Identification of Potential Inhibitors of Histone Deacetylase 6 Through Virtual Screening and Molecular Dynamics Simulation Approach: Implications in Neurodegenerative Diseases
Abstract
:1. Introduction
2. Results and Discussion
2.1. Molecular Docking Screening
2.2. PASS Analysis and Drug Profiling
2.3. Interaction Analysis
2.4. MD Simulations
2.5. Structural Deviation Analysis
2.6. Compactness Analysis
2.7. Hydrogen Bond Analysis
2.8. Secondary Structure Alteration Analysis
2.9. Principal Component Analysis
2.10. Free Energy Landscapes
2.11. MMPBSA Analysis
3. Material and Methods
3.1. Molecular Docking Screening Protocol
3.2. Biological Capability and Interaction Study
3.3. MD Simulations Protocol
3.4. Principal Component Analysis Protocol
3.5. Free Energy Landscape Generation
3.6. MMPBSA Calculation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biel, M.; Wascholowski, V.; Giannis, A. Epigenetics—An epicenter of gene regulation: Histones and histone-modifying enzymes. Angew. Chem. Int. Ed. 2005, 44, 3186–3216. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Jiang, Y.; He, Z.; Kitazato, K.; Wang, Y. Cellular defence or viral assist: The dilemma of HDAC6. J. Gen. Virol. 2017, 98, 322–337. [Google Scholar] [CrossRef] [PubMed]
- Grozinger, C.M.; Hassig, C.A.; Schreiber, S.L. Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc. Natl. Acad. Sci. USA 1999, 96, 4868–4873. [Google Scholar] [CrossRef]
- Gallinari, P.; Marco, S.D.; Jones, P.; Pallaoro, M.; Steinkühler, C. HDACs, histone deacetylation and gene transcription: From molecular biology to cancer therapeutics. Cell Res. 2007, 17, 195–211. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-J.; Grégoire, S. Class II histone deacetylases: From sequence to function, regulation, and clinical implication. Mol. Cell. Biol. 2005, 25, 2873–2884. [Google Scholar] [CrossRef]
- Parra, M. Class II a HDAC s–new insights into their functions in physiology and pathology. FEBS J. 2015, 282, 1736–1744. [Google Scholar] [CrossRef]
- Núñez-Álvarez, Y.; Suelves, M. HDAC11: A multifaceted histone deacetylase with proficient fatty deacylase activity and its roles in physiological processes. FEBS J. 2022, 289, 2771–2792. [Google Scholar] [CrossRef]
- Ciarlo, E. Impact of Classical and NAD+-Dependent (Ie Sirtuins) Histone Deacetylases (HDACS) on Innate Immune Responses: Lessons from the Usage of HDAC Inhibitors and Sirtuin Knockout Mice. Ph.D. Thesis, Université de Lausanne, Faculté de biologie et médecine, Lausanne, Switzerland, 2016. [Google Scholar]
- Falkenberg, K.J.; Johnstone, R.W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 2014, 13, 673–691. [Google Scholar] [CrossRef]
- Zhang, X.-H.; Qin-Ma; Wu, H.-P.; Khamis, M.Y.; Li, Y.-H.; Ma, L.-Y.; Liu, H.-M. A review of progress in histone deacetylase 6 inhibitors research: Structural specificity and functional diversity. J. Med. Chem. 2021, 64, 1362–1391. [Google Scholar] [CrossRef]
- Zhu, Y.; Feng, M.; Wang, B.; Zheng, Y.; Jiang, D.; Zhao, L.; Mamun, M.; Kang, H.; Nie, H.; Zhang, X. New insights into the non-enzymatic function of HDAC6. Biomed. Pharmacother. 2023, 161, 114438. [Google Scholar] [CrossRef]
- Helleputte, L.V.; Benoy, V.; Van Den Bosch, L. The role of histone deacetylase 6 (HDAC6) in neurodegeneration. Res. Rep. Biol. 2014, 5, 1–13. [Google Scholar] [CrossRef]
- Simões-Pires, C.; Zwick, V.; Nurisso, A.; Schenker, E.; Carrupt, P.-A.; Cuendet, M. HDAC6 as a target for neurodegenerative diseases: What makes it different from the other HDACs? Mol. Neurodegener. 2013, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Kozikowski, A.P. A patent review of histone deacetylase 6 inhibitors in neurodegenerative diseases (2014–2019). Expert Opin. Ther. Pat. 2020, 30, 121–136. [Google Scholar] [CrossRef]
- Parvathaneni, V.; Kulkarni, N.S.; Muth, A.; Gupta, V. Drug repurposing: A promising tool to accelerate the drug discovery process. Drug Discov. Today 2019, 24, 2076–2085. [Google Scholar] [CrossRef]
- Park, K. A review of computational drug repurposing. Transl. Clin. Pharmacol. 2019, 27, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Daśko, M.; de Pascual-Teresa, B.; Ortín, I.; Ramos, A. HDAC inhibitors: Innovative strategies for their design and applications. Molecules 2022, 27, 715. [Google Scholar] [CrossRef]
- Knox, C.; Wilson, M.; Klinger, C.M.; Franklin, M.; Oler, E.; Wilson, A.; Pon, A.; Cox, J.; Chin, N.E.; Strawbridge, S.A. DrugBank 6.0: The DrugBank Knowledgebase for 2024. Nucleic Acids Res. 2024, 52, D1265–D1275. [Google Scholar] [CrossRef]
- Shamsi, A.; Mohammad, T.; Khan, M.S.; Shahwan, M.; Husain, F.M.; Rehman, M.T.; Hassan, M.I.; Ahmad, F.; Islam, A. Unraveling binding mechanism of Alzheimer’s drug rivastigmine tartrate with human transferrin: Molecular docking and multi-spectroscopic approach towards neurodegenerative diseases. Biomolecules 2019, 9, 495. [Google Scholar] [CrossRef]
- Filimonov, D.; Lagunin, A.; Gloriozova, T.; Rudik, A.; Druzhilovskii, D.; Pogodin, P.; Poroikov, V. Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem. Heterocycl. Compd. 2014, 50, 444–457. [Google Scholar] [CrossRef]
- Mannhold, R.; Kubinyi, H.; Folkers, G. Protein-Ligand Interactions: From Molecular Recognition to Drug Design; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Naqvi, A.A.; Mohammad, T.; Hasan, G.M.; Hassan, M.I. Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Curr. Top. Med. Chem. 2018, 18, 1755–1768. [Google Scholar] [CrossRef]
- Maiorov, V.N.; Crippen, G.M. Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. J. Mol. Biol. 1994, 235, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Lobanov, M.Y.; Bogatyreva, N.; Galzitskaya, O. Radius of gyration as an indicator of protein structure compactness. Mol. Biol. 2008, 42, 623–628. [Google Scholar] [CrossRef]
- Martins, J.M.; Ramos, R.M.; Pimenta, A.C.; Moreira, I.S. Solvent-accessible surface area: How well can be applied to hot-spot detection? Proteins Struct. Funct. Bioinform. 2014, 82, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, R.E.; Haider, M.K. Hydrogen bonds in proteins: Role and strength. eLS 2010, 1, 1–6. [Google Scholar]
- Bitencourt-Ferreira, G.; Veit-Acosta, M.; de Azevedo, W.F. Hydrogen bonds in protein-ligand complexes. Docking Screens Drug Discov. 2019, 2053, 93–107. [Google Scholar]
- Gorelov, S.; Titov, A.; Tolicheva, O.; Konevega, A.; Shvetsov, A. DSSP in Gromacs: Tool for defining secondary structures of proteins in trajectories. J. Chem. Inf. Model. 2024, 64, 3593–3598. [Google Scholar] [CrossRef]
- Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.; Hou, T. End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chem. Rev. 2019, 119, 9478–9508. [Google Scholar] [CrossRef]
- Huey, R.; Morris, G.M.; Forli, S. Using AutoDock 4 and AutoDock vina with AutoDockTools: A tutorial. Scripps Res. Inst. Mol. Graph. Lab. 2012, 10550, 1000. [Google Scholar]
- Mohammad, T.; Mathur, Y.; Hassan, M.I. InstaDock: A single-click graphical user interface for molecular docking-based virtual high-throughput screening. Brief. Bioinform. 2021, 22, bbaa279. [Google Scholar] [CrossRef]
- DeLano, W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr 2002, 40, 82–92. [Google Scholar]
- Visualizer, D. Discovery Studio Visualizer, Version 2; Accelrys Software Inc.: San Diego, CA, USA, 2005.
- Shamsi, A.; Khan, M.S.; Altwaijry, N.; Hassan, N.; Shahwan, M.; Yadav, D.K. Targeting PDE4A for therapeutic potential: Exploiting drug repurposing approach through virtual screening and molecular dynamics. J. Biomol. Struct. Dyn. 2024, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; MacKerell, A.D., Jr. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 2013, 34, 2135–2145. [Google Scholar] [CrossRef] [PubMed]
- Mark, P.; Nilsson, L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 2001, 105, 9954–9960. [Google Scholar] [CrossRef]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S. Validation of the generalized force fields GAFF, CGenFF, OPLS-AA, and PRODRGFF by testing against experimental osmotic coefficient data for small drug-like molecules. J. Chem. Inf. Model. 2019, 59, 4239–4247. [Google Scholar] [CrossRef]
- Sittel, F.; Jain, A.; Stock, G. Principal component analysis of molecular dynamics: On the use of Cartesian vs. internal coordinates. J. Chem. Phys. 2014, 141, 014111. [Google Scholar] [CrossRef]
- Papaleo, E.; Mereghetti, P.; Fantucci, P.; Grandori, R.; De Gioia, L. Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: The myoglobin case. J. Mol. Graph. Model. 2009, 27, 889–899. [Google Scholar] [CrossRef]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef]
S. No. | Drug | Binding Affinity (kcal/mol) | pKi | Ligand Efficiency (kcal/mol/non-H atom) | Torsional Energy |
---|---|---|---|---|---|
1. | Dutasteride | −10.5 | 7.7 | 0.2838 | 1.2452 |
2. | Bisdequalinium Chloride | −10.2 | 7.48 | 0.2318 | 0 |
3. | Conivaptan | −10.0 | 7.33 | 0.2632 | 1.2452 |
4. | Penfluridol | −10.0 | 7.33 | 0.2778 | 2.8017 |
5. | Pimozide | −9.8 | 7.19 | 0.2882 | 2.1791 |
6. | Rolapitant | −9.7 | 7.11 | 0.2771 | 2.1791 |
7. | Lumacaftor | −9.4 | 6.89 | 0.2848 | 1.8678 |
8. | Difenoxin | −9.4 | 6.89 | 0.2938 | 2.4904 |
9. | Phenindamine | −9.3 | 6.82 | 0.465 | 0.3113 |
10. | Acrivastine | −9.3 | 6.82 | 0.3577 | 2.1791 |
11. | Trichostatin A | −6.6 | 4.84 | 0.3 | 2.1791 |
S. No. | Drug | Pa | Pi | Activity |
---|---|---|---|---|
1. | Penfluridol | 0.786 | 0.010 | Acute neurologic disorder treatment |
0.748 | 0.007 | Analgesic | ||
0.586 | 0.005 | Antineurogenic pain | ||
0.662 | 0.094 | Phobic disorder treatment | ||
0.576 | 0.080 | Antineurotic | ||
2. | Pimozide | 0.610 | 0.011 | Antipsychotic |
0.534 | 0.064 | Acute neurologic disorder treatment | ||
0.475 | 0.011 | Antineurogenic pain | ||
0.462 | 0.005 | Antimigraine | ||
0.426 | 0.056 | Neurodegenerative disease treatment | ||
3. | Trichostatin A | 0.765 | 0.002 | Histone deacetylase inhibitor |
0.738 | 0.002 | Histone deacetylase 6 inhibitor | ||
0.734 | 0.002 | Histone deacetylase class IIb inhibitor | ||
0.693 | 0.002 | Histone deacetylase class II inhibitor | ||
0.533 | 0.035 | Apoptosis agonist |
S. No. | Systems | RMSD (nm) | RMSF (nm) | Rg (nm) | SASA (nm2) | Intramolecular H-Bonds |
---|---|---|---|---|---|---|
1. | HDAC6 | 0.24 (±0.03) | 0.09 (±0.08) | 1.98 (±0.01) | 153.3 (±3.42) | 264 (±8) |
2. | HDAC6-Penfluridol | 0.24 (±0.03) | 0.08 (±0.08) | 1.98 (±0.01) | 150.5 (±2.98) | 264 (±8) |
3. | HDAC6-Pimozide | 0.27 (±0.03) | 0.10 (±0.07) | 2.00 (±0.01) | 156.2 (±3.98) | 267 (±9) |
4. | HDAC6-Trichostatin A | 0.22 (±0.03) | 0.09 (±0.05) | 1.98 (±0.01) | 150.8 (±3.26) | 264 (±8) |
Systems | Structure | Coil | β-Sheet | β-Bridge | Bend | Turn | α-Helix | Pi-Helix | 310-Helix | PPII-Helix |
---|---|---|---|---|---|---|---|---|---|---|
HDAC6 | 202 (±6) | 86 (±6) | 31 (±2) | 6 (±2) | 41 (±4) | 37 (±5) | 128 (±3) | 5 (±0) | 14 (±4) | 7 (±3) |
HDAC6-Penfluridol | 206 (±5) | 81 (±5) | 37 (±1) | 4 (±2) | 37 (±4) | 39 (±4) | 126 (±4) | 5 (±0) | 15 (±4) | 8 (±4) |
HDAC6-Pimozide | 208 (±6) | 81 (±5) | 37 (±2) | 5 (±2) | 41 (±4) | 37 (±5) | 129 (±4) | 5 (±0) | 14 (±4) | 6 (±3) |
HDAC6-Trichostatin A | 215 (±6) | 80 (±5) | 37 (±2) | 5 (±1) | 35 (±4) | 42 (±5) | 131 (±4) | 5 (±0) | 13 (±4) | 6 (±3) |
Complex | ∆EvdW | ∆Eele | ∆Ggas | ∆Gpolar | ∆Gnonpolar | ∆Gsol | ∆Gbind |
---|---|---|---|---|---|---|---|
HDAC6-Penfluridol | −58.60 | −5.86 | −48.58 | 20.66 | −6.02 | 12.08 | −52.82 |
HDAC6-Pimozide | −40.12 | −6.52 | −50.27 | 18.52 | −4.52 | 12.82 | −56.03 |
HDAC6-Trichostatin A | −46.18 | −5.90 | −46.50 | 10.54 | −4.08 | 6.76 | −41.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shamsi, A.; Shahwan, M.; Zuberi, A.; Altwaijry, N. Identification of Potential Inhibitors of Histone Deacetylase 6 Through Virtual Screening and Molecular Dynamics Simulation Approach: Implications in Neurodegenerative Diseases. Pharmaceuticals 2024, 17, 1536. https://doi.org/10.3390/ph17111536
Shamsi A, Shahwan M, Zuberi A, Altwaijry N. Identification of Potential Inhibitors of Histone Deacetylase 6 Through Virtual Screening and Molecular Dynamics Simulation Approach: Implications in Neurodegenerative Diseases. Pharmaceuticals. 2024; 17(11):1536. https://doi.org/10.3390/ph17111536
Chicago/Turabian StyleShamsi, Anas, Moyad Shahwan, Azna Zuberi, and Nojood Altwaijry. 2024. "Identification of Potential Inhibitors of Histone Deacetylase 6 Through Virtual Screening and Molecular Dynamics Simulation Approach: Implications in Neurodegenerative Diseases" Pharmaceuticals 17, no. 11: 1536. https://doi.org/10.3390/ph17111536
APA StyleShamsi, A., Shahwan, M., Zuberi, A., & Altwaijry, N. (2024). Identification of Potential Inhibitors of Histone Deacetylase 6 Through Virtual Screening and Molecular Dynamics Simulation Approach: Implications in Neurodegenerative Diseases. Pharmaceuticals, 17(11), 1536. https://doi.org/10.3390/ph17111536