkEthanolicFlavonoids6.94 mg/gSette-de-Souza et al. [24]
BarkHydroalcoholicFlavonoids1.44%Fernandes et al. [31]
BarkHydroalcoholicFlavonoids10.16 ± 0.54 mg/gSette-de-Souza et al. [23]
BarkMethanolicFlavonoids2.63%Araújo et al. [30]
BarkMethanolicFlavonoids-Saraiva et al. [33]
FlowersMethanolicFlavonoids-Saraiva et al. [33]
FruitMethanolicFlavonoids-Saraiva et al. [33]
LeavesMethanolicFlavonoids-Saraiva et al. [33]
RootMethanolicFlavonoids-Saraiva et al. [33]
SeedsMethanolicFlavonoids-Saraiva et al. [33]
BarkUnreportedFlavonoids2.55%Siqueira et al. [32]
BarkHydroalcoholicGallic acid-Fernandes et al. [31]
HeartwoodButanolPhenol501.94 ± 10.49 mg/g (GAE)Moreira et al. [19]
Root BarkButanolPhenol505.25 ± 11.65 mg/g (GAE)Moreira et al. [19]
HeartwoodChloroformPhenol474.38 ± 7.07 mg/g (GAE)Moreira et al. [19]
Root BarkChloroformPhenol525.31 ± 2.67 mg/g (GAE)Moreira et al. [19]
BarkEthanolicPhenol-Almeida et al. [10]
BarkEthanolic Phenol493.88 ± 13.23 mg/g (TAE)Almeida-Andrade et al. [28]
BarkEthanolicPhenol624.6 ± 0.42 mg/g (GAE)Lima-Saraiva et al. [27]
HeartwoodEthyl AcetatePhenol816.37 ± 15.40 mg/g (GAE)Moreira et al. [19]
Root BarkEthyl AcetatePhenol648.26 ± 6.01 mg/g (GAE)Moreira et al. [19]
HeartwoodHexanePhenol19.14 ± 2.67 mg/g (GAE)Moreira et al. [19]
Root BarkHexanePhenol76.61 ± 6.7 mg/g (GAE)Moreira et al. [19]
BarkMethanolicPhenolic acid-Saraiva et al. [33]
FlowersMethanolicPhenolic acid-Saraiva et al. [33]
FruitMethanolicPhenolic acid-Saraiva et al. [33]
LeavesMethanolicPhenolic acid-Saraiva et al. [33]
RootMethanolicPhenolic acid-Saraiva et al. [33]
SeedsMethanolicPhenolic acid-Saraiva et al. [33]
BarkEthanolicPolyphenols598.55 mg/gSette-de-Souza et al. [24]
BarkHydroalcoholicPolyphenols15.08%Fernandes et al. [31]
BarkHydroalcoholicPolyphenols586.13 ± 9.38 mg/gSette-de-Souza et al. [23]
BarkEthanolicQuinones-Almeida et al. [10]
UnreportedEthanolicSaponins-Almeida et al. [29]
BarkMethanolicSaponins-Saraiva et al. [33]
FlowersMethanolicSaponins-Saraiva et al. [33]
FruitMethanolicSaponins-Saraiva et al. [33]
LeavesMethanolicSaponins-Saraiva et al. [33]
RootMethanolicSaponins-Saraiva et al. [33]
SeedsMethanolicSaponins-Saraiva et al. [33]
BarkEthanolicTannins-Almeida et al. [10]
BarkEthanolicTannins367.12 ± 21.35 mg/g (TAE)Almeida-Andrade et al. [28]
BarkEthanolicTannins255.8 ± 2.06 mg/g (TAE)Lima-Saraiva et al. [27]
BarkEthanolicTannins15.83 mg/gSette-de-Souza et al. [24]
UnreportedEthanolicTannins-Almeida et al. [29]
BarkHydroalcoholicTannins27.12 ± 0.61 mg/gSette-de-Souza et al. [23]
BarkMethanolicTannins50.24%Araújo et al. [30]
BarkMethanolicTannins-Saraiva et al. [33]
FlowersMethanolicTannins-Saraiva et al. [33]
FruitMethanolicTannins-Saraiva et al. [33]
LeavesMethanolicTannins-Saraiva et al. [33]
RootMethanolicTannins-Saraiva et al. [33]
SeedsMethanolicTannins-Saraiva et al. [33]
BarkUnreportedTannins5.53%Siqueira et al. [32]
Leaves and BarkUnreportedTannins78.9 ± 12.2 mg/gOliveira et al. [38]
BarkEthanolicTriterpene-Almeida et al. [10]
BarkMethanolicTriterpene-Saraiva et al. [33]
FlowersMethanolicTriterpene-Saraiva et al. [33]
FruitMethanolicTriterpene-Saraiva et al. [33]
LeavesMethanolicTriterpene-Saraiva et al. [33]
RootMethanolicTriterpene-Saraiva et al. [33]
SeedsMethanolicTriterpene-Saraiva et al. [33]
TAE: Tannic acid equivalent; GAE: Gallic acid equivalents; RE: Rutin equivalent.
Table 3. Isolated compounds from Schinopsis brasiliensis.
Table 3. Isolated compounds from Schinopsis brasiliensis.
Isolated CompoundClassPlant PartReference
SylvestreneAlkeneLeavesDonati et al. [20]
Quercetin- O- (O- galloyl) –hexosideBenzoateLeavesReis-Luz et al. [39]
Methyl 6-eicosanyl-2-hydroxy-4-methoxybenzoateBenzoateBarkCardoso et al. [40]
Urundeuvin ABenzopyranBranchReis-Luz et al. [39]
Chlorogenic acidCarboxylic acidBarkReis-Luz et al. [39]
Citric AcidCarboxylic acidBarkReis-Luz et al. [39]
Digalloyl Quinic AcidCarboxylic acidBarkReis-Luz et al. [39]
Quinic acidCarboxylic acidBarkReis-Luz et al. [39]
Chlorogenic acidCarboxylic acidBranchReis-Luz et al. [39]
Quinic acidCarboxylic acidBranchReis-Luz et al. [39]
Quinic acidCarboxylic acidLeavesReis-Luz et al. [39]
CajobinChalconeRoot barkMoreira et al. [19]
LuxenchalconeChalconeRoot barkMoreira et al. [19]
5α, 8α-epidioxyergosta-6,22-dien-3-b-olCholestaneBarkCardoso et al. [40]
4,2′,4′-tri-hydroxichalcona-(3→O→4″)-2‴,4‴,-dihydroxiccalconaFlavonoidBarkCardoso et al. [41]
ApigeninFlavonoidBarkLima-Saraiva et al. [27]
CatechinFlavonoidBarkLima-Saraiva et al. [27]
EpicatechinFlavonoidBarkLima-Saraiva et al. [27]
Ethyl-O-β-D-(6′-O-galloyl)-glucopyranosideFlavonoidBranchReis-Luz et al. [39]
CatechinFlavonoidFruitSaraiva et al. [33]
(2R *, 3R *, 2″R *, 3″R *)-7-hydroxy-4′-methoxy-flavanone-(3→3″)-3‴, 7″-di-hydroxy-4‴-methoxyflavoneFlavonoidLeavesCardoso et al. [41]
4,2′,4′-tri-hydroxichalcona-(3→O→4″)-2‴,4‴,-dihydroxiccalconaFlavonoidLeavesCardoso et al. [41]
Myricitrin O-gallateFlavonoidLeavesReis-Luz et al. [39]
Quercetin gallopentosisFlavonoidLeavesReis-Luz et al. [39]
Quercetin- O- hexosídeFlavonoidLeavesReis-Luz et al. [39]
Gallic acidGallateBarkFernandes et al. [31]
Gallic acidGallateBarkLima-Saraiva et al. [27]
Gallic acidGallateHeartwoodMoreira et al. [19]
Gallic acidGallateLeavesFernandes et al. [31]
Gallic acidGallateLeavesLima-Saraiva et al. [27]
Gallic acidGallateRootLima-Saraiva et al. [27]
Penta-O-galloyl-β-DGallotanninBarkReis-Luz et al. [39]
O-galloylnorbergeninGallotanninBranchReis-Luz et al. [39]
Penta-O-galloyl-β-DGallotanninBranchReis-Luz et al. [39]
Penta-O-galloyl-β-DGallotanninLeavesReis-Luz et al. [39]
C20H28O23Not identifiedBarkReis-Luz et al. [39]
C30H20O9Not identifiedBarkReis-Luz et al. [39]
C31H24O14Not identifiedBarkReis-Luz et al. [39]
C46H36O21Not identifiedBarkReis-Luz et al. [39]
C28H24O17Not identifiedBranchReis-Luz et al. [39]
C45H24O14Not identifiedBranchReis-Luz et al. [39]
C14H8ONot identifiedLeavesReis-Luz et al. [39]
C18H26O14Not identifiedLeavesReis-Luz et al. [39]
C26H36O11Not identifiedLeavesReis-Luz et al. [39]
C28H24O17Not identifiedLeavesReis-Luz et al. [39]
C30H22O9Not identifiedRoot barkMoreira et al. [19]
C46H36O12Not identifiedRoot barkMoreira et al. [19]
Methyl GallatePhenol CompoundRoot barkMoreira et al. [19]
Cynamic DerivatePhenolic acidBarkSaraiva et al. [33]
Cynamic DerivatePhenolic acidFlowersSaraiva et al. [33]
Cynamic DerivatePhenolic acidFruitSaraiva et al. [33]
Cynamic DerivatePhenolic acidLeavesSaraiva et al. [33]
Cynamic DerivatePhenolic acidRootSaraiva et al. [33]
Cynamic DerivatePhenolic acidSeedsSaraiva et al. [33]
Estragole (4-allylanisole)PhenolsLeavesDonati et al. [20]
DaucosterolPhytosterolHeartwoodMoreira et al. [19]
2-hydroxy-4-methoxyphenol-1-O-β-D-(6′-O-galloyl)-glucopyranosidePolyphenolBarkReis-Luz et al. [39]
Galloyl quinic acidPolyphenolBarkReis-Luz et al. [39]
ProanthocyanidinPolyphenolBarkSaraiva et al. [33]
2-hydroxy-4-methoxyphenol-1-O-β-D-(6′-O-galloyl)-glucopyranosidePolyphenolBranchReis-Luz et al. [39]
Di-O-galloyl-2,3-(S)-hexahydroxydiphenoy1-scyllo-quercitolPolyphenolBranchReis-Luz et al. [39]
Galloyl quinic acidPolyphenolBranchReis-Luz et al. [39]
Hexagalloyl-hexosidePolyphenolBranchReis-Luz et al. [39]
ProanthocyanidinPolyphenolFruitSaraiva et al. [33]
Digallic acidPolyphenolLeavesReis-Luz et al. [39]
Ethyl 2,4-dihydroxy-3-(3,4,5-trihydroxybenzoyl)oxybezoatePolyphenolLeavesReis-Luz et al. [39]
Hexagalloyl-hexosidePolyphenolLeavesReis-Luz et al. [39]
Tetra-O-galloyl-glucosePolyphenolLeavesReis-Luz et al. [39]
ProanthocyanidinPolyphenolRootSaraiva et al. [33]
Ellagic AcidPolyphenolRoot barkMoreira et al. [19]
CorilaginTanninBranchReis-Luz et al. [39]
AromadendreneTerpeneLeavesDonati et al. [20]
Eucalyptol (cineol)TerpeneLeavesDonati et al. [20]
GlobulolTerpeneLeavesDonati et al. [20]
GuaiolTerpeneLeavesDonati et al. [20]
LedeneTerpeneLeavesDonati et al. [20]
LinalolTerpeneLeavesDonati et al. [20]
MyrceneTerpeneLeavesDonati et al. [20]
Terpinen-4-olTerpeneLeavesDonati et al. [20]
TerpineolTerpeneLeavesDonati et al. [20]
α-humulene (α-caryophyllene)TerpeneLeavesDonati et al. [20]
α-pineneTerpeneLeavesDonati et al. [20]
β-caryophylleneTerpeneLeavesDonati et al. [20]
β-elementTerpeneLeavesDonati et al. [20]
Table 4. Antimicrobial activity Schinopsis brasiliensis.
Table 4. Antimicrobial activity Schinopsis brasiliensis.
Plant PartExtractMicroorganismMICControlReference
BarksHydroalcoholicE. faecalis0.25 mg/mLChlorhexidineSette-de-Souza et al. [23]
0.5 mg/mL
BarksEthanolicS. mutans0.5 mg/mLChlorhexidineSette-de-Souza et al. [24]
S. oralis0.5 mg/mL
S. mitis0.5 mg/mL
S. salivarius0.25 mg/mL
SeedsEthanolicS. choleraesuis37.32 mg/mLTetracycline,
Nystatin solution
Farias et al. [25]
BarksHydroalcoholicS. aureus50 mg/mLMalachite Green dyeFormiga-Filho et al. [26]
Escherichia500 mg/mL
P. aeruginosa50 mg/mL
E. faecalis200 mg/mL
LeavesHydroalcoholicS. aureus50 mg/mLMalachite Green dyeFormiga-Filho et al. [26]
E. coli200 mg/mL
P. aeruginosa50 mg/mL
E. faecalis100 mg/mL
BarksEthanolicB. cereus12.5 mg/mLGentamicinLima-Saraiva et al. [27]
E. coli12.5 mg/mL
E. faecali12.5 mg/mL
K. pneumoniae12.5 mg/mL
P. aeruginosa12.5 mg/mL
S. marcescens6.25 mg/mL
S. flexneri3.12 mg/mL
S. enterica0.39 mg/mL
S. aureus3.12 mg/mL
LeavesEthanolicS. haemolyticus0.17 mg/mLChloramphenicol, Erythromycin, Vancomycin, Oxacillin, Gentamicin, Tetracycline,
Clindamycin, Penicillin
Ribeiro et al. [42]
S. aureus0.17 mg/mL
E. coli0.17 mg/mLChloramphenicol,
Ampicillin, Gentamicin,
Ciprofloxacin, Tetracycline, Norfloxacin
LeavesHydroalcoholicE. coli0.23 µg/mLCeftriaxoneOliveira et al. [43]
K. pneumoniae10 µg/mL
Leaves, Flowers, Root, Bark, FruitsMethanolicS. aureus0.125 mg/mLTetraciclinSaraiva et al. [33]
Ethyl Acetate0.25 mg/mL
LeavesMethanolicE. coli250 µg/mLTetracycline, Gentamycin, KetoconazoleSaraiva et al. [22]
E. faecalis2 µg/mL
S. aureus125 µg/mL
S. saprophyticus500 µg/mL
S. epidermidis500 µg/mL
P. aeruginosa31.25 µg/mL
LeavesEthyl AcetateS. aureus100 µg/mLTetracycline, OxacilinSaraiva et al. [6]
E. coli>100 µg/mL
K. pneumoniae>100 µg/mL
E. faecalis>100 µg/mL
Salmonella spp>100 µg/mL
LeavesMethanolicS. aureus25 µg/mL Saraiva et al. [6]
E. coli50 µg/mL
K. pneumoniae100 µg/mL
E. faecalis>100 µg/mL
Salmonella spp>100 µg/mL
C. albicans200 µg/mLKetoconazole
C. krusei200 µg/mL
C. tropicalis200 µg/mL
BarksHydroalcoholicP. aeruginosa0.004 µL/µLChlorhexidineSilva et al. [1]
E. faecalis1 µL/µL
S. aureus0.063 µL/µL
S. oralis0.5 µL/µL
LeavesEthanolicS. aureus1.04 mg/mLErythromycinSilva et al. [44]
BarksEthanolicS. aureus1.04 mg/mLErythromycinSilva et al. [44]
Root barkHexaneS. aureus>1000 µg/mL-Moreira et al. [19]
Root barkChloroformS. aureus31.25 µg/mL-Moreira et al. [19]
Root barkEthyl AcetateS. aureus62.50 µg/mL-Moreira et al. [19]
Root barkButanolS. aureus125 µg/mL-Moreira et al. [19]
HeartwoodHexaneS. aureus>1000 µg/mL-Moreira et al. [19]
HeartwoodChloroformS. aureus250 µg/mL-Moreira et al. [19]
HeartwoodEthyl AcetateS. aureus62.50 µg/mL-Moreira et al. [19]
HeartwoodButanolS. aureus250 µg/mL-Moreira et al. [19]
Table 5. Antioxidant activity of Schinopsis brasiliensis.
Table 5. Antioxidant activity of Schinopsis brasiliensis.
Plant PartExtractMethodMain ResultReference
BarkEthanolicDPPHIC50: 1.46 ± 0.07 µg/mLLima-Saraiva et al. [27]
BarkEthanolicβ-carotene60.81%Lima-Saraiva et al. [27]
BarkEthanolicTEAC3.04 mg/mLSantos et al. [21]
BarkEthanolicDPPHIC50: 19.69 ± 0.77 µg/mLAlmeida-Andrade et al. [28]
LeafEssential OilORAC1918, 3 ± 246 µmol/gDonati et al. [20]
LeafEssential OilDPPHIC50: 17.63 mg/mL (9.19–33.82)Donati et al. [20]
LeafMethanolicDPPHEC50 = 8.80 ± 0.94 g/mLSaraiva et al. [22]
Root barkHexaneDPPH>1000 µg/mLMoreira et al. [19]
Root barkChloroformDPPH101.53 µg/mLMoreira et al. [19]
Root barkEthyl AcetateDPPH38.37 µg/mLMoreira et al. [19]
Root barkButanolDPPH53.46 µg/mLMoreira et al. [19]
Root barkHexaneβ-carotene39.64 µg/mLMoreira et al. [19]
Root barkChloroformβ-carotene115.74 µg/mLMoreira et al. [19]
Root barkEthyl Acetateβ-carotene127.16 µg/mLMoreira et al. [19]
Root barkButanolβ-carotene29.65 µg/mLMoreira et al. [19]
HeartwoodHexaneDPPH>1000 µg/mLMoreira et al. [19]
HeartwoodChloroformDPPH85.54 µg/mLMoreira et al. [19]
HeartwoodEthyl AcetateDPPH36.49 µg/mLMoreira et al. [19]
HeartwoodButanolDPPH71.43 µg/mLMoreira et al. [19]
HeartwoodHexaneβ-carotene301.51 µg/mLMoreira et al. [19]
HeartwoodChloroformβ-carotene190.81 µg/mLMoreira et al. [19]
HeartwoodEthyl Acetateβ-carotene31.42 µg/mLMoreira et al. [19]
HeartwoodButanolβ-carotene109.72 µg/mLMoreira et al. [19]
DPPH: 2,2-Diphenyl-1-Picryl-Hydrazyl; TEAC: Trolox Equivalent Antioxidant Capacity; ORAC: Oxygen Radical Absorbance Capacity; IC50: Inhibitory Concentration; EC50: Efficient Concentration.
Table 6. Toxicity tests of S. brasiliensis extract against different experimental models.
Table 6. Toxicity tests of S. brasiliensis extract against different experimental models.
Study DesingPlant PartExtractExperimental ModelsLC50/IC50Reference
In vivoBarkEthanolicArtemia salinaLC50 > 100 μg/mLSantos et al. [46]
In vivoBarkMethanolicArtemia salinaLC50 > 100 μg/mLSantos et al. [46]
In vivoBarkChloroformArtemia salinaLC50 = 313 μg/mLSantos et al. [46]
In vivoBarkHexaneArtemia salinaLC50 = 582 μg/mLSantos et al. [46]
In vivoBarkEthyl acetateArtemia salinaLC50 = 557 μg/mLSantos et al. [46]
In vivoBarkHydroalcoholicArtemia salinaLC50: 428 µg/mLSilva et al. [1]
In vivoLeafMethanolicArtemia salinaLC50: 705.54 ± 60.46 μg/mLSaraiva et al. [22]
In vivoLeafEthanolicArtemia salinaLC50: 512 μg/mLSilva et al. [44]
In vivoSeedSPFCeriodaphnia dubiaLC50: 1.91 mg/mLBarbosa et al. [47]
In vivoSeedEthanolicArtemia spLC50: 962.97 μg/mLSouza et al. [45]
In vitroSeedSPFFibroblasts 3T3LC50: 6.14 mg/mLBarbosa et al. [47]
In vitroLeafHydroalcoholicGlioblastoma SF-295IC50 = 78.57 μg/mLReis-Luz et al. [39]
In vitroLeafHydroalcoholicProstate PC3IC50 = 71.54 μg/mLReis-Luz et al. [39]
In vitroLeafHydroalcoholicLeukemia HL60IC50 = 52.58 μg/mLReis-Luz et al. [39]
In vitroLeafHydroalcoholicColorectal RAJIIC50 = 55.90 μg/mLReis-Luz et al. [39]
In vitroLeafHydroalcoholicColorectal HCT-116IC50 = 61.73 μg/mLReis-Luz et al. [39]
In vitroLeafHydroalcoholicColorectal SW-620IC50 = 65.46 μg/mLReis-Luz et al. [39]
In vitroLeafHydroalcoholicFibroblast L929IC50 = 49.53 μg/mLReis-Luz et al. [39]
In vitroBarkHydroalcoholicGlioblastoma SF-295IC50 > 100 μg/mLReis-Luz et al. [39]
In vitroBarkHydroalcoholicProstate PC3IC50 > 100 μg/mLReis-Luz et al. [39]
In vitroBarkHydroalcoholicLeukemia HL60IC50 = 58.75 μg/mLReis-Luz et al. [39]
In vitroBarkHydroalcoholicColorectal RAJIIC50 > 100 μg/mLReis-Luz et al. [39]
In vitroBarkHydroalcoholicColorectal HCT-116IC50 = 93.64 μg/mLReis-Luz et al. [39]
In vitroBarkHydroalcoholicColorectal SW-620IC50 = 25.68 μg/mLReis-Luz et al. [39]
In vitroBarkHydroalcoholicFibroblast L929IC50 = 82.00 μg/mLReis-Luz et al. [39]
SPF = Sodium phosphate buffer.
Table 7. Other biological activity from Schinopsis brasiliensis.
Table 7. Other biological activity from Schinopsis brasiliensis.
Biological
Activity
Plant PartExtractMethod (Study Design)Main ResultsIC50Reference
PhotoprotectionBarkEthanolicEspectrophotometric (in vitro)SPF: 6.26 ± 0.28-Almeida-Andrade et al. [28]
BarkEthanolicSPF (in vitro)SPF: 6 UVB-Lima-Saraiva et al. [27]
Preserving agentLeafHydroalcoholicDSC and FT-IR (in vitro)--Fernandes et al. [48]
Molluscicide
(Biomphalaria glabrata)
BarkChloroform
Ethyl Acetate
Santos and Sant’Ana (2001) (in vivo)LC90: 68 μg/mL-Santos et al. [46]
LC90: 73 μg/mL
Larvicidal
(Aedes aegypti)
BarkEthyl Acetate
Hexane
Chloroform
WHO (in vivo)LC50: 345 μg/mL
LC50: 527 μg/mL
LC50: 583 μg/mL
-Santos et al. [46]
SeedEthanolicWHO (in vivo)FC strain: 100%
SS strain: 100%
FC strain: 580.9 µg/mL
SS strain: 661.6 µg/mL
Souza et al. [45]
SeedSodium phosphate bufferKonishi et al., 2008 and WHO adapted (in vivo)100% of dead-Barbosa et al. [47]
Pupicidal
(Aedes aegypti)
SeedEthanolicWHO (in vivo)FC strain: 100%
SS strain: 100%
FC strain: 32.9 µg/mL
SS strain: 40.6 µg/mL
Souza et al. [45]
SeedSodium phosphate bufferKonishi et al., 2008 and WHO adapted (in vivo)100% of dead-Barbosa et al. [47]
Ovicidal
(Aedes aegypti)
SeedEthanolicWHO (in vivo)FC strain: 5.7%
SS strain: 0%
-Souza et al. [45]
SeedSodium phosphate bufferKonishi et al., 2008 and WHO adapted (in vivo)ODI2.5% 25.44
ODI20% 51.10
-Barbosa et al. [47]
Anti-inflammatoryBarkHydroethanolicCarrageenan (in vivo)EAF: 100 mg/kg
Agal: 10 mg/kg
-Santos et al. [18]
Root BarkMethanolicCarrageenan (in vivo)--Moreira et al. [19]
HeartwoodMethanolicCarrageenan (in vivo)--Moreira et al. [19]
AntinociceptiveBarkHydroethanolicFormalin-induced licking (in vivo)EAF: 40% less pain.
HEE: 40% less pain
-Santos et al. [18]
Root BarkMethanolicFormalin-induced and paw edema (in vivo)--Moreira et al. [19]
HeartwoodMethanolicFormalin-induced and paw edema (in vivo)--Moreira et al. [19]
Anti-hemolyticBarkEthanolic 43.84% ± 0.02-Lima-Saraiva et al. [27]
BarkHydroalcoholicCruz-Silva et al., 2000 (in vitro)-92.66 mg/mLSette-de-Souza et al. [23]
BarkEthanolicCruz-Silva et al., 2000 (in vitro)-50.27 mg/mLSette-de-Souza et al. [24]
Enzymatic
inhibitor
SeedSodium phosphate buffer Trypsin: 282.33-Barbosa et al. [47]
Chymotrypsin: 90.42-
Proteases: 141.17-
Amylase: 26.50-
SPF: Sun Protection Factor; DSC: Differential Scanning Calorimetry; FT-IR: Fourier-transform infrared spectroscopy; UVB: Ultraviolet B radiation; LC: Lethal Concentration; FC: Field-collected; SS: susceptible to temephos; ODI: oviposition deterrence index; Agal: Chromatographic analysis of gallic acid; EAF: ethyl acetate fraction; HEE: hydroethanol extract.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Barreto Linhares, L.P.M.; Pereira, B.V.N.; Dantas, M.K.G.; Bezerra, W.M.d.S.; Viana-Marques, D.d.A.; de Lima, L.R.A.; Sette-de-Souza, P.H. Schinopsis brasiliensis Engler—Phytochemical Properties, Biological Activities, and Ethnomedicinal Use: A Scoping Review. Pharmaceuticals 2022, 15, 1028. https://doi.org/10.3390/ph15081028

AMA Style

Barreto Linhares LPM, Pereira BVN, Dantas MKG, Bezerra WMdS, Viana-Marques DdA, de Lima LRA, Sette-de-Souza PH. Schinopsis brasiliensis Engler—Phytochemical Properties, Biological Activities, and Ethnomedicinal Use: A Scoping Review. Pharmaceuticals. 2022; 15(8):1028. https://doi.org/10.3390/ph15081028

Chicago/Turabian Style

Barreto Linhares, Ladaha Pequeno Menna, Bruna Vanessa Nunes Pereira, Maria Karoline Gomes Dantas, Wislayne Mirelly da Silva Bezerra, Daniela de Araújo Viana-Marques, Luiza Rayanna Amorim de Lima, and Pedro Henrique Sette-de-Souza. 2022. "Schinopsis brasiliensis Engler—Phytochemical Properties, Biological Activities, and Ethnomedicinal Use: A Scoping Review" Pharmaceuticals 15, no. 8: 1028. https://doi.org/10.3390/ph15081028

APA Style

Barreto Linhares, L. P. M., Pereira, B. V. N., Dantas, M. K. G., Bezerra, W. M. d. S., Viana-Marques, D. d. A., de Lima, L. R. A., & Sette-de-Souza, P. H. (2022). Schinopsis brasiliensis Engler—Phytochemical Properties, Biological Activities, and Ethnomedicinal Use: A Scoping Review. Pharmaceuticals, 15(8), 1028. https://doi.org/10.3390/ph15081028

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop