Chemical Analysis and Molecular Modelling of Cyclodextrin-Formulated Propofol and Its Sodium Salt to Improve Drug Solubility, Stability and Pharmacokinetics (Cytogenotoxicity)
Abstract
:1. Introduction
2. Results and Discussion
2.1. H-NMR Spectroscopy
2.2. Molecular Modelling
2.3. DSC
2.4. Quantitative Determination of Propofol and Its CD Complexes by LC–MS/MS
2.5. Cytoxicity Tests
2.6. Cytotoxicity, Genotoxicity, and BBB Permeation Analysis
2.6.1. Cytotoxicity of Propofol at the Blood-Brain Barrier
2.6.2. Cytotoxicity of β-Cyclodextrin and HPβCD at the Blood-Brain Barrier
2.6.3. Propofol/HPβCD and Na-Propofolate/HPβCD at the Blood–Brain Barrier
2.7. Comet Assay
2.8. Alternative Formulations of Propofol
3. Material and Methods
3.1. 1H-NMR Spectroscopy
3.2. Molecular Modelling
3.3. Differential Scanning Calorimetry (DSC)
3.4. Quantitative Determination of Propofol and Its CD Complexes by LC-MS/MS
3.5. Cytotoxicity Tests
3.5.1. MTT Test
3.5.2. LDH Assay
3.5.3. EZ4U Test
3.6. Comet Assay
3.7. Statistical Data on the Cytotoxicity Tests and the Comet Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Model List of Essential Medicines; WHO: Geneva, Switzerland, 2019; Volume 1.
- Vanlersberghe, C.; Camu, F. Propofol. Handb. Exp. Pharmacol. 2008, 182, 227–252. [Google Scholar] [CrossRef]
- Diedrich, D.A.; Brown, D.R. Analytic Reviews: Propofol Infusion Syndrome in the ICU. J. Intens. Care Med. 2011, 26, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Zacharowski, K. (Ed.) 2 Propofol. In Pssst…AINS-Secrets! Georg Thieme Verlag: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Tan, C.H.; Onsiong, M.K. Pain on injection of propofol. Anaesthesia 1998, 53, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Tramèr, M.R.; Moore, A.R.; McQuay, H.J. Propofol and bradycardia: Causation, frequency and severity. Br. J. Anaesth. 1997, 78, 642–651. [Google Scholar] [CrossRef]
- Bennett, S.N.; McNeil, M.M.; Bland, L.A.; Arduino, M.J.; Villarino, M.E.; Perrotta, D.M.; Burwen, D.R.; Welbel, S.F.; Pegues, D.A.; Stroud, L.; et al. Postoperative Infections Traced to Contamination of an Intravenous Anesthetic, Propofol. N. Engl. J. Med. 1995, 333, 147–154. [Google Scholar] [CrossRef]
- Krajčová, A.; Waldauf, P.; Anděl, M.; Duška, F. Propofol infusion syndrome: A structured review of experimental studies and 153 published case reports. Crit. Care 2015, 19, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Egan, T.D. Exploring the frontiers of propofol formulation strategy: Is there life beyond the milky way? Br. J. Anaesth. 2010, 104, 533–535. [Google Scholar] [CrossRef]
- Soltész, S.; Silomon, M.; Gräf, G.; Mencke, T.; Boulaadass, S.; Molter, G.P. Effect of a 0.5% Dilution of Propofol on Pain on Injection during Induction of Anesthesia in Children. Anesthesiology 2007, 106, 80–84. [Google Scholar] [CrossRef]
- Momot, K.I.; Kuchel, P.W.; Chapman, B.E.; Deo, P.; Whittaker, D. NMR Study of the Association of Propofol with Nonionic Surfactants. Langmuir 2003, 19, 2088–2095. [Google Scholar] [CrossRef]
- Baker, M.T.; Naguib, M. Propofol the Challenges of Formulation. Anesthesiology 2005, 103, 860–876. [Google Scholar] [CrossRef]
- Welliver, M.; McDonough, J.P. Anesthetic Related Advances with Cyclodextrins. Sci. World J. 2007, 7, 364–371. [Google Scholar] [CrossRef]
- Challa, R.; Ahuja, A.; Ali, J.; Khar, R.K. Cyclodextrins in drug delivery: An updated review. AAPS PharmSciTech 2005, 6, E329–E357. [Google Scholar] [CrossRef] [PubMed]
- Rajewski, R.A.; Stella, V.J. Pharmaceutical Applications of Cyclodextrins. 2. In Vivo Drug Delivery. J. Pharm. Sci. 1996, 85, 1142–1169. [Google Scholar] [CrossRef] [PubMed]
- Straßnig, C. Synthese von Rezeptormolekülen auf Basis von ß-Cyclodextrin [Beta-Cyclodextrin]. Master’s Thesis, Universität des Saarlandes, Saarbrücken, Germany, 2007; pp. 3–7. [Google Scholar] [CrossRef]
- Müller, B.; Brauns, U. Hydroxypropyl-β Cyclodextrin Derivatives: Influence of Average Degree of Substitution on Complexing Ability and Surface Activity. J. Pharm. Sci. 1986, 75, 571–572. [Google Scholar] [CrossRef] [PubMed]
- Pitha, J. Amorphous water soluble derivatives of cyclodextrins: From test tube to patient. J. Control. Release 1987, 6, 309–313. [Google Scholar] [CrossRef]
- Loftsson, T.; Moya-Ortega, M.D.; Alvarez-Lorenzo, C.; Concheiro, A. Pharmacokinetics of cyclodextrins and drugs after oral and parenteral administration of drug/cyclodextrin complexes. J. Pharm. Pharmacol. 2015, 68, 544–555. [Google Scholar] [CrossRef] [PubMed]
- PubChem. Propofol; 2019; p. 1. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/4943 (accessed on 14 November 2022).
- Hydroxypropyl-beta-cyclodextrin. Available online: https://www.fishersci.de/chemicalProductData_uk/wercsitemCode=10388870&lang=DE (accessed on 23 November 2022).
- Babu, M.K.M.; Godiwala, T.N. Toward the Development of an Injectable Dosage Form of Propofol: Preparation and Evaluation of Propofol–Sulfobutyl Ether 7-β-Cyclodextrin Complex. Pharm. Dev. Technol. 2004, 9, 265–275. [Google Scholar] [CrossRef]
- Shityakov, S.; Salmas, R.E.; Durdagi, S.; Salvador, E.; Pápai, K.; Yáñez-Gascón, M.J.; Pérez-Sánchez, H.; Puskás, I.; Roewer, N.; Förster, C.; et al. Characterization, In Vivo Evaluation, and Molecular Modeling of Different Propofol–Cyclodextrin Complexes To Assess Their Drug Delivery Potential at the Blood–Brain Barrier Level. J. Chem. Inf. Model. 2016, 56, 1914–1922. [Google Scholar] [CrossRef]
- Trapani, G.; Latrofa, A.; Franco, M.; Lopedota, A.; Sanna, E.; Liso, G. Inclusion Complexation of Propofol with 2-Hydroxypropyl-β- cyclodextrin. Physicochemical, Nuclear Magnetic Resonance Spectroscopic Studies, and Anesthetic Properties in Rat. J. Pharm. Sci. 1998, 87, 514–518. [Google Scholar] [CrossRef]
- Broscheit, J.; Roewer, N. Pharmaceutical Preparation; IFI CLAIMS Patent Services: New Haven, CT, USA, 2012; pp. 1–8. [Google Scholar]
- Burek, M.; Salvador, E.; Förster, C.Y. Generation of an Immortalized Murine Brain Microvascular Endothelial Cell Line as an In Vitro Blood Brain Barrier Model. J. Vis. Exp. 2012, 66, e4022. [Google Scholar] [CrossRef]
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988, 175, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Yedjou, C.G.; Tchounwou, P.B. In-vitro cytotoxic and genotoxic effects of arsenic trioxide on human leukemia (HL-60) cells using the MTT and alkaline single cell gel electrophoresis (Comet) assays. Mol. Cell. Biochem. 2007, 301, 123–130. [Google Scholar] [CrossRef]
- Qiu, C.; Gao, L.-N.; Yan, K.; Cui, Y.-L.; Zhang, Y. A promising antitumor activity of evodiamine incorporated in hydroxypropyl-β-cyclodextrin: Pro-apoptotic activity in human hepatoma HepG2 cells. Chem. Central J. 2016, 10, 1–11. [Google Scholar] [CrossRef]
- Loftsson, T.; Hreinsdóttir, D.; Másson, M. Evaluation of cyclodextrin solubilization of drugs. Int. J. Pharm. 2005, 302, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.M.; Kirtadze, T.; Malanga, M.; Dinh, D.; Barnes, C.; Campo, A.; Clemens, D.M.; Garcia-Fandiño, R.; Piñeiro; O’Connor, M.S. Cyclodextrin dimers: A versatile approach to optimizing encapsulation and their application to therapeutic extraction of toxic oxysterols. Int. J. Pharm. 2021, 606, 120522. [Google Scholar] [CrossRef]
- Gao, Y.; Li, G.; Zhou, Z.; Guo, L.; Liu, X. Supramolecular assembly of poly(β-cyclodextrin) block copolymer and benzimidazole-poly(ε-caprolactone) based on host-guest recognition for drug delivery. Colloids Surf. B Biointerfaces 2017, 160, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Weiler, C. Generierung Leicht Dispergierbarer Inhalationspulver Mittels Sprühtrocknung. Master’s Thesis, Johannes Gutenberg-Universität Mainz, Mainz, Germany, 2008; p. 85. [Google Scholar]
- Al-Abboodi, A.S.; Al-Sheikh, W.M.; Eid, E.E.; Azam, F.; Al-Qubaisi, M.S. Inclusion complex of clausenidin with hydroxypropyl-β-cyclodextrin: Improved physicochemical properties and anti-colon cancer activity. Saudi Pharm. J. 2021, 29, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Bharti, N.; Madan, J.R.; Hiremath, S.N. Characterization of Cyclodextrin Inclusion Complexes—A Review. J. Pharm. Sci. Technol. 2010, 2, 171–183. [Google Scholar]
- Ficarra, R.; Ficarra, P.; Di Bella, M.; Raneri, D.; Tommasini, S.; Calabrò, M.; Gamberini, M.; Rustichelli, C. Study of β-blockers/β-cyclodextrins inclusion complex by NMR, DSC, X-ray and SEM investigation. J. Pharm. Biomed. Anal. 2000, 23, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.-G.; Wang, S.; Xu, Y.-B.; Zhuang, J. Propofol suppresses invasion, angiogenesis and survival of EC-1 cells in vitro by regulation of S100A4 expression. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 4858–4865. [Google Scholar]
- Yuan, J.; Cui, G.; Li, W.; Zhang, X.; Wang, X.; Zheng, H.; Zhang, J.; Xiang, S.; Xie, Z. Propofol Enhances Hemoglobin-Induced Cytotoxicity in Neurons. Obstet. Anesthesia Dig. 2016, 122, 1024–1030. [Google Scholar] [CrossRef]
- Onizuka, S.; Ikewaki, N.; Shiraishi, S. A Mechanism by Which Propofol Induces Cytotoxicity. J. Drug Metab. Toxicol. 2017, 8, 1–7. [Google Scholar] [CrossRef]
- Kiss, T.; Fenyvesi, F.; Pasztor, N. Cytotoxicity of different types of methylated ß-cyclodextrins and ionic derivatives. Die Pharmazie 2007, 62, 557–558. [Google Scholar] [CrossRef] [PubMed]
- Grosse, P.Y.; Bressolle, F.; Pinguet, F. Antiproliferative effect of methyl-beta- cyclodextrin in vitro and in human tu-mour xenografted athymic nude mice. Br. J. Cancer 1998, 78, 1165–1169. [Google Scholar] [CrossRef]
- Hao, J.; Zhang, W.; Tong, R.; Huang, Z. Febuxostat Prevents the Cytotoxicity of Propofol in Brain Endothelial Cells. ACS Omega 2021, 6, 5471–5478. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Luo, Z.; Xue, Z.-G.; Cang, J. Propofol inhibits neuronal differentiation of mouse embryonic stem cells in vitro. Chin. Med. J. 2013, 126, 4186–4188. [Google Scholar]
- Sharma, H.S.; Pontén, E.; Gordh, T.; Eriksson, P.; Fredriksson, A.; Sharma, A. Propofol promotes blood-brain barrier breakdown and heat shock protein (HSP 72 kd) activation in the developing mouse brain. CNS Neurol. Disord. Drug Targets 2014, 13, 1595–1603. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, B.; Wei, Q.; Su, X.; Li, X.; Qin, S.; Huang, W. The Protective Effects of Benzbromarone Against Propofol-Induced Inflammation and Injury in Human Brain Microvascular Endothelial Cells (HBMVECs). Neurotox. Res. 2021, 39, 1449–1458. [Google Scholar] [CrossRef]
- Monnaert, V.; Tilloy, S.; Bricout, H.; Fenart, L.; Cecchelli, R.; Monflier, E. Behavior of α-, β-, and γ-cyclodextrins and their derivatives on an in vitro model of blood-brain barrier. J. Pharmacol. Exp. Ther. 2004, 310, 745–751. [Google Scholar] [CrossRef]
- Roka, E.; Ujhelyi, Z.; Deli, M.; Bocsik, A.; Fenyvesi, E.; Szente, L.; Fenyvesi, F.; Vecsernyés, M.; Váradi, J.; Fehér, P.; et al. Evaluation of the Cytotoxicity of α-Cyclodextrin Derivatives on the Caco-2 Cell Line and Human Erythrocytes. Molecules 2015, 20, 20269–20285. [Google Scholar] [CrossRef]
- Kiss, T.; Fenyvesi, F.; Bácskay, I.; Váradi, J.; Iványi, R.; Szente, L.; Tósaki, A.; Vecsernyés, M. Evaluation of the cytotoxicity of β-cyclodextrin derivatives: Evidence for the role of cholesterol extraction. Eur. J. Pharm. Sci. 2010, 40, 376–380. [Google Scholar] [CrossRef]
- Gould, S.; Scott, R.C. 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): A toxicology review. Food Chem. Toxicol. 2005, 43, 1451–1459. [Google Scholar] [CrossRef]
- Loftsson, T.; Duchêne, D. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 2007, 329, 1–11. [Google Scholar] [CrossRef]
- Shityakov, S.; Salmas, R.E.; Salvador, E.; Roewer, N.; Broscheit, J.; Förster, C. Evaluation of the potential toxicity of un-modified and modified cyclodextrins on murine blood-brain barrier eKisndothelial cells. J. Toxico-Log. Sci. 2016, 41, 175–184. [Google Scholar] [CrossRef]
- Shityakov, S.; Roewer, N.; Broscheit, J.-A.; Förster, C. In silico models for nanotoxicity evaluation and prediction at the blood-brain barrier level: A mini-review. Comput. Toxicol. 2017, 2, 20–27. [Google Scholar] [CrossRef]
- Breitkreuz-Korff, O. Charakterisierung und Modulation von Claudinen zur Öffnung der Blut-Hirn- Schranke. Master’s Thesis, Freie Universität Berlin, Berlin, Germany, 2018; pp. 66–68. [Google Scholar] [CrossRef]
- Appelt-Menzel, A. Etablierung und Qualifizierung eines Humanen Blut- Hirn-Schranken-Modells unter Ver-wendung von Induziert Pluripotenten und Multipotenten Stammzellen. Master’s Thesis, Julius-Maximilians-Universität Würzburg, Würzburg, Germany, 2016; pp. 85–86. [Google Scholar]
- Calabrò, M.; Tommasini, S.; Donato, P.; Stancanelli, R.; Raneri, D.; Catania, S.; Costa, C.; Villari, V.; Ficarra, P. The rutin/β-cyclodextrin interactions in fully aqueous solution: Spectroscopic studies and biological assays. J. Pharm. Biomed. Anal. 2005, 36, 1019–1027. [Google Scholar] [CrossRef]
- Egan, T.D.; Kern, S.E.; Johnson, K.B.; Pace, N.L. The Pharmacokinetics and Pharmacodynamics of Propofol in a Modified Cyclodextrin Formulation (Captisol??) Versus Propofol in a Lipid Formulation (Diprivan??): An Electroencephalographic and Hemodynamic Study in a Porcine Model. Obstet. Anesthesia Dig. 2003, 97, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Mcintosh, M.P.; Rajewski, R.A. Comparative Canine Pharmacokinetics–Pharmacodynamics of Fospropofol Disodium Injection, Propofol Eemulsion, and Cyclodextrin-Enabled Propofol Solution Following Bolus Parenteral Administration. J. Pharm. Sci. 2012, 101, 3547–3552. [Google Scholar] [CrossRef]
- Adam, J.M.; Bennett, D.J.; Bom, A.; Clark, J.K.; Feilden, H.; Hutchinson, E.J.; Zhang, M.Q. Cyclodextrin-Derived Host Molecules as Reversal Agents for the Neuromus-cular Blocker Rocuronium Bromide: Synthesis and Structure−Activity Relationships. J. Med. Chem. 2002, 45, 1806–1816. [Google Scholar] [CrossRef] [PubMed]
- Wallentine, C.B.; Shimode, N.; Egan, T.D.; Pace, N.L. Propofol in a Modified Cyclodextrin Formulation. Obstet. Anesthesia Dig. 2011, 113, 738–741. [Google Scholar] [CrossRef] [PubMed]
- Shityakov, S.; Salmas, R.E.; Durdagi, S.; Roewer, N.; Förster, C.; Broscheit, J. Solubility profiles, hydration and desolva-tion of curcumin complexed with γ- cyclodextrin and hydroxypropyl-γ-cyclodextrin. J. Mol. Struct. 2017, 1134, 91–98. [Google Scholar] [CrossRef]
- Tsuchiya, M.; Asada, A.; Arita, K.; Utsumi, T.; Yoshida, T.; Sato, E.F.; Utsumi, K.; Inoue, M. Induction and mechanism of apoptotic cell death by propofol in HL-60 cells. Acta Anaesthesiol. Scand. 2002, 46, 1068–1074. [Google Scholar] [CrossRef] [PubMed]
Propofol | Na-Propofolate/HPβCD | ∆ δ | |
---|---|---|---|
OH of propofol | s 7.96 | ||
H-2 of propofol (C) | d 6.95 | d 7.12 | +0.17 |
H-3 of propofol (D) | dd 6.77 | dd 6.91 | +0.14 |
H-4 of propofol (B) | m 3.29 | m 3.33 | +0.04 |
H-5 of propofol (A) | d 1.15 | d 1.31 | +0.16 |
Time (h) | |||||
---|---|---|---|---|---|
0 | 1 | 2 | 4 | 24 | |
Propofol Amount (%) | |||||
Propofol (Lipuro) | 100 | 90.657 | 83.871 | 80.991 | 82.701 |
Na-propofolat- HPβCD | 100 | 89.011 | 83.661 | 76.966 | 77.433 |
Propofol-HPβCD | 100 | 94.128 | 91.122 | 79.309 | 81.408 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilhelms, B.; Broscheit, J.; Shityakov, S. Chemical Analysis and Molecular Modelling of Cyclodextrin-Formulated Propofol and Its Sodium Salt to Improve Drug Solubility, Stability and Pharmacokinetics (Cytogenotoxicity). Pharmaceuticals 2023, 16, 667. https://doi.org/10.3390/ph16050667
Wilhelms B, Broscheit J, Shityakov S. Chemical Analysis and Molecular Modelling of Cyclodextrin-Formulated Propofol and Its Sodium Salt to Improve Drug Solubility, Stability and Pharmacokinetics (Cytogenotoxicity). Pharmaceuticals. 2023; 16(5):667. https://doi.org/10.3390/ph16050667
Chicago/Turabian StyleWilhelms, Benedikt, Jens Broscheit, and Sergey Shityakov. 2023. "Chemical Analysis and Molecular Modelling of Cyclodextrin-Formulated Propofol and Its Sodium Salt to Improve Drug Solubility, Stability and Pharmacokinetics (Cytogenotoxicity)" Pharmaceuticals 16, no. 5: 667. https://doi.org/10.3390/ph16050667
APA StyleWilhelms, B., Broscheit, J., & Shityakov, S. (2023). Chemical Analysis and Molecular Modelling of Cyclodextrin-Formulated Propofol and Its Sodium Salt to Improve Drug Solubility, Stability and Pharmacokinetics (Cytogenotoxicity). Pharmaceuticals, 16(5), 667. https://doi.org/10.3390/ph16050667