Corema album Berry Juice as a Protective Agent Against Neurodegeneration
Abstract
:1. Introduction
2. Results
2.1. Determination of Total Phenolic Compounds
2.2. Determination of Flavonoids
2.3. Identification of Phenolic Compounds in Juice
2.4. Radical Scavenging Capability In Vitro
2.4.1. DPPH and ABTS Radical Scavenging Activities
2.4.2. Hydroxyl Scavenging Activity
2.4.3. Xanthine Oxidase Inhibition Assay
2.5. Neuroprotective Capacity: In Vitro Enzymatic Inhibition Capacity
2.5.1. AChE Inhibition Assay
2.5.2. MAO-A and MAO-B Inhibition Assay
2.6. Intracellular ROS Production
2.7. Cell Viability: Parkinson’s Disease and Alzheimer’s Disease Models
3. Discussion
4. Materials and Methods
4.1. Plant Material and Extraction of Juice from Berries of C. album
4.2. Reagents
4.3. Determination of Total Phenolic Content
4.4. Determination of Total Flavonoids
4.5. Analytical Instrumentation
4.6. In Vitro Radical Scavenging Assays
4.6.1. DPPH Scavenging Assay
4.6.2. ABTS Assay
4.6.3. Xanthine/Xanthine Oxidase Assay
4.6.4. Hydroxyl Radical Scavenging Capacity
4.7. Neuroprotective Effect on Enzymes In Vitro
4.7.1. MAO-A and MAO-B Inhibition Assay
4.7.2. Acetylcholinesterase (AChE) Inhibition Assay
4.8. Cellular Assays
4.8.1. Cell Culture and Differentiation
4.8.2. Intracellular ROS Production Analysis
4.8.3. Cytotoxic and Neuroprotective Effect Assay
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, D.; Chen, Y.; Ye, B.; Guo, W.; Wang, D.; He, J. Natural Products for the Treatment of Neurodegenerative Diseases. Phytomedicine 2023, 121, 155101. [Google Scholar] [CrossRef] [PubMed]
- Moreira, P.I.; Smith, M.A.; Zhu, X.; Nunomura, A.; Castellani, R.J.; Perry, G. Oxidative Stress and Neurodegeneration. Ann. N. Y. Acad. Sci. 2005, 1043, 545–552. [Google Scholar] [CrossRef]
- Grabska-Kobyłecka, I.; Szpakowski, P.; Król, A.; Książek-Winiarek, D.; Kobyłecki, A.; Głąbiński, A.; Nowak, D. Polyphenols and their Impact on the Prevention of Neurodegenerative Diseases and Development. Nutrients 2023, 15, 3454. [Google Scholar] [CrossRef]
- Małkiewicz, M.A.; Szarmach, A.; Sabisz, A.; Cubała, W.J.; Szurowska, E.; Winklewski, P.J. Blood-Brain Barrier Permeability and Physical Exercise. J. Neuroinflamm. 2019, 16, 15. [Google Scholar] [CrossRef] [PubMed]
- Aquilano, K.; Baldelli, S.; Rotilio, G.; Ciriolo, M.R. Role of nitric oxide synthases in Parkinson’s disease: A review on the antioxidant and anti-inflammatory activity of polyphenols. Neurochem. Res. 2008, 33, 2416–2426. [Google Scholar] [CrossRef] [PubMed]
- Crews, W.D., Jr.; Harrison, D.W.; Griffin, M.L.; Addison, K.; Yount, A.M.; Giovenco, M.A.; Hazell, J. A Double-Blinded, Placebo-Controlled, Randomized Trial of the Neuropsychologic Efficacy of Cranberry Juice in a Sample of Cognitively Intact Older Adults: Pilot Study Findings. J. Altern. Complement. Med. 2005, 11, 305–309. [Google Scholar] [CrossRef]
- Bensalem, J.; Dudonné, S.; Etchamendy, N.; Pellay, H.; Amadieu, C.; Gaudout, D.; Dubreuil, S.; Paradis, M.; Pomerleau, S.; Capuron, L. Polyphenols from Grape and Blueberry Improve Episodic Memory in Healthy Elderly with Lower Level of Memory Performance: A Bicentric Double-Blind, Randomized, Placebo-Controlled Clinical Study. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 996–1007. [Google Scholar] [CrossRef]
- Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The Therapeutic Potential of Resveratrol: A Review of Clinical Trials. NPJ Precis. Oncol. 2017, 1, 35. [Google Scholar] [CrossRef] [PubMed]
- Bellavite, P. Neuroprotective Potentials of Flavonoids: Experimental Studies and Mechanisms of Action. Antioxidants 2023, 12, 280. [Google Scholar] [CrossRef]
- Hasan, S.; Khatri, N.; Rahman, Z.N.; Menezes, A.A.; Martini, J.; Shehjar, F.; Mujeeb, N.; Shah, Z.A. Neuroprotective Potential of Flavonoids in Brain Disorders. Brain Sci. 2023, 13, 1258. [Google Scholar] [CrossRef]
- Aslam, H.; Green, J.; Jacka, F.N.; Collier, F.; Berk, M.; Pasco, J.; Dawson, S.L. Fermented Foods, the Gut and Mental Health: A Mechanistic Overview With Implications for Depression and Anxiety. Nutr. Neurosci. 2020, 23, 659–671. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Cassidy, A.; Schwarzschild, M.A.; Rimm, E.B.; Ascherio, A. Habitual Intake of Dietary Flavonoids and Risk of Parkinson Disease. Neurology 2012, 78, 1138–1145. [Google Scholar] [CrossRef] [PubMed]
- Kujawska, M.; Jodynis-Liebert, J. Polyphenols in Parkinson’s Disease: A Systematic Review of In Vivo Studies. Nutrients 2018, 10, 642. [Google Scholar] [CrossRef]
- Caraci, F.; Pappalardo, G.; Basile, L.; Giuffrida, A.; Copani, A.; Tosto, R.; Sinopoli, A.; Giuffrida, M.L.; Pirrone, E.; Drago, F. Neuroprotective Effects of the Monoamine Oxidase Inhibitor Tranylcypromine and its Amide Derivatives Against Aβ (1–42)-Induced Toxicity. Eur. J. Pharmacol. 2015, 764, 256–263. [Google Scholar] [CrossRef]
- Cai, Z. Monoamine Oxidase Inhibitors: Promising Therapeutic Agents for Alzheimer’s Disease. Mol. Med. Rep. 2014, 9, 1533–1541. [Google Scholar] [CrossRef]
- Tsuboi, T.; Satake, Y.; Hiraga, K.; Yokoi, K.; Hattori, M.; Suzuki, M.; Hara, K.; Ramirez-Zamora, A.; Okun, M.S.; Katsuno, M. Effects of MAO-B Inhibitors on Non-Motor Symptoms and Quality of Life in Parkinson’s Disease: A Systematic Review. NPJ Park. Dis. 2022, 8, 75. [Google Scholar] [CrossRef] [PubMed]
- Chaurasiya, N.D.; Leon, F.; Muhammad, I.; Tekwani, B.L. Natural Products Inhibitors of Monoamine oxidases—Potential New Drug Leads for Neuroprotection, Neurological Disorders, and Neuroblastoma. Molecules 2022, 27, 4297. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and Resupply of Pharmacologically Active Plant-Derived Natural Products: A Review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef]
- Das, T.; Saha, S.C.; Sunita, K.; Majumder, M.; Ghorai, M.; Mane, A.B.; Prasanth, D.A.; Kumar, P.; Pandey, D.K.; Al-Tawaha, A.R. Promising Botanical-Derived Monoamine Oxidase (MAO) Inhibitors: Pharmacological Aspects and Structure-Activity Studies. S. Afr. J. Bot. 2022, 146, 127–145. [Google Scholar] [CrossRef]
- López-Dóriga, I.L. The Archaeobotany and Ethnobotany of Portuguese or White Crowberry (Corema album (L.) D. Don). Ethnobiol. Lett. 2018, 9, 19–32. [Google Scholar] [CrossRef]
- Villar, L.; Castroviejo, S.; Aedom, C.; Gómez Campo, C.; Laínz, M.; Monserrat, P.; Morales, R.; Muñoz Garmendia, F.; Nieto Feliner, G.; Rico, E.; et al. Corema D. Don. In Flora Iberica; Real Jardín Botánico, CSIC: Madrid, Spain, 1993; Volume 4, pp. 524–536. [Google Scholar]
- Cunha, A.M.; Pereira, A.; Cardoso, A.P.; Silva, A.M.d.; Barroca, M.J.; Guiné, R.P. Rediscovering Portuguese White Crowberries (Corema album): Cultural Insights and Nutritional Significance. Foods 2024, 13, 1328. [Google Scholar] [CrossRef] [PubMed]
- Barroca, M.J.; da Silva, A.M. From folklore to the nutraceutical world: The Corema album potential. In Gastronomy and Food Science; Galanakis, C.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 119–135. [Google Scholar]
- Quer, P. Plantas medicinales: El Dioscórides renovado. In Plantas Medicinales: El Dioscórides Renovado; Ed. Labor: Barcelona, Spain, 1976; p. 1031. [Google Scholar]
- León-González, A.J.; Navarro, I.; Acero, N.; Muñoz-Mingarro, D.; Martín-Cordero, C. The Fruit of Corema album (L.) D. Don, a Singular White Berry with Potential Benefits in Nutrition and Health. Phytochem. Rev. 2022, 21, 525–536. [Google Scholar] [CrossRef]
- Cerquido, A.S.; Vojtek, M.; Ribeiro-Oliveira, R.; Viegas, O.; Sousa, J.B.; Ferreira, I.M.P.L.V.O.; Diniz, C. Unravelling Potential Health-Beneficial Properties of Corema album Phenolic Compounds: A Systematic Review. Pharmaceuticals 2022, 15, 1231. [Google Scholar] [CrossRef]
- Díaz-Barradas, M.C.; Costa, C.; Correia, O.; León-González, A.J.; Navarro-Zafra, I.; Zunzunegui, M.; Álvarez-Cansino, L.; Martín-Cordero, C. Pentacyclic Triterpenes Responsible for Photoprotection of Corema album (L.) D. Don White Berries. Biochem. Syst. Ecol. 2016, 67, 103–109. [Google Scholar] [CrossRef]
- Gil-López, M.J. Etnobotánica De La Camarina (Corema album, Empetraceae) En Cádiz. Acta Bot. Malacit. 2011, 36, 137–144. [Google Scholar] [CrossRef]
- Moreira da Silva, A.; Barroca, M.J.; Guiné, R.P. Knowledge and Consumption Habits Related with White Crowberries (Corema album L.). Appl. Sci. 2021, 11, 5463. [Google Scholar] [CrossRef]
- León-González, A.J.; Mateos, R.; Ramos, S.; Martín, M.Á.; Sarriá, B.; Martín-Cordero, C.; López-Lázaro, M.; Bravo, L.; Goya, L. Chemo-Protective Activity and Characterization of Phenolic Extracts from Corema album. Food Res. Int. 2012, 49, 728–738. [Google Scholar] [CrossRef]
- Agholme, L.; Lindström, T.; Kågedal, K.; Marcusson, J.; Hallbeck, M. An in Vitro Model for Neuroscience: Differentiation of SH-SY5Y Cells into Cells with Morphological and Biochemical Characteristics of Mature Neurons. J. Alzheimer’s Dis. 2010, 20, 1069–1082. [Google Scholar] [CrossRef] [PubMed]
- Andrade, S.C.; Guiné, R.P.; Gonçalves, F.J. Evaluation of Phenolic Compounds, Antioxidant Activity and Bioaccessibility in White Crowberry (Corema album). J. Food Meas. Charact. 2017, 11, 1936–1946. [Google Scholar] [CrossRef]
- Marques, J.; Martin, D.; Amado, A.M.; Lysenko, V.; Osório, N.; Batista de Carvalho, L.A.; Marques, M.P.M.; Barroca, M.J.; Moreira da Silva, A. Novel Insights into Corema album Berries: Vibrational Profile and Biological Activity. Plants 2021, 10, 1761. [Google Scholar] [CrossRef]
- Casadesus, G.; Shukitt-Hale, B.; Joseph, J.A. Qualitative Versus Quantitative Caloric Intake: Are They Equivalent Paths to Successful Aging? Neurobiol. Aging 2002, 23, 747–769. [Google Scholar] [CrossRef] [PubMed]
- Subash, S.; Essa, M.M.; Al-Adawi, S.; Memon, M.A.; Manivasagam, T.; Akbar, M. Neuroprotective Effects Of Berry Fruits on Neurodegenerative Diseases. Neural Regen. Res. 2014, 9, 1557–1566. [Google Scholar] [PubMed]
- Micek, A.; Jurek, J.; Owczarek, M.; Guerrera, I.; Torrisi, S.A.; Castellano, S.; Grosso, G.; Alshatwi, A.A.; Godos, J. Polyphenol-Rich Beverages and Mental Health Outcomes. Antioxidants 2023, 12, 272. [Google Scholar] [CrossRef] [PubMed]
- Acero, N.; Muñoz-Mingarro, D.; Gradillas, A. Effects of Crocus sativus L. Floral Bio-Residues Related to Skin Protection. Antioxidants 2024, 13, 358. [Google Scholar] [CrossRef]
- Obata, T. Role of Hydroxyl Radical Formation in Neurotoxicity as Revealed by in Vivo Free Radical Trapping. Toxicol. Lett. 2002, 132, 83–93. [Google Scholar] [CrossRef]
- Cui, K.; Luo, X.; Xu, K.; Murthy, M.V. Role of Oxidative Stress in Neurodegeneration: Recent Developments in Assay Methods for Oxidative Stress and Nutraceutical Antioxidants. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2004, 28, 771–799. [Google Scholar] [CrossRef]
- Volicer, L.; Crino, P.B. Involvement of Free Radicals in Dementia of the Alzheimer Type: A Hypothesis. Neurobiol. Aging 1990, 11, 567–571. [Google Scholar] [CrossRef]
- Cao, H.; Xiong, S.; Dong, L.; Dai, Z. Study on the Mechanism of Lipid Peroxidation Induced by Carbonate Radicals. Molecules 2024, 29, 1125. [Google Scholar] [CrossRef]
- Platzer, M.; Kiese, S.; Tybussek, T.; Herfellner, T.; Schneider, F.; Schweiggert-Weisz, U.; Eisner, P. Radical Scavenging Mechanisms of Phenolic Compounds: A Quantitative Structure-Property Relationship (QSPR) Study. Front. Nutr. 2022, 9, 882458. [Google Scholar] [CrossRef]
- Daglia, M.; Di Lorenzo, A.; Nabavi, S.F.; Talas, Z.S.; Nabavi, S.M. Polyphenols: Well Beyond the Antioxidant Capacity: Gallic Acid and Related Compounds as Neuroprotective Agents: You are what You Eat! Curr. Pharm. Biotechnol. 2014, 15, 362–372. [Google Scholar] [CrossRef]
- Marogianni, C.; Sokratous, M.; Dardiotis, E.; Hadjigeorgiou, G.M.; Bogdanos, D.; Xiromerisiou, G. Neurodegeneration and Inflammation-an Interesting Interplay in Parkinson’s Disease. Int. J. Mol. Sci. 2020, 21, 8421. [Google Scholar] [CrossRef]
- Santos, R.; Ruiz de Almodóvar, C.; Bulteau, A.; Gomes, C.M. Neurodegeneration, Neurogenesis, and Oxidative Stress. Oxid. Med. Cell Longev. 2013, 2013, 730581. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.L.; Karoum, F.; Pickar, D.; Cohen, R.M.; Lipper, S.; Mellow, A.M.; Tariot, P.N.; Sunderland, T. Differential Trace Amine Alterations in Individuals Receiving Acetylenic Inhibitors of MAO-A (Clorgyline) Or MAO-B (Selegiline and Pargyline). J. Neural Transm. Suppl. 1998, 52, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Shih, J.C.; Chen, K.; Ridd, M.J. Role of MAO A and B in Neurotransmitter Metabolism and Behavior. Pol. J. Pharmacol. 1999, 51, 25–29. [Google Scholar] [PubMed]
- Finberg, J.P.M.; Rabey, J.M. Inhibitors of MAO-A and MAO-B in Psychiatry and Neurology. Front. Pharmacol. 2016, 7, 340. [Google Scholar] [CrossRef]
- Kong, P.; Zhang, B.; Lei, P.; Kong, X.; Zhang, S.; Li, D.; Zhang, Y. Neuroprotection of MAO-B Inhibitor and Dopamine Agonist in Parkinson Disease. Int. J. Clin. Exp. Med. 2015, 8, 431. [Google Scholar]
- Naoi, M.; Maruyama, W.; Inaba-Hasegawa, K. Type A and B Monoamine Oxidase in Age-Related Neurodegenerative Disorders: Their Distinct Roles in Neuronal Death and Survival. Curr. Med. Chem. 2012, 12, 2177–2188. [Google Scholar] [CrossRef]
- Dhiman, P.; Malik, N.; Sobarzo-Sánchez, E.; Uriarte, E.; Khatkar, A. Quercetin and Related Chromenone Derivatives as Monoamine Oxidase Inhibitors: Targeting Neurological and Mental Disorders. Molecules 2019, 24, 418. [Google Scholar] [CrossRef]
- Marzo, C.M.; Gambini, S.; Poletti, S.; Munari, F.; Assfalg, M.; Guzzo, F. Inhibition of Human Monoamine Oxidases A and B by Specialized Metabolites Present in Fresh Common Fruits and Vegetables. Plants 2022, 11, 346. [Google Scholar] [CrossRef]
- He, Y.; Wang, Y.; Zhang, X.; Zheng, Z.; Liu, S.; Xing, J.; Liu, Z.; Zhou, H. Chemical Characterization of Small-molecule Inhibitors of Monoamine Oxidase B Synthesized from the Acanthopanax senticosus Root with Affinity Ultrafiltration Mass Spectrometry. Rapid Commun. Mass. Spectrom. 2020, 34, e8694. [Google Scholar] [CrossRef]
- de Mello Andrade, J.M.; Biegelmeyer, R.; Dresch, R.R.; Maurmann, N.; Pranke, P.; Henriques, A.T. In Vitro Antioxidant and Enzymatic Approaches to Evaluate Neuroprotector Potential of Blechnum Extracts without Cytotoxicity to Human Stem Cells. Pharmacogn. Mag. 2016, 12, 171. [Google Scholar] [CrossRef] [PubMed]
- Roy, J.; Galano, J.; Durand, T.; Le Guennec, J.; Lee, J.C. Physiological Role of Reactive Oxygen Species as Promoters of Natural Defenses. FASEB J. 2017, 31, 3729–3745. [Google Scholar] [CrossRef] [PubMed]
- Bardaweel, S.K.; Gul, M.; Alzweiri, M.; Ishaqat, A.; ALSalamat, H.A.; Bashatwah, R.M. Reactive Oxygen Species: The Dual Role in Physiological and Pathological Conditions of the Human Body. Eurasian J. Med. 2018, 50, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Dreiseitel, A.; Korte, G.; Schreier, P.; Oehme, A.; Locher, S.; Domani, M.; Hajak, G.; Sand, P.G. Berry Anthocyanins and their Aglycons Inhibit Monoamine Oxidases A and B. Pharm. Res. 2009, 59, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Howes, M.J.; Simmonds, M.S. The Role of Phytochemicals as Micronutrients in Health and Disease. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 558–566. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Lankatillake, C.; Dias, D.A.; Docea, A.O.; Mahomoodally, M.F.; Lobine, D.; Chazot, P.L.; Kurt, B.; Tumer, T.B.; Moreira, A.C.; et al. Impact of Natural Compounds on Neurodegenerative Disorders: From Preclinical to Pharmacotherapeutics. J. Clin. Med. 2020, 9, 1061. [Google Scholar] [CrossRef]
- Kasiappan, R.; Safe, S. ROS-Inducing Agents for Cancer Chemotherapy. React. Oxyg. Species 2016, 1, 22–37. [Google Scholar] [CrossRef]
- Öz, A. Experimental Cell Culture Models for Investigating Neurodegenerative Diseases. J. Cell Neurosci. Oxid. Stress. 2019, 11, 835–851. [Google Scholar] [CrossRef]
- More, S.V.; Kumar, H.; Cho, D.; Yun, Y.; Choi, D. Toxin-Induced Experimental Models of Learning and Memory Impairment. Int. J. Mol. Sci. 2016, 17, 1447. [Google Scholar] [CrossRef]
- Schönhofen, P.; de Medeiros, L.M.; Bristot, I.J.; Lopes, F.M.; De Bastiani, M.A.; Kapczinski, F.; Crippa, J.A.S.; Castro, M.A.A.; Parsons, R.B.; Klamt, F. Cannabidiol Exposure during Neuronal Differentiation Sensitizes Cells Against Redox-Active Neurotoxins. Mol. Neurobiol. 2015, 52, 26–37. [Google Scholar] [CrossRef]
- Pohl, F.; Kong Thoo Lin, P. The Potential Use of Plant Natural Products and Plant Extracts with Antioxidant Properties for the Prevention/Treatment of Neurodegenerative Diseases: In Vitro, In Vivo and Clinical Trials. Molecules 2018, 23, 3283. [Google Scholar] [CrossRef] [PubMed]
- Koppula, S.; Kumar, H.; More, S.V.; Kim, B.W.; Kim, I.S.; Choi, D.K. Recent Advances on the Neuroprotective Potential of Antioxidants in Experimental Models of Parkinson’s Disease. Int. J. Mol. Sci. 2012, 13, 10608–10629. [Google Scholar] [CrossRef]
- Abdelwahab, O.M.; Bingner, R.L.; Milillo, F.; Gentile, F. Effectiveness of Alternative Management Scenarios on the Sediment Load in a Mediterranean Agricultural Watershed. J. Agric. Eng. 2014, 45, 125–136. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The Determination of Flavonoid Contents in Mulberry and their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Haj Hamdo, H.; Warid, K.; Zaid, A. Estimating the Antioxidant Activity for Natural Antioxidants (Tocochromanol) and Synthetic One by DPPH. Int. J. PharmPharm Sci. 2014, 6, 441–444. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Sahgal, G.; Ramanathan, S.; Sasidharan, S.; Mordi, M.N.; Ismail, S.; Mansor, S.M. In Vitro Antioxidant and Xanthine Oxidase Inhibitory Activities of Methanolic Swietenia mahagoni Seed Extracts. Molecules 2009, 14, 4476–4485. [Google Scholar] [CrossRef]
- Regoli, F.; Winston, G.W. Quantification of Total Oxidant Scavenging Capacity of Antioxidants for Peroxynitrite, Peroxyl Radicals, and Hydroxyl Radicals. Toxicol. Appl. Pharmacol. 1999, 156, 96–105. [Google Scholar] [CrossRef]
- Özyürek, M.; Bektaşoğlu, B.; Güçlü, K.; Apak, R. Hydroxyl Radical Scavenging Assay of Phenolics and Flavonoids with a Modified Cupric Reducing Antioxidant Capacity (CUPRAC) Method using Catalase for Hydrogen Peroxide Degradation. Anal. Chim. Acta 2008, 616, 196–206. [Google Scholar] [CrossRef]
- Burgos, C.; Muñoz-Mingarro, D.; Navarro, I.; Martín-Cordero, C.; Acero, N. Neuroprotective Potential of Verbascoside Isolated from Acanthus mollis L. Leaves through its Enzymatic Inhibition and Free Radical Scavenging Ability. Antioxidants 2020, 9, 1207. [Google Scholar] [CrossRef]
- Szwajgier, D.; Borowiec, K. Screening for Cholinesterase Inhibitors in Selected Fruits and Vegetables. Electron. EJPAU 2012, 15, 06. [Google Scholar]
- de Medeiros, L.M.; De Bastiani, M.A.; Rico, E.P.; Schonhofen, P.; Pfaffenseller, B.; Wollenhaupt-Aguiar, B.; Grun, L.; Barbé-Tuana, F.; Zimmer, E.R.; Castro, M.A.A.; et al. Cholinergic Differentiation of Human Neuroblastoma SH-SY5Y Cell Line and its Potential use as an in Vitro Model for Alzheimer’s Disease Studies. Mol. Neurobiol. 2019, 56, 7355–7367. [Google Scholar] [CrossRef] [PubMed]
- Mingarro, D.M.; Plaza, A.; Galán, A.; Vicente, J.A.; Martínez, M.P.; Acero, N. The Effect of Five Taraxacum Species on in Vitro and in Vivo Antioxidant and Antiproliferative Activity. Food Funct. 2015, 6, 2787–2793. [Google Scholar] [CrossRef]
- Tai, K.; Pham, L.; Truong, D.D. Idebenone Induces Apoptotic Cell Death in the Human Dopaminergic Neuroblastoma SHSY-5Y Cells. Neurotox. Res. 2011, 20, 321–328. [Google Scholar] [CrossRef] [PubMed]
Phenolic Compounds | Area | RT (min) | Molecular Formula | [M − H]− m/z Calculated Value | [M − H]− m/z Experim. Value | Accurate Mass Error (ppm) | Fragment Ions (m/z) | Assignment | Accurate Mass Error (ppm) |
---|---|---|---|---|---|---|---|---|---|
(−)-Epigallocatechin | 7.99 × 106 | 3.51 | C15H14O7 | 305.06668 | 305.06644 | −0.80 | 109.02952 125.02431 137.0244 167.03503 219.0665 | [M − H -C9H9O5]− [M − H -C9H9O4]− [M − H -C8H9O4]− [M − H -C7H7O3]− [M − H -C3H4O3]− | 0.16626 −0.84079 −0.15469 0.32436 1.3425 |
5-O-Caffeoilquinic | 2.00 × 109 | 3.86 | C16H18O9 | 353.08781 | 353.08765 | −0.46 | 59.01387 85.02955 93.03458 127.04009 191.0563 | [M − H -C10H13O8]− [M − H -C9H7O3]− | 0.4076 0.5721 −0.064 0.17686 1.02028 |
6,7-dihydroxycoumarin (Esculetin) | 5.26 × 106 | 3.94 | C9H6O4 | 177.01933 | 177.01923 | −0.59 | |||
Caffeic acid | 2.70 × 107 | 4.04 | C9H8O4 | 179.03498 | 179.03494 | −0.21 | 89.03959 107.05027 134.03738 135.04523 | [M − H -C2O3]− [M − H -COO]− | −0.91051 0.28099 0.40312 0.57056 |
(−)-Epicatechin | 2.73 × 107 | 4.35 | C15H14O6 | 289.07176 | 289.07172 | −0.15 | 245.08188 203.07158 137.02446 123.04521 109.0295 | [M − H -COO]− [M − H -C3H2O3]− [M − H -C8H6O4]− [M − H -C9H8O4]− | −0.20947 1.02909 0.29074 0.50219 −0.04366 |
Phloretic acid | 4.74 × 106 | 4.77 | C9H10O3 | 165.05572 | 165.05556 | −0.99 | |||
Myricetin-3-O-galactoside | 5.00 × 107 | 5.14 | C21H20O13 | 479.08311 | 479.08286 | −0.53 | 271.02509 287.01993 316.02249 | [M − H -C6H10O5]− | 1.01632 0.68977 0.06789 |
Quercetin-3-O-galactoside (Hiperoside) | 2.36 × 108 | 5.57 | C21H20O12 | 463.0882 | 463.08844 | 0.52 | 227.03499 243.02982 255.02994 271.02502 300.02765 | [M − H -C5H10O3]− [M − H -C6H10O5]− | 0.03701 −0.34698 0.148 0.79112 0.32972 |
Ellagic acid | 1.30 × 106 | 5.69 | C14H6O8 | 300.99899 | 300.9986 | −1.31 | |||
Naringin | 4.78 × 106 | 5.79 | C27H32O14 | 579.17193 | 579.17133 | −1.04 | |||
Kaempferol-3-O-glucoside | 3.15 × 107 | 6.08 | C21H20O11 | 447.09328 | 447.09308 | −0.45 | 183.04517 211.04045 227.03519 255.03006 284.03284 | [M − H -C5H10O3]− [M − H -C6H10O5]− | 0.0875 1.80558 0.91073 0.62665 0.69328 |
Pinocembrin | 1.24 × 108 | 8.08 | C15H12O4 | 255.06628 | 255.06624 | −0.16 | 65.00332 83.0139 107.01388 151.00374 171.04523 | 0.44285 0.61143 0.26042 0.38677 0.45047 |
Juice | Gallic Acid | |
---|---|---|
DPPH | 412.7 µg/mL ± 4.4 | 3.72 µg/mL ± 0.04 |
ABTS | 112.4 µg/mL ± 9.6 | 28.6 µg/mL ± 0.1 |
Hydroxyl | 221.2 µg/mL ± 2.6 | 331.4 µg/mL ± 2.1 |
Superoxide | 426.9 µg/mL ± 0.2 | 12.4 µg/mL ± 0.02 |
Juice | Clorgyline | Selegiline | |
---|---|---|---|
MAO-A | 87.21 µg/m ± 0.01 | 5.04 ng/mL ± 0.33 | - |
MAO-B | 56.50 µg/mL ± 0.006 | - | 49.55 ng/mL ± 8.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canoyra, A.; Martín-Cordero, C.; Muñoz-Mingarro, D.; León-González, A.J.; Parsons, R.B.; Acero, N. Corema album Berry Juice as a Protective Agent Against Neurodegeneration. Pharmaceuticals 2024, 17, 1535. https://doi.org/10.3390/ph17111535
Canoyra A, Martín-Cordero C, Muñoz-Mingarro D, León-González AJ, Parsons RB, Acero N. Corema album Berry Juice as a Protective Agent Against Neurodegeneration. Pharmaceuticals. 2024; 17(11):1535. https://doi.org/10.3390/ph17111535
Chicago/Turabian StyleCanoyra, Antonio, Carmen Martín-Cordero, Dolores Muñoz-Mingarro, Antonio J. León-González, Richard B. Parsons, and Nuria Acero. 2024. "Corema album Berry Juice as a Protective Agent Against Neurodegeneration" Pharmaceuticals 17, no. 11: 1535. https://doi.org/10.3390/ph17111535
APA StyleCanoyra, A., Martín-Cordero, C., Muñoz-Mingarro, D., León-González, A. J., Parsons, R. B., & Acero, N. (2024). Corema album Berry Juice as a Protective Agent Against Neurodegeneration. Pharmaceuticals, 17(11), 1535. https://doi.org/10.3390/ph17111535