High Performance Thin Layer Chromatography (HPTLC) Analysis of Anti-Asthmatic Combination Therapy in Pharmaceutical Formulation: Assessment of the Method’s Greenness and Blueness
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Development and Optimization
2.1.1. Mobile Phase
2.1.2. Scanning Wavelength
2.1.3. Slit Size
2.1.4. Saturation Period
2.2. Validation of the TLC-Densitometric Method
2.2.1. Linearity and Range
2.2.2. Quantitation and Detection Limit (LOQ and LOD) Calculations
2.2.3. Accuracy
2.2.4. Precision
2.2.5. Robustness
2.3. Application to Bronchaline® Tablets: Dosage Form
2.4. The Greenness Assessment for the Novel TLC Method
2.5. Evaluation of the Method’s Practicality via the Blue Applicability Grade Index (BAGI) Approach
2.6. The Method’s Comparisons with Previously Reported HPLC and TLC Methods
3. Materials and Methods
3.1. Analytical Instruments
3.2. Resources
- (a)
- Pure standards
- (b)
- Pharmaceutical preparation
- (c)
- Solvents and Chemicals
3.3. Preparation of Stock Solutions
3.4. Chromatographic Separation
3.5. Method Validation
3.5.1. Linearity and Range
3.5.2. Quantitation and Detection Limit (LOQ and LOD) Calculations
3.5.3. Accuracy
3.5.4. Precision
3.5.5. Robustness
3.6. Application to Bronchaline® Tablets: Dosage Form
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The British Pharmacopeia; Her Majesty’s; The Stationary Office: London, UK, 2013.
- Schram, W.S. Use of Hydroxyzine in Psychosis. Dis. Nerv. Syst. 1959, 20, 126–129. [Google Scholar] [PubMed]
- Gad, M.Z.; Azab, S.S.; Khattab, A.R.; Farag, M.A. Over a Century since Ephedrine Discovery: An Updated Revisit to Its Pharmacological Aspects, Functionality and Toxicity in Comparison to Its Herbal Extracts. Food Funct. 2021, 12, 9563–9582. [Google Scholar] [CrossRef] [PubMed]
- Schultze-Werninghaus, G.; Meier-Sydow, J. The Clinical and Pharmacological History of Theophylline: First Report on the Bronchospasmolytic Action in Man by SR Hirsch in Frankfurt (Main) 1922. Clin. Exp. Allergy 1982, 12, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Pharmacopeia, U.S. United States Pharmacopeia and National Formulary (USP 37–NF 32); US Pharmacop.: Rockville, MD, USA, 2014. [Google Scholar]
- Brown, W.; Marques, M.R.C. 14 The United States Pharmacopeia/National Formulary. In Generic Drug Product Development: Solid Oral Dosage Forms, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2013; p. 319. [Google Scholar]
- Zhang, B.; Ma, N.; Liang, W.; Feng, S. HPLC-MS Determination of Hydroxyzine Hydrochloride in Human Plasma and Its Pharmacokinetics. Chin. J. Pharm. Anal. 2008, 28, 516–519. [Google Scholar]
- Péhourcq, F. A Simple High-Performance Liquid Chromatographic Method for Detection of Hydroxyzine in Human Plasma after Overdose. J. Pharmacol. Toxicol. Methods 2004, 50, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Sher, N.; Siddiqui, F.A.; Fatima, N.; Perveen, S.; Shafi, N. New Method Development for Hydroxyzine Determination: Application in Stability Studies, Pharmaceutical Formulations, and Humane Serum. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 911–918. [Google Scholar] [CrossRef]
- Zhou, N.; Liang, Y.-Z.; Chen, B.-M.; Wang, P.; Chen, X.; Liu, F.-P. Development and Validation of LC–MS Method for the Determination of Hydroxyzine Hydrochloride in Human Plasma and Subsequent Application in a Bioequivalence Study. Chromatographia 2007, 66, 481–486. [Google Scholar] [CrossRef]
- Menon, G.N.; Norris, B.J. Simultaneous Determination of Hydroxyzine Hydrochloride and Benzyl Alcohol in Injection Solutions by High-Performance Liquid Chromatography. J. Pharm. Sci. 1981, 70, 697–698. [Google Scholar] [CrossRef]
- Kallinteris, K.; Gkountanas, K.; Karamitros, I.; Boutsikaris, H.; Dotsikas, Y. Development and Validation of a Novel HPLC Method for the Determination of Ephedrine Hydrochloride in Nasal Ointment. Separations 2022, 9, 198. [Google Scholar] [CrossRef]
- Abdel Salam, R.A.; Hadad, G.M.; Abdel Hameed, E.A. Simultaneous Determination of Two Multicomponent Mixtures Containing Phenobarbitone and Ephedrine Hydrochloride Using HPLC and Chemometric Assisted Spectrophotometric Methods. J. Liq. Chromatogr. Relat. Technol. 2013, 36, 384–405. [Google Scholar] [CrossRef]
- Li, C.; Li, X.; Ma, J.; Feng, C.; Liu, G. Simultaneous Determination of Ephedrine Hydrochloride and Pseudoephedrine Hydrochloride in Fangfeng Tongsheng Pills by HPLC. Chin. J. Pharm. Anal. 2016, 36, 176–180. [Google Scholar]
- Makino, Y. Simple HPLC Method for Detection of Trace Ephedrine and Pseudoephedrine in High-purity Methamphetamine. Biomed. Chromatogr. 2012, 26, 327–330. [Google Scholar] [CrossRef] [PubMed]
- Magdy, M.A.; Abdelfatah, R.M. Green Validated HPTLC and HPLC Methods for Determination of Ephedrine Hydrochloride and Naphazoline Nitrate in the Presence of Methylparaben, in Their Pure Forms and Pharmaceutical Formulation. JPC–J. Planar Chromatogr. TLC 2020, 33, 141–148. [Google Scholar] [CrossRef]
- Srdjenovic, B.; Djordjevic-Milic, V.; Grujic, N.; Injac, R.; Lepojevic, Z. Simultaneous HPLC Determination of Caffeine, Theobromine, and Theophylline in Food, Drinks, and Herbal Products. J. Chromatogr. Sci. 2008, 46, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Nirogi, R.V.S.; Kandikere, V.N.; Shukla, M.; Mudigonda, K.; Ajjala, D.R. A Simple and Rapid HPLC/UV Method for the Simultaneous Quantification of Theophylline and Etofylline in Human Plasma. J. Chromatogr. B 2007, 848, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Huck, C.W.; Guggenbichler, W.; Bonn, G.K. Analysis of Caffeine, Theobromine and Theophylline in Coffee by near Infrared Spectroscopy (NIRS) Compared to High-Performance Liquid Chromatography (HPLC) Coupled to Mass Spectrometry. Anal. Chim. Acta 2005, 538, 195–203. [Google Scholar] [CrossRef]
- Al-Jenoobi, F.I.; Ahad, A.; Mahrous, G.M.; Raish, M.; Alam, M.A.; Al-Mohizea, A.M. A Simple HPLC–UV Method for the Quantification of Theophylline in Rabbit Plasma and Its Pharmacokinetic Application. J. Chromatogr. Sci. 2015, 53, 1765–1770. [Google Scholar] [CrossRef] [PubMed]
- Jamshidi, A.; Adjvadi, M.; Shahmiri, S.; Masoumi, A.; Husain, S.W.; Mahmoodian, M. A New High Performance Thin-Layer Chromatography (HPTLC) Method for Determination of Theophylline in Plasma. J. Liq. Chromatogr. Relat. Technol. 1999, 22, 1579–1587. [Google Scholar] [CrossRef]
- Sanganalmath, P.; Sujatha, K.; Bhargavi, S.; Nayak, V.; Mohan, B. Simple, Accurate and Rapid HPTLC Method for Analysis of Theophylline in Post-Mortem Blood and Validation of the Method. JPC-Journal Planar Chromatogr. TLC 2009, 22, 29–33. [Google Scholar]
- Oellig, C.; Schunck, J.; Schwack, W. Determination of Caffeine, Theobromine and Theophylline in Mate Beer and Mate Soft Drinks by High-Performance Thin-Layer Chromatography. J. Chromatogr. A 2018, 1533, 208–212. [Google Scholar] [CrossRef]
- Devarajan, P.V.; Sule, P.N.; Parmar, D.V. High-Performance Thin-Layer Chromatographic Determination of Theophylline in Plasma. J. Chromatogr. B Biomed. Sci. Appl. 1999, 736, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Goyal, K.; Tomar, N.; Singh, A.P.; Sarin, R.K.; Shukla, S.K. Validation of an Analytical Method for the Detection of Ephedrine and Its Analogues in Forensic Samples Using HPTLC–MS. JPC–Journal Planar Chromatogr. TLC 2020, 33, 397–404. [Google Scholar]
- Moustafa, A.A.; Salem, H.; Hegazy, M.; Mahmoud, O.A. Simultaneous Determination of Carbinoxamine, Pholcodine, and Ephedrine in Antitussive Preparation by High-Performance Liquid Chromatography and Thin-Layer Chromatography–Densitometry. J. Planar Chromatogr. 2015, 28, 307–315. [Google Scholar] [CrossRef]
- Alhazmi, H.A.; Ahsan, W.; Al Bratty, M.; Khalid, A.; Sultana, S.; Najmi, A.; Makeen, H.A.; Attafi, I.M.; Abualsail, F.M.; Arishy, M.A. Chemo-Profiling of Illicit Amphetamine Tablets Seized from Jazan, Saudi Arabia, Using Gas Chromatography-Mass Spectrometry and Chemometric Techniques. J. Chem. 2021, 2021, 1517785. [Google Scholar] [CrossRef]
- Elefant, M.; Chafetz, L.; Talmage, J.M. Determination of Ephedrine, Phenobarbital, and Theophylline in Tablets by Gas Chromatography. J. Pharm. Sci. 1967, 56, 1181–1183. [Google Scholar] [CrossRef]
- Lourencao, B.C.; Silva, T.A.; da Silva Santos, M.; Ferreira, A.G.; Fatibello-Filho, O. Sensitive Voltammetric Determination of Hydroxyzine and Its Main Metabolite Cetirizine and Identification of Oxidation Products by Nuclear Magnetic Resonance Spectroscopy. J. Electroanal. Chem. 2017, 807, 187–195. [Google Scholar] [CrossRef]
- Beltagi, A.M.; Abdallah, O.; Ghoneim, M.M. Development of a Voltammetric Procedure for Assay of the Antihistamine Drug Hydroxyzine at a Glassy Carbon Electrode: Quantification and Pharmacokinetic Studies. Talanta 2008, 74, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Peng, Y.; Jin, G.; Zhang, S.; Kong, J. Sensitive Detection of Haloperidol and Hydroxyzine at Multi-Walled Carbon Nanotubes-Modified Glassy Carbon Electrodes. Sensors 2008, 8, 1879–1889. [Google Scholar] [CrossRef] [PubMed]
- Mazzotta, E.; Picca, R.A.; Malitesta, C.; Piletsky, S.A.; Piletska, E.V. Development of a Sensor Prepared by Entrapment of MIP Particles in Electrosynthesised Polymer Films for Electrochemical Detection of Ephedrine. Biosens. Bioelectron. 2008, 23, 1152–1156. [Google Scholar] [CrossRef]
- Jia, L.; Mao, Y.; Zhang, S.; Li, H.; Qian, M.; Liu, D.; Qi, B. Electrochemical Switch Sensor toward Ephedrine Hydrochloride Determination Based on Molecularly Imprinted Polymer/Nafion-MWCNTs Modified Electrode. Microchem. J. 2021, 164, 105981. [Google Scholar] [CrossRef]
- Mersal, G.A.M. Electrochemical Applications and Computational Studies on Ephedrine Drug: Voltammetric Determination Using a New Pseudo-Carbon Paste Electrode Modified with Poly (Acrylic) Acid. J. Solid State Electrochem. 2012, 16, 2031–2039. [Google Scholar] [CrossRef]
- Şentürk, Z.; Erk, N.; Özkan, S.A.; Akay, C.; Cevheroğlu, Ş. Determination of Theophylline and Ephedrine HCL in Tablets by Ratio-Spectra Derivative Spectrophotometry and LC. J. Pharm. Biomed. Anal. 2002, 29, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Kirova, G.K.; Velkova, Z.Y.; Delchev, V.B.; Gavazov, K.B. Vanadium-Containing Anionic Chelate for Spectrophotometric Determination of Hydroxyzine Hydrochloride in Pharmaceuticals. Molecules 2023, 28, 2484. [Google Scholar] [CrossRef] [PubMed]
- Hassaninejad-Darzi, S.K.; Samadi-Maybodi, A.; Nikou, S.M. UV-Vis Spectrophotometry and Multivariate Calibration Method for Simultaneous Determination of Theophylline, Montelukast and Loratadine in Tablet Preparations and Spiked Human Plasma. Iran. J. Pharm. Res. IJPR 2016, 15, 379. [Google Scholar] [PubMed]
- Alminshid, A.H.; Alalwan, H.A.; Abdulghani, H.A.; Mohammed, M.M. Spectrophotometric Study of Ephedrine Hydrochloride in Drug Using Molecular Absorption UV–Visible. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 270, 120828. [Google Scholar] [CrossRef] [PubMed]
- Eltanany, B.M.; Mouhamed, A.A.; Lamie, N.T.; Mostafa, N.M. Smart Multivariate Spectrophotometric Assisted Techniques for Simultaneous Determination of Ephedrine Hydrochloride and Naphazoline Nitrate in the Presence of Interfering Parabens. Curr. Pharm. Anal. 2021, 17, 1104–1112. [Google Scholar] [CrossRef]
- Roberts, S.E.; Delaney, M.F. Simultaneous Determination of Ephedrine Sulfate, Hydroxyzine Hydrochloride and Theophylline in Tablets by Reversed-Phase High-Performance Liquid Chromatography. J. Chromatogr. A 1982, 242, 364–368. [Google Scholar] [CrossRef]
- Boberić-Borojević, D.; Radulović, D.; Ivanović, D.; Ristić, P. Simultaneous Assay of Ephedrine Hydrochloride, Theophylline, Papaverine Hydrochloride and Hydroxyzine Hydrochloride in Tablets Using RP-LC. J. Pharm. Biomed. Anal. 1999, 21, 15–22. [Google Scholar] [CrossRef]
- Yang, S.H.; Wang, J.; Zhang, K. Validation of a Two-Dimensional Liquid Chromatography Method for Quality Control Testing of Pharmaceutical Materials. J. Chromatogr. A 2017, 1492, 89–97. [Google Scholar] [CrossRef]
- Kaale, E.; Risha, P.; Layloff, T. TLC for Pharmaceutical Analysis in Resource Limited Countries. J. Chromatogr. A 2011, 1218, 2732–2736. [Google Scholar] [CrossRef]
- Abdelhamid, N.S.; Abdelaleem, E.A.; Lashien, A.; Amin, M.M.; Tohamy, S.I. The Improvement of Routine Drug Quality Control Analysis of Some Antihypertensive Drugs Using High-performance Thin-layer Chromatography Densitometry Method with Greenness Profile Evaluation. J. Sep. Sci. 2023, 2300608. [Google Scholar] [CrossRef] [PubMed]
- Sherma, J. Planar Chromatography. Anal. Chem. 2000, 72, 9–26. [Google Scholar] [CrossRef]
- Kalász, H.; Báthori, M.; Valkó, K.L. Basis and Pharmaceutical Applications of Thin-Layer Chromatography. In Handbook of Analytical Separations; Elsevier: Amsterdam, The Netherlands, 2020; Volume 8, pp. 523–585. ISBN 1567-7192. [Google Scholar]
- Abdelwahab, N.S.; Abdelrahman, M.M.; Boshra, J.M.; Taha, A.A. Different Stability-Indicating Chromatographic Methods for Specific Determination of Paracetamol, Dantrolene Sodium, Their Toxic Impurities and Degradation Products. Biomed. Chromatogr. 2019, 33, e4598. [Google Scholar] [CrossRef]
- International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. ICH Guideline M10 on Bioanalytical Method Validation EMA/CHMP/ICH/172948/2019; Step 5; Committee for Medicinal Products for Human Use: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Shabir, G.A. Validation of High-Performance Liquid Chromatography Methods for Pharmaceutical Analysis: Understanding the Differences and Similarities between Validation Requirements of the US Food and Drug Administration, the US Pharmacopeia and the International Conference on Harmonization. J. Chromatogr. A 2003, 987, 57–66. [Google Scholar] [PubMed]
- Fares, M.Y.; Abdelwahab, N.S.; Abdelrahman, M.M.; Abdel-Rahman, H.M. Determination of Sofosbuvir with Two Co-Administered Drugs; Paracetamol and DL-Methionine by Two Chromatographic Methods. Application to a Pharmacokinetic Study. Bioanalysis 2019, 11, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Guideline, I.H. Validation of Analytical Procedures q2 (r1); ICH: Geneva, Switzerland, 2022. [Google Scholar]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J. A New Tool for the Evaluation of the Analytical Procedure: Green Analytical Procedure Index. Talanta 2018, 181, 204–209. [Google Scholar] [CrossRef]
- Gamal, M.; Naguib, I.A.; Panda, D.S.; Abdallah, F.F. Comparative Study of Four Greenness Assessment Tools for Selection of Greenest Analytical Method for Assay of Hyoscine N-Butyl Bromide. Anal. Methods 2021, 13, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Sundar Panda, D.; Patro, S.K.; Alruwaili, N.K.; Alotaibi, N.H.; Naguib, I.A.; Santali, E.Y.; Grace, D.; Parambi, T.; Gamal, M. Comparative study to assess the greenness of four analytical methods for simultaneous estimation of lamivudine. Acta Pol. Pharm.-Drug Res. 2022, 79, 41–48. [Google Scholar] [CrossRef]
- Sajid, M.; Płotka-Wasylka, J. Green Analytical Chemistry Metrics: A Review. Talanta 2022, 238, 123046. [Google Scholar] [CrossRef]
- Kannaiah, K.P.; Sugumaran, A.; Chanduluru, H.K.; Rathinam, S. Environmental Impact of Greenness Assessment Tools in Liquid Chromatography—A Review. Microchem. J. 2021, 170, 106685. [Google Scholar] [CrossRef]
- Imam, M.S.; Abdelrahman, M.M. How Environmentally Friendly Is the Analytical Process? A Paradigm Overview of Ten Greenness Assessment Metric Approaches for Analytical Methods. Trends Environ. Anal. Chem. 2023, 38, e00202. [Google Scholar] [CrossRef]
- Armenta, S.; Garrigues, S.; de la Guardia, M. Green Analytical Chemistry. TrAC—Trends Anal. Chem. 2008, 27, 497–511. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Fabjanowicz, M.; Kalinowska, K.; Namieśnik, J. History and Milestones of Green Analytical Chemistry. In Green Analytical Chemistry; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–17. [Google Scholar]
- Algethami, F.K.; Gamal, M. Development of a Simple, Eco-Friendly HPLC-DAD Method for Tulathromycin Analysis: Ensuring Stability and Assessing Greenness. Microchem. J. 2023, 195, 109511. [Google Scholar] [CrossRef]
- Ali, H.M.; Gamal, M.; Ghoneim, M.M.; Mohammed Abd Elhalim, L. Quantitative Analysis of Abamectin, Albendazole, Levamisole HCl and Closantel in Q-DRENCH Oral Suspension Using a Stability-Indicating HPLC-DAD Method. Molecules 2022, 27, 764. [Google Scholar] [CrossRef] [PubMed]
- Manousi, N.; Wojnowski, W.; Płotka-Wasylka, J.; Samanidou, V. Blue Applicability Grade Index (BAGI) and Software: A New Tool for the Evaluation of Method Practicality. Green Chem. 2023, 25, 7598–7604. [Google Scholar] [CrossRef]
- Mahmoud, S.A.; Abbas, A.E.F. Greenness, whiteness, and blueness assessment with spider chart solvents evaluation of HPTLC-densitometric method for quantifying a triple combination anti-Helicobacter pylori therapy. Sustain. Chem. Pharm. 2024, 37, 101412. [Google Scholar] [CrossRef]
- Kamal, M.F.; Abdel Moneim, M.M.; Hamdy, M.M. Green novel photometric and planar chromatographic assays of remdesivir: Comparative greenness assessment study using estimated GAPI tool versus ISO technical reported methods. Rev. Anal. Chem. 2023, 42, 20230060. [Google Scholar] [CrossRef]
- Parys, W.; Dołowy, M.; Pyka-Pająk, A. Significance of chromatographic techniques in pharmaceutical analysis. Processes 2022, 10, 172. [Google Scholar] [CrossRef]
- Sonia, K.; Lakshmi, K.S. HPTLC method development and validation: An overview. J. Pharm. Sci. Res. 2017, 9, 652. [Google Scholar]
Parameter | TLC-Densitometric Method | ||
---|---|---|---|
HYX | EPH | THP | |
Range (μg/band) | 0.40–1.80 | 2.00–16.00 | 0.40–1.80 |
Linearity | |||
Slope | 3.62 | 0.266 | 3.94 |
Intercept | 1.17 | 0.463 | 0.269 |
The coefficient of determination (R2) | 0.9997 | 0.9997 | 0.9998 |
Accuracy (Mean ± SD) | 99.4 ±1.1 | 99.7 ±1.3 | 99.8 ±1.2 |
Precision Repeatability * Intermediate precision * Calculated as (%RSD) | 1.1 1.3 | 1.3 1.3 | 1.2 1.5 |
LOD (μg/band) a | 0.09 b | 0.52 | 0.11 |
LOQ (μg/band) a | 0.27 c | 1.59 | 0.31 |
Items | Bronchaline® Tablets | Reported Method [40] * | ||||
---|---|---|---|---|---|---|
HYX | EPH | THP | HYX | EPH | THP | |
Mean ** | 96.7 | 95.8 | 105.0 | 97.3 | 96.2 | 104.6 |
SD | 1.4 | 1.2 | 1.2 | 1.2 | 1.5 | 1.2 |
%RSD | 1.5 | 1.3 | 1.1 | 1.3 | 1.5 | 1.1 |
n | 6 | 6 | 6 | 6 | 6 | 6 |
Variance | 2.042 | 1.560 | 1.366 | 1.493 | 2.167 | 1.471 |
Student’s t-test (2.228) *** | 2.162 | 1.427 | 0.363 | — | — | — |
F-value (5.050) *** | 1.367 | 1.388 | 1.077 | — |
Parameters (%RSD) | TLC-Densitometric Method | ||
---|---|---|---|
HYX | EPH | THP | |
Chloroform (9.5 mL ± 1%) | 0.397 | 0.547 | 0.723 |
Ammonium acetate buffer (0.5 mL ± 0.5%) | 1.124 | 1.217 | 0.945 |
pH of the developing system (6.5 ± 0.1) | 0.531 | 0.458 | 0.421 |
Parameters | TLC-Densitometric Method | Reference Value [51] | ||
---|---|---|---|---|
EPH | THP | HYX | ||
Selectivity factor (α) | 2.67 | 1.62 | 1.62 | >1 |
Resolution (R) | 5.11 | 5.83 | R > 1.5 | |
Symmetry factor “Tailing factor” (T) | 1.12 | 1.05 | 1.14 | ≈1 |
Parameter | Proposed HPTLC Method | Reported RP-HPLC Method I [40] | Reported HPLC Method II [41] |
---|---|---|---|
Mobile phase | Chloroform–ammonium acetate buffer (9.5:0.5, v/v) | Ammonium carbonate buffer-acetonitrile (50:50 v/v) | Water containing phosphoric acid -acetonitrile (gradient elution) |
Detection wavelength | 220 nm | 254 nm | 220 nm for EPH and HYX and 240 nm for THP and papaverine hydrochloride |
Linearity | HYX (0.40–1.80 μg/band) EPH (2.00–16.00 μg/band) THP (0.40–1.80 μg/band) | Not assigned | HYX (50–150 μg/mL) EPH (100–300 μg/mL) THP (500–1500 μg/mL) |
Run time/per sample | ≃2.5 min [Elution time + saturation time/number of samples per plate] | ≃12 min Without including the actual time required for normalizing the baseline | ≃15 min Without including the actual time required for normalizing the baseline |
pH | 6.5 | 7 | 2.4 |
Comments |
|
|
|
Reference Numbers | [20] | [25] | [26] | Our Novel Method | [21] | [22] | [23] | [24] | Our Novel Method |
---|---|---|---|---|---|---|---|---|---|
Drug Name | Ephedrine Hydrochloride (EPH) | Theophylline (THP) | |||||||
Other analyzed drugs | naphazoline nitrate and methylparaben | analogues of ephedrine, such as pseudoephedrine, and phenylpropanolamine | carbinoxamine, pholcodine | Hydroxyzine HCl and Theophylline | caffeine as a probable interfering drug and paracetamol as internal standard | No other drugs were assessed | caffeine and theobromine | No other compounds were assessed | ephedrine HCl and Theophylline |
Linear range (µg/band) | 2.00–16.00 | 12.00–22.00 | 5.00–45.00 | 2.00–16.00 | 80.00–160.00 ng/spot | 0.50–2.000 μg mL−1 | 250.00–1500.00 ng/spot | 20.00–100.00 ng/spot | 0.40–1.80 |
Retardation factor time (Rf) | 0.15 | 0.41 | 0.12 | 0.15 | Not recorded | 0.48 | 0.25 | 0.54 | 0.40 |
Mobile phase | ethyl acetate–ethyl alcohol–tri ethylamine (8.0:2.0:0.2, in volumes) | n-butyl acetate–acetone–n-butanol–5M NH4OH: methanol (4:2:2:1:1, in volumes) | Propanol–Chloroform–ammonia (4:6:0.1, in volumes) | Chloroform–ammonium acetate buffer (9.5: 0.5, v/v) adjusted to pH 6.5 using ammonia solution 33% | Toluene–isopropanol–acetic acid (8:2:0.5 by volumes) | Chloroform–methyl alcohol (9:1, v/v) | Acetone–toluene–chloroform (4:3:3, in volumes) | Chloroform–methyl alcohol 9:1 v/v | Chloroform–ammonium acetate buffer (9.5: 0.5, v/v) adjusted to pH 6.5 using ammonia solution 33% |
Stationary material | silica gel aluminum normal sheets (20 × 10 cm and 250 μm thickness) | Aluminum-supported sheets of Silica gel 60 F₂₅₄ | Aluminum-supported sheets of Silica gel 60 F₂₅₄ | TLC plates covered with Silica gel 60 F₂₅₄ | Silica gel 60 F₂₅₄ sheets | Silica gel 60 F₂₅₄ sheets | Fluorescence indicator-equipped LiChrospher silica gel sheets | Silica gel 60 F₂₅₄ sheets | Silica gel 60 F₂₅₄ plates |
Detection method | UV at 220.00 nm | HPTLC–MS | UV at 245.00 nm | UV at 220.00 nm | UV at 278.00 nm | UV at 277.00 nm | UV at 274.00 nm | UV at 272.00 nm | UV at 220.00 nm |
Greenness appraisal using AGREE approach | |||||||||
Merits | Assay of real pharmaceutical [ Deltarhino® nasal spray] Final analytical eco-scale score of 71 referring to convenient greenness aspects Simplicity and availability of instrument in most laboratories | This technology determined ephedrine analogues with little sample preparation, a rapid and simple process, and no derivatization Applied for suspected forensic specimens | Applied for assay of Antitussive Cyrinol® Syrup Well-resolved bands with excellent symmetry Simplicity and sensitivity of the method No interference of excipients | Assay of real pharmaceutical [Bronchaline® tablets] Assay of three drugs in one run Relative greenness aspects Simplicity and availability of instrument in most laboratories Convenient method functionality according to BAGI score of 77.5 | Applied efficiently for assay of THP in human plasma No interference was recorded from probable interfering drugs, e.g., caffeine and paracetamol High sensitivity in nanoscale | Assay of THP in post-mortem blood in 60 min It requires less solvent and does not necessitate a lengthy cleanup process The extreme sensitivity No interference was recorded from probable interfering drugs, e.g., ephedrine, caffeine, salbutamol, and paracetamol | Applied positively for assay THP in Mate soft drinks and Mate beer Very sensitive [ limit of quantitation was 4 ng/zone] Convenient recoveries, accuracy, and precision outcomes Practical and useful methods as it assayed 3 drugs in a single run | Measured the plasma levels of theophylline following the administration of a single, commercially available, oral sustained-release tablet The most sensitive HPTLC method for assay of THP in clinical and pharmacokinetic studies Rf values of Potential metabolites in plasma were reported | Assay of real pharmaceutical [Bronchaline® tablets] Careful adjustment of pH Assay of three drugs in one run Relative greenness aspects Simplicity and availability of instrument in most laboratories Convenient method functionality according to BAGI score of 77.5 |
Demerits | No applications in serum or urine No assessment of impurities | HPTLC-MS instrument is expensive and not available in the majority of pharmaceutical labs Not applied for pharmaceutical formulation | No applications in serum or urine No assessment of impurities | No applications in serum or urine No assessment of impurities | 25 min migration time [long time] Deproteinization and many extraction and evaporation steps Non-green method according to AGREE score | Less functional and practical method as one drug assayed per one run Not applied for impurity detection and pharmaceuticals Many tedious extraction and evaporation procedures | Not applied for impurity detection and pharmaceutical assay No applications in serum or urine Long degassing time 45 min | Less functional and practical method as one drug assayed per one run Very complicated extraction and evaporation procedures Not applied for impurity detection and pharmaceutical assay | No applications in serum or urine No assessment of impurities |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlSalem, H.S.; Algethami, F.K.; Magdy, M.A.; Ali, N.W.; Zaazaa, H.E.; Abdelkawy, M.; Abdelrahman, M.M.; Gamal, M. High Performance Thin Layer Chromatography (HPTLC) Analysis of Anti-Asthmatic Combination Therapy in Pharmaceutical Formulation: Assessment of the Method’s Greenness and Blueness. Pharmaceuticals 2024, 17, 1002. https://doi.org/10.3390/ph17081002
AlSalem HS, Algethami FK, Magdy MA, Ali NW, Zaazaa HE, Abdelkawy M, Abdelrahman MM, Gamal M. High Performance Thin Layer Chromatography (HPTLC) Analysis of Anti-Asthmatic Combination Therapy in Pharmaceutical Formulation: Assessment of the Method’s Greenness and Blueness. Pharmaceuticals. 2024; 17(8):1002. https://doi.org/10.3390/ph17081002
Chicago/Turabian StyleAlSalem, Huda Salem, Faisal K. Algethami, Maimana A. Magdy, Nourudin W. Ali, Hala E. Zaazaa, Mohamed Abdelkawy, Maha M. Abdelrahman, and Mohammed Gamal. 2024. "High Performance Thin Layer Chromatography (HPTLC) Analysis of Anti-Asthmatic Combination Therapy in Pharmaceutical Formulation: Assessment of the Method’s Greenness and Blueness" Pharmaceuticals 17, no. 8: 1002. https://doi.org/10.3390/ph17081002
APA StyleAlSalem, H. S., Algethami, F. K., Magdy, M. A., Ali, N. W., Zaazaa, H. E., Abdelkawy, M., Abdelrahman, M. M., & Gamal, M. (2024). High Performance Thin Layer Chromatography (HPTLC) Analysis of Anti-Asthmatic Combination Therapy in Pharmaceutical Formulation: Assessment of the Method’s Greenness and Blueness. Pharmaceuticals, 17(8), 1002. https://doi.org/10.3390/ph17081002