“Losing the Brakes”—Suppressed Inhibitors Triggering Uncontrolled Wnt/ß-Catenin Signaling May Provide a Potential Therapeutic Target in Elderly Acute Myeloid Leukemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Samples
2.2. RNA Extraction and NanoString nCounter Assay
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Löwenberg, B.; Downing, J.R.; Burnett, A. Acute myeloid leukemia. N. Engl. J. Med. 1999, 341, 1051–1062. [Google Scholar] [CrossRef] [PubMed]
- Rose, D.; Haferlach, T.; Schnittger, S.; Perglerová, K.; Kern, W.; Haferlach, C. Subtype-specific patterns of molecular mutations in acute myeloid leukemia. Leukemia 2017, 31, 11–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estey, E.H. Acute myeloid leukemia: 2019 update on risk-stratification and management. Am. J. Hematol. 2018, 93, 1267–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, J.A.; Pratz, K.W. Acute myeloid leukemia in the elderly: Therapeutic options and choice. Leuk. Lymphoma 2018, 59, 274–287. [Google Scholar] [CrossRef] [PubMed]
- Daver, N.; Wei, A.H.; Pollyea, D.A.; Fathi, A.T.; Vyas, P.; DiNardo, C.D. New directions for emerging therapies in acute myeloid leukemia: The next chapter. Blood Cancer J. 2020, 10, 107. [Google Scholar] [CrossRef]
- Rashidi, A.; Ebadi, M.; Colditz, G.A.; DiPersio, J.F. Outcomes of Allogeneic Stem Cell Transplantation in Elderly Patients with Acute Myeloid Leukemia: A Systematic Review and Meta-analysis. Biol. Blood Marrow Transplant. 2016, 22, 651–657. [Google Scholar] [CrossRef] [Green Version]
- Sekeres, M.A.; Guyatt, G.; Abel, G.; Alibhai, S.; Altman, J.K.; Buckstein, R.; Choe, H.; Desai, P.; Erba, H.; Hourigan, C.S.; et al. American Society of Hematology 2020 guidelines for treating newly diagnosed acute myeloid leukemia in older adults. Blood Adv. 2020, 4, 3528–3549. [Google Scholar] [CrossRef]
- Thol, F. What to use to treat AML: The role of emerging therapies. Hematol. Am. Soc. Hematol. Educ. Program 2021, 2021, 16–23. [Google Scholar] [CrossRef]
- Tabibzadeh, S. Signaling pathways and effectors of aging. Front. Biosci. 2021, 26, 50–96. [Google Scholar] [CrossRef]
- Staal, F.J.; Sen, J.M. The canonical Wnt signaling pathway plays an important role in lymphopoiesis and hematopoiesis. Eur. J. Immunol. 2008, 38, 1788–1794. [Google Scholar] [CrossRef]
- Katoh, M.; Katoh, M. Molecular genetics and targeted therapy of WNT-related human diseases (Review). Int. J. Mol. Med. 2017, 40, 587–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín, V.; Valencia, A.; Agirre, X.; Cervera, J.; San Jose-Eneriz, E.; Vilas-Zornoza, A.; Rodriguez-Otero, P.; Sanz, M.A.; Herrera, C.; Torres, A.; et al. Epigenetic regulation of the non-canonical Wnt pathway in acute myeloid leukemia. Cancer Sci. 2010, 101, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Johnson, M.; Brocardo, M.; Jamieson, C.; Henderson, B.R. Wnt signaling proteins associate with the nuclear pore complex: Implications for cancer. Adv. Exp. Med. Biol. 2014, 773, 353–372. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Han, R.; Gan, R. The Wnt/β-catenin signalling pathway in Haematological Neoplasms. Biomark. Res. 2022, 10, 74. [Google Scholar] [CrossRef]
- Krishnamurthy, N.; Kurzrock, R. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat. Rev. 2018, 62, 50–60. [Google Scholar] [CrossRef]
- Takam Kamga, P.; Dal Collo, G.; Cassaro, A.; Bazzoni, R.; Delfino, P.; Adamo, A.; Bonato, A.; Carbone, C.; Tanasi, I.; Bonifacio, M.; et al. Small Molecule Inhibitors of Microenvironmental Wnt/β-Catenin Signaling Enhance the Chemosensitivity of Acute Myeloid Leukemia. Cancers 2020, 12, 2696. [Google Scholar] [CrossRef]
- Cheng, X.; Xu, X.; Chen, D.; Zhao, F.; Wang, W. Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomed. Pharmacother. 2019, 110, 473–481. [Google Scholar] [CrossRef]
- Gruszka, A.M.; Valli, D.; Alcalay, M. Wnt Signalling in Acute Myeloid Leukaemia. Cells 2019, 8, 1403. [Google Scholar] [CrossRef] [Green Version]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef]
- Kawano, Y.; Kypta, R. Secreted antagonists of the Wnt signalling pathway. J. Cell Sci. 2003, 116, 2627–2634. [Google Scholar] [CrossRef]
- Valencia, A.; Román-Gómez, J.; Cervera, J.; Such, E.; Barragán, E.; Bolufer, P.; Moscardó, F.; Sanz, G.F.; Sanz, M.A. Wnt signaling pathway is epigenetically regulated by methylation of Wnt antagonists in acute myeloid leukemia. Leukemia 2009, 23, 1658–1666. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, X. Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol. 2020, 13, 165. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Mak, P.Y.; Mu, H.; Tao, W.; Mak, D.H.; Kornblau, S.; Zhang, Q.; Ruvolo, P.; Burks, J.K.; Zhang, W.; et al. Disruption of Wnt/β-Catenin Exerts Antileukemia Activity and Synergizes with FLT3 Inhibition in FLT3-Mutant Acute Myeloid Leukemia. Clin. Cancer Res. 2018, 24, 2417–2429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tickenbrock, L.; Schwäble, J.; Wiedehage, M.; Steffen, B.; Sargin, B.; Choudhary, C.; Brandts, C.; Berdel, W.E.; Müller-Tidow, C.; Serve, H. Flt3 tandem duplication mutations cooperate with Wnt signaling in leukemic signal transduction. Blood 2005, 105, 3699–3706. [Google Scholar] [CrossRef] [PubMed]
- van Loon, K.; Huijbers, E.J.M.; Griffioen, A.W. Secreted frizzled-related protein 2: A key player in noncanonical Wnt signaling and tumor angiogenesis. Cancer Metastasis Rev. 2021, 40, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.G.; Fu, H.Y.; Shen, J.Z.; Zhou, H.R.; Zhang, Y.Y.; Huang, J.L.; Chen, C.J.; Huang, S.H. Application of Bisulfite Sequencing PCR in Detecting the Abnormal Methylation of Suppressor Gene of Wnt Signaling Pathway in Acute Promyelocytic Leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2016, 24, 1299–1304. [Google Scholar] [CrossRef] [PubMed]
- Strzelczyk, J.K.; Krakowczyk, Ł.; Owczarek, A.J. Methylation status of SFRP1, SFRP2, RASSF1A, RARβ and DAPK1 genes in patients with oral squamous cell carcinoma. Arch. Oral Biol. 2019, 98, 265–272. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, Y.; Xu, H.; Zhang, T.; Xue, Y.; An, R. Secreted Frizzled Related Protein 2 Modulates Epithelial-Mesenchymal Transition and Stemness via Wnt/β-Catenin Signaling in Choriocarcinoma. Cell Physiol. Biochem. 2018, 50, 1815–1831. [Google Scholar] [CrossRef]
- Kim, H.; Yoo, S.; Zhou, R.; Xu, A.; Bernitz, J.M.; Yuan, Y.; Gomes, A.M.; Daniel, M.G.; Su, J.; Demicco, E.G.; et al. Oncogenic role of SFRP2 in p53-mutant osteosarcoma development via autocrine and paracrine mechanism. Proc. Natl. Acad. Sci. USA 2018, 115, E11128–E11137. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.N.; Ramsingh, G.; Young, A.L.; Miller, C.A.; Touma, W.; Welch, J.S.; Lamprecht, T.L.; Shen, D.; Hundal, J.; Fulton, R.S.; et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature 2015, 518, 552–555. [Google Scholar] [CrossRef]
- Hou, H.A.; Kuo, Y.Y.; Liu, C.Y.; Lee, M.C.; Tang, J.L.; Chen, C.Y.; Chou, W.C.; Huang, C.F.; Lee, F.Y.; Liu, M.C.; et al. Distinct association between aberrant methylation of Wnt inhibitors and genetic alterations in acute myeloid leukaemia. Br. J. Cancer 2011, 105, 1927–1933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, C.; Guo, H.; Wen, X.M.; Tang, C.Y.; Yang, J.; Zhu, X.W.; Yin, J.Y.; Liu, Q.; Ma, J.C.; Deng, Z.Q.; et al. Clinical significance of reduced SFRP1 expression in acute myeloid leukemia. Leuk. Lymphoma 2015, 56, 2056–2060. [Google Scholar] [CrossRef]
- Himburg, H.A.; Doan, P.L.; Quarmyne, M.; Yan, X.; Sasine, J.; Zhao, L.; Hancock, G.V.; Kan, J.; Pohl, K.A.; Tran, E.; et al. Dickkopf-1 promotes hematopoietic regeneration via direct and niche-mediated mechanisms. Nat. Med. 2017, 23, 91–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, R.; Onizuka, M.; Kojima, M.; Shimada, M.; Fukagawa, S.; Tsuboi, K.; Kobayashi, H.; Shintani, A.; Ogawa, Y.; Kawada, H.; et al. Preferential hypermethylation of the Dickkopf-1 promoter in core-binding factor leukaemia. Br. J. Haematol. 2007, 138, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Jaschke, N.; Hofbauer, L.C.; Göbel, A.; Rachner, T.D. Evolving functions of Dickkopf-1 in cancer and immunity. Cancer Lett. 2020, 482, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Garcia, M.; Weng, L.; Jung, X.; Murakami, J.L.; Hu, X.; McDonald, T.; Lin, A.; Kumar, A.R.; DiGiusto, D.L.; et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia 2018, 32, 575–587. [Google Scholar] [CrossRef] [Green Version]
- Shi, T.; Zhang, Y.; Wang, Y.; Song, X.; Wang, H.; Zhou, X.; Liang, K.; Luo, Y.; Che, K.; Wang, X.; et al. DKK1 promotes tumor immune evasion and impedes anti-PD-1 treatment by inducing immunosuppressive macrophages in gastric cancer. Cancer Immunol. Res. 2022, 10, 1506–1524. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.Y.; Chen, Z.; Wang, L.; Zhang, Z.K.; Tan, X.; Liu, S.; Zhang, B.T.; Lu, A.; Yu, Y.; Zhang, G. Dickkopf-1: A Promising Target for Cancer Immunotherapy. Front. Immunol. 2021, 12, 658097. [Google Scholar] [CrossRef]
- Fatima, S.; Luk, J.M.; Poon, R.T.; Lee, N.P. Dysregulated expression of dickkopfs for potential detection of hepatocellular carcinoma. Expert Rev. Mol. Diagn. 2014, 14, 535–548. [Google Scholar] [CrossRef]
- Kojima, T.; Shimazui, T.; Hinotsu, S.; Joraku, A.; Oikawa, T.; Kawai, K.; Horie, R.; Suzuki, H.; Nagashima, R.; Yoshikawa, K.; et al. Decreased expression of CXXC4 promotes a malignant phenotype in renal cell carcinoma by activating Wnt signaling. Oncogene 2009, 28, 297–305. [Google Scholar] [CrossRef]
- Griffiths, E.A.; Gore, S.D.; Hooker, C.; McDevitt, M.A.; Karp, J.E.; Smith, B.D.; Mohammad, H.P.; Ye, Y.; Herman, J.G.; Carraway, H.E. Acute myeloid leukemia is characterized by Wnt pathway inhibitor promoter hypermethylation. Leuk. Lymphoma 2010, 51, 1711–1719. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, H.; Cao, R.; Sun, L.; Wang, Y.; Fan, S.; Zhao, Y.; Kong, D.; Cui, L.; Lin, L.; et al. Suppression of miR-708 inhibits the Wnt/β-catenin signaling pathway by activating DKK3 in adult B-all. Oncotarget 2017, 8, 64114–64128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiNardo, C.D.; Pratz, K.; Pullarkat, V.; Jonas, B.A.; Arellano, M.; Becker, P.S.; Frankfurt, O.; Konopleva, M.; Wei, A.H.; Kantarjian, H.M.; et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood 2019, 133, 7–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, D.J. Wnt signaling pathway in non-small cell lung cancer. J. Natl. Cancer Inst. 2014, 106, djt356. [Google Scholar] [CrossRef] [Green Version]
- Thomas, X.; Elhamri, M.; Heiblig, M. Emerging pharmacotherapies for elderly acute myeloid leukemia patients. Expert Rev. Hematol. 2020, 13, 619–643. [Google Scholar] [CrossRef]
- Amerizadeh, F.; Rahmani, F.; Maftooh, M.; Nasiri, S.N.; Hassanian, S.M.; Giovannetti, E.; Moradi-Marjaneh, R.; Sabbaghzadeh, R.; Shahidsales, S.; Joudi-Mashhad, M.; et al. Inhibition of the Wnt/b-catenin pathway using PNU-74654 reduces tumor growth in in vitro and in vivo models of colorectal cancer. Tissue Cell 2022, 77, 101853. [Google Scholar] [CrossRef]
- Wang, G.N.; Zhong, M.; Chen, Y.; Ji, J.; Gao, X.Q.; Wang, T.F. Expression of WNT1 in ameloblastoma and its significance. Oncol. Lett. 2018, 16, 1507–1512. [Google Scholar] [CrossRef]
- Jia, S.; Qu, T.; Feng, M.; Ji, K.; Li, Z.; Jiang, W.; Ji, J. Association of Wnt1-inducible signaling pathway protein-1 with the proliferation, migration and invasion in gastric cancer cells. Tumour Biol. 2017, 39, 1010428317699755. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, X.; Shao, J.; Liu, H.; Liu, X.; Luo, E. Adiponectin regulates BMSC osteogenic differentiation and osteogenesis through the Wnt/β-catenin pathway. Sci. Rep. 2017, 7, 3652. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, Z.; Zeng, X.; Wang, J.; Zhang, L.; Song, W.; Shi, Y. Wnt/β-catenin signaling pathway in severe preeclampsia. J. Mol. Histol. 2018, 49, 317–327. [Google Scholar] [CrossRef]
Genes | p-Value | q-Value | Fold Change |
---|---|---|---|
AXIN2 | 1.38 × 10−5 | 4.98 × 10−5 | −3.1 |
CXXC4 | 1.74 × 10−7 | 1.08 × 10−6 | −3.5 |
DKK1 | 8.87 × 10−7 | 4.96 × 10−6 | −4.7 |
DKK2 | 0.008930 | 0.012775 | −2.5 |
DKK4 | 0.000645 | 0.001336 | −3.1 |
SFRP1 | 2.82 × 10−6 | 1.27 × 10−5 | −4.3 |
SFRP2 | 7.48 × 10−10 | 1.04 × 10−8 | −9.2 |
SFRP4 | 2.52 × 10−5 | 8.32 × 10−5 | −4.5 |
SOST | 6.67 × 10−6 | 2.56 × 10−5 | −4.5 |
WIF1 | 0.005997 | 0.008683 | −2.6 |
WNT5A | 0.000274 | 0.000636 | −2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elyamany, G.; Rizwan, H.; Akhter, A.; Aljabry, M.S.; Alotaibi, S.; Albalawi, M.A.H.; Shabani-Rad, M.-T.; Roshan, T.M.; Mansoor, A. “Losing the Brakes”—Suppressed Inhibitors Triggering Uncontrolled Wnt/ß-Catenin Signaling May Provide a Potential Therapeutic Target in Elderly Acute Myeloid Leukemia. Curr. Issues Mol. Biol. 2023, 45, 604-613. https://doi.org/10.3390/cimb45010040
Elyamany G, Rizwan H, Akhter A, Aljabry MS, Alotaibi S, Albalawi MAH, Shabani-Rad M-T, Roshan TM, Mansoor A. “Losing the Brakes”—Suppressed Inhibitors Triggering Uncontrolled Wnt/ß-Catenin Signaling May Provide a Potential Therapeutic Target in Elderly Acute Myeloid Leukemia. Current Issues in Molecular Biology. 2023; 45(1):604-613. https://doi.org/10.3390/cimb45010040
Chicago/Turabian StyleElyamany, Ghaleb, Hassan Rizwan, Ariz Akhter, Mansour S. Aljabry, Sultan Alotaibi, Mohammad A. Hameed Albalawi, Meer-Taher Shabani-Rad, Tariq Mahmood Roshan, and Adnan Mansoor. 2023. "“Losing the Brakes”—Suppressed Inhibitors Triggering Uncontrolled Wnt/ß-Catenin Signaling May Provide a Potential Therapeutic Target in Elderly Acute Myeloid Leukemia" Current Issues in Molecular Biology 45, no. 1: 604-613. https://doi.org/10.3390/cimb45010040
APA StyleElyamany, G., Rizwan, H., Akhter, A., Aljabry, M. S., Alotaibi, S., Albalawi, M. A. H., Shabani-Rad, M. -T., Roshan, T. M., & Mansoor, A. (2023). “Losing the Brakes”—Suppressed Inhibitors Triggering Uncontrolled Wnt/ß-Catenin Signaling May Provide a Potential Therapeutic Target in Elderly Acute Myeloid Leukemia. Current Issues in Molecular Biology, 45(1), 604-613. https://doi.org/10.3390/cimb45010040