Antioxidant and Anti-Glycation Potential of H2 Receptor Antagonists—In Vitro Studies and a Systematic Literature Review
Abstract
:1. Introduction
2. Results
2.1. Systematic Review
2.2. The Effect of H2 Inhibitors on Protein Glycoxidation, Glycation, and Oxidative Damage in Glucose (Glc)-Induced Albumin Glycation
2.3. The Effect of H2 Inhibitors on Protein Glycoxidation, Glycation, and Oxidative Damage in Fructose (Fru)-Induced Albumin Glycation
2.4. The Effect of H2 Inhibitors on Protein Glycoxidation, Glycation, and Oxidative Damage in Galactose (Gal)-Induced Albumin Glycation
2.5. The Effect of H2 Inhibitors on Protein Glycoxidation, Glycation, and Oxidative Damage in Ribose (Rib)-Induced Albumin Glycation
2.6. The Effect of H2 Inhibitors on Protein Glycoxidation, Glycation, and Oxidative Damage in Glyoxal (GO)-Induced Albumin Glycation
2.7. The Effect of H2 Inhibitors on Protein Glycoxidation, Glycation, and Oxidative Damage in Methylglyoxal (MGO)-Induced Albumin Glycation
2.8. Antioxidant Activity of H2 Inhibitors
2.9. Molecular Docking Analysis
3. Discussion
4. Materials and Methods
4.1. Systematic Review
4.2. Reagents and Equipment
4.3. Bovine Serum Albumin (BSA)
4.3.1. Protein Glycoxidation Products: Dityrosine (DT) and N-formylkynurenine (NFK)
4.3.2. Protein Glycation Products: Amadori products and Advanced Glycation End-Products (AGE)
4.3.3. Protein Oxidation Products: Protein Carbonyls (PCs) and Total Thiols (TTs)
4.4. Antioxidant Activity of H2 Inhibitors
4.4.1. •O2− Scavenging Assay
4.4.2. •OH Scavenging Assay
4.4.3. •NO Scavenging Assay
4.4.4. H2O2 Scavenging Assay
4.4.5. 2,2’-Azino-bis(3-ethylbenzothiazoline)-6-Sulfonic Acid (ABTS) Scavenging Assay
4.4.6. 2,2-Diphenyl-1-picrylhydrazyl Radical (DPPH) Scavenging Assay
4.4.7. Ferric Ion Chelating (FIC) Assay
4.5. Molecular Docking
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bertino, L.; Guarneri, F.; Cannavò, S.P.; Casciaro, M.; Pioggia, G.; Gangemi, S. Oxidative Stress and Atopic Dermatitis. Antioxidants 2020, 9, 196. [Google Scholar] [CrossRef] [PubMed]
- Rao, Q.; Jiang, X.; Li, Y.; Samiwala, M.; Labuza, T.P. Can Glycation Reduce Food Allergenicity? J. Agric. Food Chem. 2018, 66, 4295–4299. [Google Scholar] [CrossRef] [PubMed]
- Krisanits, B.A.; Woods, P.; Nogueira, L.M.; Woolfork, D.D.; Lloyd, C.E.; Baldwin, A.; Frye, C.C.; Peterson, K.D.; Cosh, S.D.; Guo, Q.-J.; et al. Non-Enzymatic Glycoxidation Linked with Nutrition Enhances the Tumorigenic Capacity of Prostate Cancer Epithelia through AGE Mediated Activation of RAGE in Cancer Associated Fibroblasts. Transl. Oncol. 2022, 17, 101350. [Google Scholar] [CrossRef] [PubMed]
- Vistoli, G.; De Maddis, D.; Cipak, A.; Zarkovic, N.; Carini, M.; Aldini, G. Advanced Glycoxidation and Lipoxidation End Products (AGEs and ALEs): An Overview of Their Mechanisms of Formation. Free. Radic. Res. 2013, 47, 3–27. [Google Scholar] [CrossRef]
- Arena, S.; Salzano, A.M.; Renzone, G.; D’Ambrosio, C.; Scaloni, A. Non-Enzymatic Glycation and Glycoxidation Protein Products in Foods and Diseases: An Interconnected, Complex Scenario Fully Open to Innovative Proteomic Studies. Mass. Spectrom. Rev. 2014, 33, 49–77. [Google Scholar] [CrossRef]
- Lugrin, J.; Rosenblatt-Velin, N.; Parapanov, R.; Liaudet, L. The Role of Oxidative Stress during Inflammatory Processes. Biol. Chem. 2014, 395, 203–230. [Google Scholar] [CrossRef]
- Tan, A.L.Y.; Forbes, J.M.; Cooper, M.E. AGE, RAGE, and ROS in Diabetic Nephropathy. Semin. Nephrol. 2007, 27, 130–143. [Google Scholar] [CrossRef]
- Coughlan, M.T.; Mibus, A.L.; Forbes, J.M. Oxidative Stress and Advanced Glycation in Diabetic Nephropathy. Ann. N. Y Acad. Sci. 2008, 1126, 190–193. [Google Scholar] [CrossRef]
- Piwowar, A.; Knapik-Kordecka, M.; Szczecínska, J.; Warwas, M. Plasma Glycooxidation Protein Products in Type 2 Diabetic Patients with Nephropathy. Diabetes Metab. Res. Rev. 2008, 24, 549–553. [Google Scholar] [CrossRef]
- Vighi, G.; Marcucci, F.; Sensi, L.; Di Cara, G.; Frati, F. Allergy and the Gastrointestinal System. Clin. Exp. Immunol. 2008, 153 (Suppl. 1), 3–6. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, D.; Biswas, K.; Bandyopadhyay, U.; Reiter, R.J.; Banerjee, R.K. Melatonin Protects against Stress-Induced Gastric Lesions by Scavenging the Hydroxyl Radical. J. Pineal Res. 2000, 29, 143–151. [Google Scholar] [CrossRef]
- Sergeev, P.V.; Chukaev, S.A. The Antioxidant Properties of Histamine Receptor Blockers: A Comparative Study in a Model System. Bull. Exp. Biol. Med. 1996, 122, 1202–1204. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, W.K.; Zhang, Z.; Wang, P.; Lin, X.Q.; Feng, J.; Fu, S.C.; He, G.H. Cardioprotective Effect of Histamine H2 Antagonists in Congestive Heart Failure. Medicine 2018, 97, e0409. [Google Scholar] [CrossRef] [PubMed]
- Fedorowicz, Z.; van Zuuren, E.J.; Hu, N. Histamine H2-Receptor Antagonists for Urticaria. Cochrane Database Syst. Rev. 2012, 2012, CD008596. [Google Scholar] [CrossRef]
- Moscati, R.M.; Moore, G.P. Comparison of Cimetidine and Diphenhydramine in the Treatment of Acute Urticaria. Ann. Emerg. Med. 1990, 19, 12–15. [Google Scholar] [CrossRef]
- Monczor, F.; Fernandez, N. Current Knowledge and Perspectives on Histamine H1 and H2 Receptor Pharmacology: Functional Selectivity, Receptor Crosstalk, and Repositioning of Classic Histaminergic Ligands. Mol. Pharmacol. 2016, 90, 640–648. [Google Scholar] [CrossRef]
- Katz, P.O.; Tutuian, R. Histamine Receptor Antagonists, Proton Pump Inhibitors and Their Combination in the Treatment of Gastro-Oesophageal Reflux Disease. Best. Pract. Res. Clin. Gastroenterol. 2001, 15, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Ohsawa, T.; Hirata, W.; Higichi, S. Effects of Three H2-Receptor Antagonists (Cimetidine, Famotidine, Ran0itidine) on Serum Gastrin Level. Int. J. Clin. Pharmacol. Res. 2002, 22, 29–35. [Google Scholar]
- Ahmadi, A.; Ebrahimzadeh, M.A.; Ahmad-Ashrafi, S.; Karami, M.; Mahdavi, M.R.; Saravi, S.S.S. Hepatoprotective, Antinociceptive and Antioxidant Activities of Cimetidine, Ranitidine and Famotidine as Histamine H2 Receptor Antagonists. Fundam. Clin. Pharmacol. 2011, 25, 72–79. [Google Scholar] [CrossRef]
- Jośko, J.; Drab, J.; Nowak, P.; Szkilnik, R.; Boroń, D.; Elwart, M.; Konecki, J.; Brus, H.; Brus, R. Effect of Chlorpheniramine and Cimetidine, a Histamine H1 and H2 Antagonist on (3H)Glucose Uptake in the Brain of Adult Rats Lesioned with 5,7-Dihydroxytryptamine as Neonates. Ann. Acad. Med. Silesiensis 2012, 66, 13–19. [Google Scholar]
- Mikawa, K.; Akamatsu, H.; Nishina, K.; Shiga, M.; Maekawa, N.; Obara, H.; Niwa, Y. The Effects of Cimetidine, Ranitidine, and Famotidine on Human Neutrophil Functions. Anesth. Analg. 1999, 89, 218–224. [Google Scholar] [CrossRef]
- Okajima, K.; Murakami, K.; Liu, W.; Uchiba, M. Inhibition of Neutrophil Activation by Ranitidine Contributes to Prevent Stress-Induced Gastric Mucosal Injury in Rats. Crit. Care Med. 2000, 28, 2858–2865. [Google Scholar] [CrossRef] [PubMed]
- Ching, T.L.; Haenen, G.R.M.M.; Bast, A. Cimetidine and Other H2 Receptor Antagonists as Powerful Hydroxyl Radical Scavengers. Chem. Biol. Interact. 1993, 86, 119–127. [Google Scholar] [CrossRef]
- Lapenna, D.; De Gioia, S.; Mezzetti, A.; Grossi, L.; Festi, D.; Marzio, L.; Cuccurullo, F. H2-Receptor Antagonists Are Scavengers of Oxygen Radicals. Eur. J. Clin. Investig. 1994, 24, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Okajima, K.; Harada, N.; Uchiba, M. Ranitidine Reduces Ischemia/Reperfusion-Induced Liver Injury in Rats by Inhibiting Neutrophil Activation. J. Pharmacol. Exp. Ther. 2002, 301, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Dzoyem, J.P.; Kuete, V.; Eloff, J.N. Biochemical Parameters in Toxicological Studies in Africa: Significance, Principle of Methods, Data Interpretation, and Use in Plant Screenings. In Toxicological Survey of African Medicinal Plants; Elsevier: Amsterdam, The Netherlands, 2014; pp. 659–715. [Google Scholar] [CrossRef]
- Yeboah, F.K.; Alli, I.; Yaylayan, V.A. Reactivities of D-Glucose and D-Fructose during Glycation of Bovine Serum Albumin. J. Agric. Food Chem. 1999, 47, 3164–3172. [Google Scholar] [CrossRef]
- Montgomery, H.; Tanaka, K.; Belgacem, O. Glycation Pattern of Peptides Condensed with Maltose, Lactose and Glucose Determined by Ultraviolet Matrix-Assisted Laser Desorption/Ionization Tandem Mass Spectrometry. Rapid Commun. Mass. Spectrom. 2010, 24, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Zieniewska, I.; Zalewska, A.; Zendzian-Piotrowska, M.; Ładny, J.R.; Maciejczyk, M. Antioxidant and Antiglycation Properties of Seventeen Fruit Teas Obtained from One Manufacturer. Appl. Sci. 2020, 10, 5195. [Google Scholar] [CrossRef]
- Sadowska-Bartosz, I.; Galiniak, S.; Bartosz, G. Kinetics of Glycoxidation of Bovine Serum Albumin by Glucose, Fructose and Ribose and Its Prevention by Food Components. Molecules 2014, 19, 18828–18849. [Google Scholar] [CrossRef]
- Sadowska-Bartosz, I.; Galiniak, S.; Bartosz, G. Kinetics of Glycoxidation of Bovine Serum Albumin by Methylglyoxal and Glyoxal and Its Prevention by Various Compounds. Molecules 2014, 19, 4880–4896. [Google Scholar] [CrossRef]
- Sharma, S.D.; Pandey, B.N.; Mishra, K.P.; Sivakami, S. Amadori Product and Age Formation during Nonenzymatic Glycosylation of Bovine Serum Albumin in Vitro. J. Biochem. Mol. Biol. Biophys. 2002, 6, 233–242. [Google Scholar] [CrossRef]
- Park, Y.K.; Ha, H.H.; Yu, Y.H.; Kim, B.J.; Bang, H.J.; Lee, H.; Jung, S.C. The Photocatalytic Destruction of Cimetidine Using Microwave-Assisted TiO2 Photocatalysts Hybrid System. J. Hazard. Mater. 2020, 391, 122568. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, R.; Tamaki, S.; Kawakami, F.; Maekawa, T.; Ichikawa, T. Histamine H2-Receptor Antagonists Improve Non-Steroidal Anti-Inflammatory Drug-Induced Intestinal Dysbiosis. Int. J. Mol. Sci. 2020, 21, 8166. [Google Scholar] [CrossRef] [PubMed]
- Fanali, G.; di Masi, A.; Trezza, V.; Marino, M.; Fasano, M.; Ascenzi, P. Human Serum Albumin: From Bench to Bedside. Mol. Asp. Med. 2012, 33, 209–290. [Google Scholar] [CrossRef] [PubMed]
- Harm, S.; Schildböck, C.; Hartmann, J. Removal of Stabilizers from Human Serum Albumin by Adsorbents and Dialysis Used in Blood Purification. PLoS ONE 2018, 13, e0191741. [Google Scholar] [CrossRef]
- Leszek, J.; Gamian, A.; Kiejna, A. Badania Nad Procesami Glikacji w Chorobie Alzheimera. Psychiatr. Pol. 2002, 36, 199–205. [Google Scholar]
- Drygalski, K.; Fereniec, E.; Zalewska, A.; Krętowski, A.; Żendzian-Piotrowska, M.; Maciejczyk, M. Phloroglucinol Prevents Albumin Glycation as Well as Diminishes ROS Production, Glycooxidative Damage, Nitrosative Stress and Inflammation in Hepatocytes Treated with High Glucose. Biomed. Pharmacother. 2021, 142, 111958. [Google Scholar] [CrossRef] [PubMed]
- Angula, K.T.; Legoabe, L.J.; Jordaan, A.; Warner, D.F.; Beteck, R.M. Investigation of Quinolone-Tethered Aminoguanidine as Novel Antibacterial Agents. Arch. Pharm. 2022, 355, e2200172. [Google Scholar] [CrossRef] [PubMed]
- Lúcio, M.; Nunes, C.; Gaspar, D.; Ferreira, H.; Lima, J.L.F.C.; Reis, S. Antioxidant Activity of Vitamin E and Trolox: Understanding of the Factors That Govern Lipid Peroxidation Studies in Vitro. Food Biophys. 2009, 4, 312–320. [Google Scholar] [CrossRef]
- Du, Y.; Smith, M.A.; Miller, C.M.; Kern, T.S. Diabetes-Induced Nitrative Stress in the Retina, and Correction by Aminoguanidine. J. Neurochem. 2002, 80, 771–779. [Google Scholar] [CrossRef]
- Schimchowitsch, S.; Cassel, J.C. Polyamine and Aminoguanidine Treatments to Promote Structural and Functional Recovery in the Adult Mammalian Brain after Injury: A Brief Literature Review and Preliminary Data about Their Combined Administration. J. Physiol. Paris. 2006, 99, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.W. Perspectives in Drug Development and Clinical Pharmacology: The Discovery of Histamine H1 and H2 Antagonists. Clin. Pharmacol. Drug. Dev. 2016, 5, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Lee, S.K. Gastroesophageal Reflux Disease. Korean J. Gastroenterol. 2019, 73, 70–76. [Google Scholar] [CrossRef]
- Ennis, M.; Tiligada, K. Histamine Receptors and COVID-19. Inflamm. Res. 2021, 70, 67–75. [Google Scholar] [CrossRef]
- Lambat, Z.; Limson, J.L.; Daya, S. Cimetidine: Antioxidant and Metal-Binding Properties. J. Pharm. Pharmacol. 2002, 54, 1681–1686. [Google Scholar] [CrossRef]
- Salimi, A.; Razian, M.; Pourahmad, J. Analysis of Toxicity Effects of Buspirone, Cetirizine and Olanzapine on Human Blood Lymphocytes: In Vitro Model. Curr. Clin. Pharmacol. 2018, 13, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Masters, J.C.; Nickens, D.J.; Xuan, D.; Shazer, R.L.; Amantea, M. Clinical Toxicity of Antibody Drug Conjugates: A Meta-Analysis of Payloads. Investig. New Drugs 2018, 36, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Segawa, Y.; Omata, T.; Abe, T.; Tsuzuike, N.; Itokazu, Y.; Yoshida, K.; Ueda, I. Effect of a New Non-Steroidal Anti-Inflammatory Combination of a Histamine H2 Antagonist and Indometacin on Gastroduodenal Mucosal Membrane in Rat. Arzneim.-Forsch. /Drug Res. 1992, 42, 1232–1235. [Google Scholar]
- Yokoo, H.; Yamamoto, E.; Masada, S.; Uchiyama, N.; Tsuji, G.; Hakamatsuka, T.; Demizu, Y.; Izutsu, K.I.; Goda, Y. N-Nitrosodimethylamine (NDMA) Formation from Ranitidine Impurities: Possible Root Causes of the Presence of NDMA in Ranitidine Hydrochloride. Chem. Pharm. Bull. 2021, 69, 872–876. [Google Scholar] [CrossRef]
- Lv, J.; Wang, L.; Li, Y. Characterization of N-Nitrosodimethylamine Formation from the Ozonation of Ranitidine. J. Environ. Sci. 2017, 58, 116–126. [Google Scholar] [CrossRef]
- McGwin, G. The Association between Ranitidine Use and Gastrointestinal Cancers. Cancers 2021, 13, 24. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.D.; Selbes, M.; Zeng, C.; Zhong, R.; Karanfil, T. Formation Mechanism of NDMA from Ranitidine, Trimethylamine, and Other Tertiary Amines during Chloramination: A Computational Study. Environ. Sci. Technol. 2014, 48, 8653–8663. [Google Scholar] [CrossRef] [PubMed]
- Harmon, P. Ranitidine: A Proposed Mechanistic Rationale for NDMA Formation and a Potential Control Strategy. J. Pharm. Sci. 2022, 112, 1220–1224. [Google Scholar] [CrossRef]
- Alizadeh, M.; Jalal, M.; Hamed, K.; Saber, A.; Kheirouri, S.; Fard Tabrizi, F.P.; Kamari, N. Recent Updates on Anti-Inflammatory and Antimicrobial Effects of Furan Natural Derivatives. J. Inflamm. Res. 2020, 13, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Akinrinde, A.S.; Fapuro, J.; Soetan, K.O. Zinc and Ascorbic Acid Treatment Alleviates Systemic Inflammation and Gastrointestinal and Renal Oxidative Stress Induced by Sodium Azide in Rats. Beni-Suef Univ. J. Basic. Appl. Sci. 2021, 10, 17. [Google Scholar] [CrossRef]
- Sadowska-Bartosz, I.; Stefaniuk, I.; Galiniak, S.; Bartosz, G. Glycation of Bovine Serum Albumin by Ascorbate in Vitro: Possible Contribution of the Ascorbyl Radical? Redox Biol. 2015, 6, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Żurawska-Płaksej, E.; Rorbach-Dolata, A.; Wiglusz, K.; Piwowar, A. The Effect of Glycation on Bovine Serum Albumin Conformation and Ligand Binding Properties with Regard to Gliclazide. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 189, 625–633. [Google Scholar] [CrossRef]
- Perez Gutierrez, R.M. Inhibition of Advanced Glycation End-Product Formation by Origanum Majorana L. in Vitro and in Streptozotocin-Induced Diabetic Rats. Evid.-Based Complement. Altern. Med. 2012, 2012, 598638. [Google Scholar] [CrossRef]
- Zhou, Q.; Ruan, Z.R.; Yuan, H.; Jiang, B.; Xu, D.H. Pharmacokinetics and Bioequivalence of Ranitidine and Bismuth Derived from Two Compound Preparations. World J. Gastroenterol. 2006, 12, 2742–2748. [Google Scholar] [CrossRef]
- Zhu, P.; Pan, X.; Shen, Y.; Huang, X.; Yu, F.; Wu, D.; Feng, Q.; Zhou, J.; Li, X. Biodegradation and Potential Effect of Ranitidine during Aerobic Composting of Human Feces. Chemosphere 2022, 296, 134062. [Google Scholar] [CrossRef]
- Sadowska-Bartosz, I.; Bartosz, G. Ascorbic Acid and Protein Glycation in Vitro. Chem. Biol. Interact. 2015, 240, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Pawlukianiec, C.; Gryciuk, M.E.; Mil, K.M.; Żendzian-Piotrowska, M.; Zalewska, A.; Maciejczyk, M. A New Insight into Meloxicam: Assessment of Antioxidant and Anti-Glycating Activity in in Vitro Studies. Pharmaceuticals 2020, 13, 240. [Google Scholar] [CrossRef] [PubMed]
- Mil, K.M.; Gryciuk, M.E.; Pawlukianiec, C.; Żendzian-Piotrowska, M.; Ładny, J.R.; Zalewska, A.; Maciejczyk, M. Pleiotropic Properties of Valsartan: Do They Result from the Antiglycooxidant Activity? Literature Review and In Vitro Study. Oxid. Med. Cell. Longev. 2021, 2021, 5575545. [Google Scholar] [CrossRef] [PubMed]
- Nesterowicz, M.; Żendzian-Piotrowska, M.; Ładny, J.R.; Zalewska, A.; Maciejczyk, M. Antiglycoxidative Properties of Amantadine–a Systematic Review and Comprehensive in Vitro Study. J. Enzym. Inhib. Med. Chem. 2023, 38, 138–155. [Google Scholar] [CrossRef]
- Nesterowicz, M.; Lauko, K.K.; Żendzian-Piotrowska, M.; Ładny, J.R.; Zalewska, A.; Maciejczyk, M. Agomelatine’s antiglycoxidative action—In vitro and in silico research and systematic literature review. Front. Psychiatry 2023, 14, 1164459. [Google Scholar] [CrossRef]
- Reznick, A.Z.; Packer, L. Oxidative Damage to Proteins: Spectrophotometric Method for Carbonyl Assay. Methods Enzymol. 1994, 233, 357–363. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue Sulfhydryl Groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Li, X. Improved Pyrogallol Autoxidation Method: A Reliable and Cheap Superoxide-Scavenging Assay Suitable for All Antioxidants. J. Agric. Food Chem. 2012, 60, 6418–6424. [Google Scholar] [CrossRef]
- Su, X.Y.; Wang, Z.Y.; Liu, J.R. In Vitro and in Vivo Antioxidant Activity of Pinus Koraiensis Seed Extract Containing Phenolic Compounds. Food Chem. 2009, 117, 681–686. [Google Scholar] [CrossRef]
- Nitha, B.; De, S.; Adhikari, S.K.; Devasagayam, T.P.A.; Janardhanan, K.K. Evaluation of Free Radical Scavenging Activity of Morel Mushroom, Morchella Esculenta Mycelia: A Potential Source of Therapeutically Useful Antioxidants. Pharm. Biol. 2010, 48, 453–460. [Google Scholar] [CrossRef]
- Kwon, S.H.; Wang, Z.; Hwang, S.H.; Kang, Y.H.; Lee, J.Y.; Lim, S.S. Comprehensive Evaluation of the Antioxidant Capacity of Perilla Frutescens Leaves Extract and Isolation of Free Radical Scavengers Using Step-Wise HSCCC Guided by DPPH-HPLC. Int. J. Food Prop. 2017, 20, 921–934. [Google Scholar] [CrossRef]
- Wang, J.; Li, P.; Li, B.; Guo, Z.; Kennelly, E.J.; Long, C. Bioactivities of Compounds from Elephantopus Scaber, an Ethnomedicinal Plant from Southwest China. Evid.-Based Complement Altern. Med. 2014, 2014, 569594. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Martell, A.E.; Motekaitis, R.J.; Chen, D.; Hancock, R.D.; McManus, D. Selection of New Fe(III)/Fe(II) Chelating Agents as Catalysts for the Oxidation of Hydrogen Sulfide to Sulfur by Air. Can. J. Chem. 1996, 74, 1872–1879. [Google Scholar] [CrossRef]
- Salmaso, V.; Moro, S. Bridging Molecular Docking to Molecular Dynamics in Exploring Ligand-Protein Recognition Process: An Overview. Front. Pharmacol. 2018, 9, 923. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Articles in English | Articles in other languages |
Articles describing the antioxidant and antiglycemic properties of ranitidine, cimetidine, and famotidine | Articles not describing the antioxidant and antiglycemic properties of ranitidine, cimetidine, and famotidine |
Research articles (in vitro, ex vivo, in vivo, and clinical studies), meta-analyses, and systematic literature reviews | Case studies and abstracts |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biedrzycki, G.; Wolszczak-Biedrzycka, B.; Dorf, J.; Michalak, D.; Żendzian-Piotrowska, M.; Zalewska, A.; Maciejczyk, M. Antioxidant and Anti-Glycation Potential of H2 Receptor Antagonists—In Vitro Studies and a Systematic Literature Review. Pharmaceuticals 2023, 16, 1273. https://doi.org/10.3390/ph16091273
Biedrzycki G, Wolszczak-Biedrzycka B, Dorf J, Michalak D, Żendzian-Piotrowska M, Zalewska A, Maciejczyk M. Antioxidant and Anti-Glycation Potential of H2 Receptor Antagonists—In Vitro Studies and a Systematic Literature Review. Pharmaceuticals. 2023; 16(9):1273. https://doi.org/10.3390/ph16091273
Chicago/Turabian StyleBiedrzycki, Grzegorz, Blanka Wolszczak-Biedrzycka, Justyna Dorf, Daniel Michalak, Małgorzata Żendzian-Piotrowska, Anna Zalewska, and Mateusz Maciejczyk. 2023. "Antioxidant and Anti-Glycation Potential of H2 Receptor Antagonists—In Vitro Studies and a Systematic Literature Review" Pharmaceuticals 16, no. 9: 1273. https://doi.org/10.3390/ph16091273
APA StyleBiedrzycki, G., Wolszczak-Biedrzycka, B., Dorf, J., Michalak, D., Żendzian-Piotrowska, M., Zalewska, A., & Maciejczyk, M. (2023). Antioxidant and Anti-Glycation Potential of H2 Receptor Antagonists—In Vitro Studies and a Systematic Literature Review. Pharmaceuticals, 16(9), 1273. https://doi.org/10.3390/ph16091273